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Abstract

In this review, we intend to clarify the underlying ideas and the relations between

various multigrid methods ranging from subset decomposition, to projected subspace de-

composition and truncated multigrid. In addition, we present a novel globally convergent

inexact active set method which is closely related to truncated multigrid. The numerical

properties of algorithms are carefully assessed by means of a degenerate problem and a

problem with a complicated coincidence set.
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1. Introduction

Since the pioneering papers of Fichera [1] and Stampaccia [2] almost fifty years ago, vari-

ational inequalities have proved extremely useful for the mathematical description of a wide

range of phenomena in material science, continuum mechanics, electrodynamics, hydrology and

many others. We refer to the monographs of Baiocchi and Capelo [3], Cottle et al. [4], Duvaut

and Lions [5], Glowinski [6] or Kinderlehrer and Stampaccia [7] for an introduction. Even the

special case of obstacle problems covers a large and still growing number of applications ranging

from contact problems in continuum mechanics to option pricing in computational finance or

phase transitions in metallurgy (cf., e.g., Rodrigues [8]). In addition, the fast algebraic solution

of discretized versions of highly nonlinear partial differential equations or related variational

inequalities can be often traced back to a sequence of obstacle problems playing the same role

as linear problems in classical Newton linearization [9–12]. Finally, apart from their practical

relevance, obstacle problems are fascinating mathematical objects of their own value which

inherit some, but far from all essential properties from their unconstrained counterparts.

On this background, many approaches for the iterative solution of obstacle problems have

been suggested and pursued. Penalty methods based on straightforward regularization are

still popular in the engineering community. A mathematically well-founded approach is to

incorporate the constraints by Lagrange multipliers [6]. It is an advantage of this approach

that very general constraints can be treated in a systematic way. On the other hand it doubles

the number of unknowns and leads to indefinite problems. operators and box constraints. Active

set strategies consist of an activation/inactivation step that produces an actual guess for the

coincidence set and a subsequent solution step for the resulting reduced linear problem. This

concept has been very popular since the benchmarking work by Hackbusch and Mittelmann [13]

and Hoppe [14, 15]. Recent new interest was stimulated by a reinterpretation of the active set
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approach in terms of nonsmooth Newton methods [16, 17]. As the existing convergence theory

typically requires the exact solution of the linear subproblems the combination with inexact

(multigrid) solvers is often performed on a heuristic level [18–20].

In this review we concentrate on extensions of classical multigrid methods to self-adjoint

elliptic obstacle problems with box-constraints. Our aim is to bridge the gap between the

underlying simple ideas motivated by linear subspace decomposition and detailed descriptions

of the final implementation as multigrid V -cycles. We also intend to clarify the relations be-

tween different concepts ranging from subset decomposition [21], projected subspace decom-

position [22–24] to monotone multigrid [25] and even active set strategies both with regard to

convergence analysis and numerical properties. In particular, we propose a novel truncated

nonsmooth Newton multigrid method which can be as well regarded as an inexact active set

algorithm or a slight modification of truncated monotone multigrid. Activation/inactivation

is performed by a projected Gauß-Seidel step, linear solution is replaced by just one trun-

cated multigrid step (cf. Kornhuber and Yserentant [26]) and global convergence is achieved by

damping.

Roughly speaking, it turns out that increasing flexibility goes with decreasing theoretical

coverage ranging from multigrid convergence rates for multilevel subset decomposition or pro-

jected multilevel relaxation to strong mesh-dependence of truncated monotone multigrid or

truncated nonsmooth Newton multigrid for badly chosen initial iterates. On the other hand,

increasing flexibility seems to increase the convergence speed considerably in the case of rea-

sonable initial iterates: Combined with, e.g., nested iteration, truncated monotone multigrid

or truncated nonsmooth Newton multigrid methods converge even for complicated coincidence

sets with similar convergence speed as classical linear multigrid methods for unconstrained

problems. The lack of robustness of truncated monotone multigrid or active set strategies is

that local inactivation by projected Gauß-Seidel or related strategies [16] might deteriorate the

convergence speed, because slow next-neighbor interaction might dominate for overestimated

coincidence sets. As a natural remedy, we also propose hybrid methods where local activa-

tion/inactivation is replaced by a global standard monotone multigrid step. In our numerical

experiments, hybrid version prove extremely efficient for degenerate problems.

2. Continuous Problem and Discretization

2.1. Constrained minimization, variational inequalities, and finite elements

Let Ω be a bounded, polyhedral domain in the Euclidean space R
d, d = 1, 2, 3 and let

H ⊂ H1(Ω) be a closed subspace. We consider the minimization problem

u ∈ K : J (u) ≤ J (v) ∀v ∈ K (2.1)

with the closed, convex, and non-empty set K,

K = {v ∈ H | v ≥ ϕ a.e. in Ω} ⊂ H,

as generated by a suitable obstacle function ϕ ∈ H1(Ω) ∩ C(Ω). We emphasize that all al-

gorithms and convergence results to be presented can be generalized to sets K where also an

upper obstacle is present. The energy functional J ,

J (v) = 1
2a(v, v)− ℓ(v), (2.2)
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is induced by a symmetric, H-elliptic, bilinear form a(·, ·) and a functional ℓ ∈ H ′. For sim-

plicity, we restrict our considerations to

a(v, w) =

∫

Ω

∇v · ∇w dx, ℓ(v) =

∫

Ω

fv dx,

with f ∈ L2(Ω) and H = H1
0 (Ω). Obviously, a(·, ·) defines a scalar product on H , and, by the

Poincarè-Friedrichs inequality, the corresponding energy norm

‖v‖ = a(v, v)1/2 (2.3)

is equivalent to the canonical norm in H1(Ω), i.e.,

α‖v‖H1(Ω) ≤ ‖v‖ ≤ ‖v‖H1(Ω) ∀v ∈ H (2.4)

holds with a positive constant α ∈ R. The minimization problem (2.1) has a unique solution

(cf., e.g., Stampacchia [2] or Glowinski [6, Section I.3]) and can be equivalently rewritten as the

variational inequality

u ∈ K : a(u, v − u) ≥ ℓ(v − u) ∀v ∈ K. (2.5)

Introducing the coincidence set Ω•,

Ω• = {x ∈ Ω | u(x) = ϕ(x)}, Ω◦ = Ω \ Ω•,

it turns out that u is the weak solution of the reduced linear elliptic problem

−∆u(x) = f(x) ∀x ∈ Ω◦ (2.6)

with boundary values u(x) = 0 for x ∈ ∂Ω◦ ∩ ∂Ω and u(x) = ϕ(x) elsewhere. We emphasize

that the coincidence set Ω• or, equivalently, the reduced computational domain is not known a

priori.

For sufficiently regular data, e.g., for f ∈ L2(Ω), ϕ ∈ H2(Ω), and convex domains Ω, the

solution satisfies u ∈ H2(Ω) [8, Corallary 5:2.3]. In general, second order derivatives of u

jump across the free boundary Γ = Ω• ∩ Ω◦. Therefore, in contrast to linear elliptic problems,

the regularity of u is limited to u ∈ Hs(Ω) with s < 2.5 even for arbitrarily smooth data. See

Brézis [27] for a more general result. Regularity or stability of the free boundary Γ is considered

in the monograph by Rodrigues [8].

Let us now consider a multilevel finite element discretization of (2.1). A triangulation T of

Ω ⊂ R
d is a set of d-simplices such that

⋃

t∈T t = Ω and such that the intersection of t, t′ ∈ T
is either a k-simplex with k < d or empty. We consider a nested sequence

T0 ⊂ T1 ⊂ · · · ⊂ Tj

of triangulations resulting from successive refinement of a given triangulation T0. We assume

that T0 is shape regular in the sense that it consists of a finite, intentionally small, number

of non-degenerate simplices. Though, if not explicitly stated otherwise, all algorithms and

theoretical results to be presented can be extended to adaptive refinement, we assume, for

simplicity, that the triangulations are uniformly refined. In two space dimensions this means

that each triangle t ∈ Tk−1 is divided into four congruent subtriangles to obtain Tk. In this

way, lower and upper bounds of the interior angles are preserved in course of refinement. Such
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a stable decomposition of each tetrahedron into eight sub-tetrahedra is more complicated (cf.,

e.g., Bey [28] or Bornemann et al. [29]). Introducing the step sizes hk,

hk = max
t∈Tk

diam(t), k = 0, · · · , j,

we then get

hj = O(2−j), chk ≤ 1
2hk−1 ≤ Chk, k = 1, · · · , j, (2.7)

with positive constants c, C independent of k and j. Note that c = C = 1 for d = 2. On each

level k, we choose piecewise linear finite elements

Sk = {v ∈ H | v|t is linear ∀t ∈ Tk},

in order to obtain a nested sequence of finite dimensional subspaces

S0 ⊂ S1 ⊂ · · · ⊂ Sj ⊂ H. (2.8)

Each space Sk is spanned by the nodal basis

Λk = {λ(k)
p | p ∈ Nk}, λ(k)

p (q) = δpq ∀p, q ∈ Nk (Kronecker-δ).

Nk is denoting the set of the nk vertices of Tk that are contained in Ω. The finite element

approximation uj ∈ Sj of u is obtained by replacing the set K by its discrete analogue Kj ,

Kj = {v ∈ Sj | v ≥ ϕj in Ω}, (2.9)

generated by the nodal interpolation ϕj ∈ Sj of ϕ. The resulting discrete minimization problem

uj ∈ Kj : J (uj) ≤ J (v) ∀v ∈ Kj (2.10)

is equivalent to the variational inequality

uj ∈ Kj : a(uj , v − uj) ≥ ℓ(v − uj) ∀v ∈ Kj . (2.11)

Introducing the discrete coincidence set N •
j ,

N •
j = {p ∈ Nj | uj(p) = ϕ(p)}, N ◦

j = Nj \ N •
j ,

it is easily checked that uj is the solution of the reduced linear problem

a(uj , v) = ℓ(v) ∀v ∈ S◦j = {v ∈ Sj | v(p) = 0 ∀p ∈ N •
j } (2.12)

which is a discrete analogue of (2.6). The discrete problem (2.11) is called non-degenerate, if

the condition

ℓ(λ(j)
p )− a(uj , λ

(j)
p ) < 0 ∀p ∈ N •

j (2.13)

is satisfied. As ℓ(λ
(j)
p ) − a(uj , λ

(j)
p ) ≤ 0, p ∈ Nj , follows immediately from (2.11), condition

(2.13) states that uj must not fulfill the discretized Poisson equation in active nodes p ∈ N•
j .

For non-degenerate problems, sufficiently small perturbations of the right hand side ℓ preserve

the coincidence setN •
j . Similar conditions for the continuous problem (2.5) provide the stability

of the continuous free boundary Γ. We refer to Rodrigues [8, Section 6:5] for details.

The optimal error estimate ‖u − uj‖ = O(hj) holds for u ∈ H ∩ H2(Ω), f ∈ L2(Ω), and

ϕ ∈ H2(Ω) (cf. Falk [30] or Ciarlet [31, Section 5.1]). First steps towards optimal L2-error
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estimates have been made by Natterer [32]. Limited regularity of u is reflected by limited order

of the discretization error. More precisely, even for arbitrarily smooth data the discretization

error of piecewise quadratic finite elements only behaves like O(hs
j) with s < 1.5 (cf. Brezzi et

al. [33]).

For many practical problems, in particular in three space dimensions, it is absolutely neces-

sary to use locally refined grids in order to reduce the number of unknowns and therefore the

numerical complexity. A posteriori estimates of the discretization error providing appropriate

local refinement indicators have been investigated by Veeser [34], Bartels and Carstensen [35],

Kornhuber [36], Braess [37] and others. Nochetto et al. [38] derived a posteriori estimates of

the coincidence set Ω• by so-called barrier sets. Convergence proofs for adaptive finite element

methods have been considered by Perez et al. [39], Siebert and Veeser [40] and Braess et al. [41].

3. Linear Subspace Decomposition Methods

3.1. Spectral properties of elliptic bilinear forms

In this section, we consider the extreme case of an empty coincidence set Ω• = ∅. Obviously,

the reduced Poisson problem (2.6) then simplifies to the variational equality

u ∈ H : a(u, v) = ℓ(v) ∀v ∈ H (3.1)

which is equivalent to the unconstrained minimization problem

u ∈ H : J (u) ≤ J (v) ∀v ∈ H. (3.2)

Let us state a fundamental property of elliptic bilinear forms.

Proposition 3.1. A symmetric, H-elliptic bilinear form a(·, ·) has a countable number of pos-

itive, real eigenvalues µk,

0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ,
with no finite accumulation point and limk→∞ µk = ∞. The corresponding eigenfunctions

ek ∈ H,

a(ek, v) = µk(ek, v)L2(Ω) ∀v ∈ H,
form an a-orthogonal basis of H.

For a proof we refer, e.g., to Raviart and Thomas [42, pp. 135] or Renardy and Rogers

[43, pp. 299].

Example 3.1. Choosing Ω = (0, 1) and a(v, w) = (v′, w′)L2(Ω), we have

µk = (kπ)2, ek(x) = sin(kπx), k ∈ N.

Proposition 3.1 implies that there is an a-orthogonal splitting

H = V1 + V2 + V3 · · · , Vk = span{ek}, (3.3)

into subspaces Vk representing a scale of increasing frequencies µk. Now let u0 ∈ H be some

guess of u. Due to the a-orthogonality of the splitting (3.3), the corrections vk ∈ Vk as obtained

by minimizing J separately on each subspace Vk provide the exact solution:

u = u0 +
∞
∑

k=1

vk, vk =
ℓ(ek)− a(u0, ek)

a(ek, ek)
ek. (3.4)

Unfortunately, the eigenfunctions ek are usually not known in practice.
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3.2. Successive subspace correction and multigrid

We now concentrate on fast solvers for the Ritz-Galerkin approximation

uj ∈ Sj : a(uj, v) = ℓ(v) ∀v ∈ Sj (3.5)

or, equivalently,

uj ∈ Sj : J (uj) ≤ J (v) ∀v ∈ Sj (3.6)

of the continuous problem (3.1) or (3.2), respectively. Similar to (3.4), we can solve (3.6)

separately on a-orthogonal subspaces Vk = span{e(j)k }, k = 1, · · · , nj , spanned by the eigenfunc-

tions e
(j)
k of a(·, ·)|Sj×Sj

. This observation gave rise to well-known fast Fourier methods (cf.,

e.g., [44, Section 19.4]). Unfortunately, the explicit construction of e
(j)
k is restricted to differen-

tial operators with constant coefficients and rectangular or cuboid domains Ω. However, in the

light of Proposition 3.1, eigenfunctions must represent a scale of frequencies.

Therefore, if certain subspaces Vl represent a scale of frequencies, then the corresponding

splitting Sj = V1+V2+· · ·+Vm might be “almost” a-orthogonal in some sense. Hence, successive

minimization of energy J on Vl should provide a fast solver. This idea is our starting point for

the construction of multigrid methods.

Let

Sj = V1 + V2 + · · ·+ Vm (3.7)

be some splitting of Sj . Then, successive minimization of energy J on Vl leads to the following

algorithm for computing a new iterate uν+1
j from some given uν

j ∈ Sj .

Algorithm 3.1. (Successive minimization)

given: w0 = uν
j ∈ Sj

for l = 1, · · · ,m do:

{
solve:

vl ∈ Vl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Vl (local minimization)

wl = wl−1 + vl (intermediate iterates)

}
new iterate: uν+1

j = wm = uν
j +

∑m
l=1 vl

We now try to choose the splitting (3.7) in such a way that Algorithm 3.1 generates an iterative

scheme with mesh independent convergence rates.

The subproblems for the corrections vl can be easily solved in case of one-dimensional

subspaces Vl. Straightforward nodal splitting

Sj =

nj
∑

l=1

Vl, Vl = span{λ(j)
pl
}, l = 1, · · · , nj, (3.8)

produces the well-known Gauß-Seidel relaxation. Obviously, subspaces Vl as used in (3.8) do

not represent a scale of frequencies. Only high-frequency functions λ
(j)
pl

are involved. Hence,

it is not astonishing that Gauß-Seidel iteration rapidly reduces high-frequency contributions of
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the error but scarcely affects low frequencies, (cf., e.g., Hackbusch [45, pp. 49]). In order to

incorporate low frequencies, we now make use of the hierarchy (2.8).

Collecting all basis functions λ
(k)
p from all finite element spaces Sk, we define the so-called

multilevel nodal basis Λ,

Λ =

j
⋃

k=0

Λk = {λl | l = 1, · · · ,mS}, mS = n0 + · · ·+ nj.

Remark 3.1. The underlying enumeration l = l(p, k) is counting all nodes p on all levels

k. Conversely, a given number l characterizes the corresponding pair (pl, kl) = (p, k)(l). For

example, λl(p,k) = λk
p or, conversely, λl = λ

(kl)
pl

. We assume that l = l(p, k) is taken from fine

to coarse, i.e., k > k′ implies l(p, k) < l(p, k′).

From an heuristic point of view, the multilevel splitting

Sj =

mS
∑

l=1

Vl, Vl = span{λl}, l = 1, · · · ,mS , (3.9)

represents a scale of frequencies ranging from low-frequency functions λl ∈ Λ0 to high-frequency

functions λl ∈ Λj . We hope that such functions are ”almost” a-orthogonal. In fact, it turns

out that the linear independent subset Λ̂,

Λ̂ = Λ0 ∪
j
⋃

k=1

{λ(k)
p | p ∈ Nk \ Nk−1} ⊂ Λ,

called hierarchical basis of Sj , is in fact a-orthogonal for space dimension d = 1. From the

multilevel splitting (3.9), Algorithm 3.1 generates the multilevel relaxation

uν+1
j = uν

j +

mS
∑

l=1

vl, vl =
ℓ(λl)− a(wl−1, λl)

a(λl, λl)
λl, (3.10)

where wl = wl−1 + vl and w0 = uν
j .

The following abstract convergence result is a special case of Theorem 4.4 by Xu [46] (see

also Xu and Zikatanov [47]).

Theorem 3.1. Assume that the splitting (3.7) has the following two properties:

(i) There is a constant C0 > 0 such that for all v ∈ Sj there exist vl ∈ Vl satisfying

v =

m
∑

l=1

vl,

m
∑

l=1

‖vl‖2 ≤ C0‖v‖2. (3.11)

(ii) There is a constant C1 > 0 such that

m
∑

l,k=1

|a(vl, wk)| ≤ C1

(

m
∑

l=1

‖vl‖2
)

1
2
(

m
∑

k=1

‖wk‖2
)

1
2

(3.12)

holds for all vl ∈ Vl and wk ∈ Vk, l, k = 1, · · · ,m.

Then the iterates (uν
j ) produced by Algorithm 3.1 satisfy the error estimate

‖uν+1
j − uj‖2 ≤

(

1− 1

C0(1 + C1)2

)

‖uν
j − uj‖2 ∀ν ≥ 0. (3.13)
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For a-orthogonal subspaces Vl the conditions (3.11) and (3.12) clearly hold with C0 = C1 =

1. Moreover, the Cauchy-Schwartz inequality guarantees that we can always choose C1 ≤ m.

As a first example, we consider the nodal splitting (3.8).

Proposition 3.2. The nodal splitting (3.8) satisfies the conditions (3.11) and (3.12) with C0 =

O(h−2
j ) and C1 = O(1).

The iterates (uν
j ) produced by the Gauß-Seidel iteration satisfy

‖uν+1
j − uj‖2 ≤ (1− Ch2

j)‖uν
j − uj‖2 ∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. Let v ∈ Sj and vl = v(pl)λ
(j)
pl

, l = 1, · · · , nj . Exploiting an inverse inequality

and the orthogonality of the basis functions λ
(j)
p with respect to the lumped L2-scalar product

〈v, w〉 =
∑

p∈Nj
v(p)w(p)hp with the associated norm | · |0, we get

nj
∑

l=1

‖vl‖2 � h−2
j

nj
∑

l=1

‖vl‖2L2(Ω) � h−2
j

nj
∑

l=1

|vl|20 = h−2
j |v|20 � h−2

j ‖v‖2,

where � means that the inequality holds up to a generic constant (see [46]). Obviously,

a(λ
(j)
pl
, λ

(j)
pk

) = 0 holds except for neighboring nodes pl, pk. Hence, C1 is bounded by the

maximal number of neighbors which depends on the shape regularity of T0. The upper bound

for the convergence rate now follows directly from Theorem 3.1. �

While condition (3.12) is not an issue for the nodal splitting (3.8), it becomes problematic

for the multilevel decomposition (3.9).

Remark 3.2. The multilevel splitting (3.9) satisfies condition (3.12) with

C1 = O(1) for d = 1, C1 = O(j) for d = 2, C1 = O(2j/2) for d = 3.

The proof follows from arguments by Yserentant [48, Lemma 2.7]. Hence, even if we could

now satisfy (3.11) with a generic constant C0, Theorem 3.1 would still not exclude exponential

decay of our multilevel relaxation for d = 3. One way out of this dilemma is to merge the one-

dimensional subspaces Vl = span{λl} into larger ones. The exact solvability of the resulting

larger minimization problems can be preserved by a coloring argument, as we will see later in

Section 5.1. Another option is to arrange the computation of the corrections vl according to

the refinement levels in the following way.

We consider the splitting of Sj into subspaces

Vk = Sk, k = 0, · · · , j, (3.14)

which directly reflects the hierarchy (2.8). Gauß-Seidel relaxation on Vk gives rise to the bilinear

form bk(·, ·),

bk(v, w) =

nk
∑

i,l=1

i≤l

v(pi)a
(

λ(k)
pi
, λ(k)

pl

)

w(pl), v, w ∈ Vk, (3.15)

where the nodes pi ∈ Nk are ordered in the same way as the corresponding subspaces Vl =

span{λ(kl)
pl } on level kl = k. As Gauß-Seidel relaxation rapidly reduces high frequency compo-

nents on Vk, the form bk(·, ·) is called a smoother on Vk. Now the multilevel relaxation (3.10)

can be rewritten as follows.
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Algorithm 3.2. (Successive subspace correction)

given: wj+1 = uν
j ∈ Sj

for k = j, · · · , 0 do:

{
solve:

vk ∈ Vk : bk(vk, v) = ℓ(v)− a(wk+1, v) ∀v ∈ Vk (pre-smoothing)

wk = wk+1 + vk (intermediate iterates)

}
new iterate: uν+1

j = w0 = uν
j +

∑j
k=0 vk

Following Xu [46] such kind of algorithms are called successive subspace correction methods.

The convergence analysis is based on a generalization of Theorem 3.1 to inexact solution on the

subspaces Vk by so-called smoothers b(·, ·). Selecting appropriate subspaces Vk and smoothers

bk(·, ·), a large number of multilevel and domain decomposition methods can be reformulated

and analyzed in this way.

Exploiting the linearity of the given problem, the intermediate iterates wk ∈ Sj can be

eliminated by successive updates of the residual. In this way, Algorithm 3.2 can be formulated

as a classical multigrid V-cycle.

Algorithm 3.3. (Multigrid V-cycle with 1 pre-smoothing step)

given: uν
j

initialize: rj = ℓ− a(uν
j , ·), aj(·, ·) = a(·, ·)

for k = j, · · · , 1 do:

{
solve:

vk ∈ Vk : bk(vk, v) = rk(v) ∀v ∈ Vk (pre-smoothing)

rk := rk − ak(vk, ·) (update of the residual)

rk−1 = rk|Sk−1

ak−1(·, ·) = ak(·, ·)|Sk−1×Sk−1

(canonical restriction)

}
solve:

v0 ∈ V0 : b0(v0, v) = r0(v) ∀v ∈ V0 (approx. coarse grid solution)

for k = 1, · · · , j do:

{
vk := vk + vk−1 (canonical interpolation)

}
new iterate: uν+1

j = uν
j + vj

Canonical restrictions rk−1 and ak−1(·, ·) of the residual rk = ℓ − a(wk+1, ·) ∈ S′k and

the bilinear form ak(·, ·) are defined by rk−1(v) = rk(v) and ak−1(w, v) = ak(v, w) for all

v, w ∈ Sk−1 ⊂ Sk, respectively. Selecting the nodal basis Λk of Sk and using the canonical

isomorphism

Sk ∋ v =
∑

p∈Nk

v(p)λ(k)
p ←→ (v(p))p∈Nk

= v ∈ R
nk ,
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all substeps of Algorithm 3.3 are translated into matrix vector operations as available on the

computer. It is easily checked that each step of Algorithm 3.3 requires O(nj) floating point

operations (flops). Reverse enumeration of the subspaces Vk in (3.14), or, equivalently, of the

subspaces Vl in (3.9), corresponds to 1 post-smoothing step. The combination of (multiple)

pre- and post-smoothing steps or W-cycles can be formulated in a similar way.

Our heuristic reasoning is confirmed by the celebrated mesh-independent convergence of

multigrid methods. Extending the proof of Bramble et al. [49] for symmetric smoothers bk(·, ·)
to the actual non-symmetric case, the following convergence result was shown by Neuss [50].

Theorem 3.2. There is a ρ < 1 depending only on the shape regularity of T0 and on the

ellipticity constant α in (2.4) such that

‖uν+1
j − uj‖ ≤ ρ‖uν

j − uj‖ ∀ν ≥ 0 (3.16)

holds for all u0
j ∈ Sj.

Multigrid steps on level j are more costly than multigrid steps on coarser grids. Hence, it

seems reasonable to compute initial iterates u0
k := ũk−1 inductively for each k = 1, · · · , j by

a suitable number of multigrid steps on the preceding level. This procedure is called nested

iteration (cf. Hackbusch [45, Chapter 5]) or full multigrid (cf. Brandt [51]). Nested iteration

preserves the optimal accuracy ‖u − uj‖ = O(hj). More precisely, starting with ũ0 = u0 and

using the stopping criterion

‖uk − ũk‖ ≤ σ
2 ‖uk − u0

k‖ , k = 1, 2, · · · , j, (3.17)

with some constant σ < 1 independent of k, we finally obtain ‖u− ũj‖ = O(hj) using an overall

amount of O(nj) flops. Iterative schemes with this property are sometimes called optimal.

More sophisticated stopping criteria provide optimality even of nested Gauß-Seidel relaxation.

This procedure is called cascadic multigrid (cf. Bornemann and Deuflhard [52]), or backslash

cycle. The exact finite element solution u0 on the (hopefully) coarse grid T0 can be computed

by a direct solver. In order to check the stopping criterion (3.17) a posteriori estimates of the

algebraic error ‖uk − uν
k‖ are required. For ρ taken from Theorem 3.2, we immediately get

(1 + ρ)−1‖uν+1
k − uν

k‖ ≤ ‖uk − uν
k‖ ≤ (1− ρ)−1‖uν+1

k − uν
k‖ (3.18)

utilizing the triangle inequality. Obviously, multigrid corrections provide uniform lower and

upper bounds of the algebraic error.

3.3. Concluding remarks

At first sight, our considerations seem to be more complicated than classical approaches

to multigrid (cf., e.g., Hackbusch [53], pp. 17). However, the actual interpretation has the

advantage that it suggests direct extensions to obstacle problems later on.

We used a very intuitive notion of frequencies. Analytically, the definition (3.14) of subspaces

Vk is motivated by the property

Q0Sj = V0, (Qk −Qk−1)Sj ⊂ Vk, k = 1, · · · , j, (3.19)

where Qk denotes the L2-projection on Sk. In order to guarantee (3.19) for adaptively refined

grids, it is sufficient to choose the subspace

Vk = span{Λk \ Λk−1} ⊂ Sk
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spanned only by the new nodal basis functions (see the Xu [54, 55] and the references cited

therein). Straightforward selection Vk = Sk could deteriorate the optimal complexity even up

to O(n2
j ) in case of strongly local refinement.

We come back to the reinterpretation of (3.19) in terms of frequencies. It is well-known (cf.,

e.g., Bramble and Xu [56]) that

‖v −Qkv‖L2(Ω) ≤ Chk‖v‖ ∀v ∈ Sj (3.20)

holds with C independent of k and j. As a consequence of (3.20) and an inverse inequality, all

functions v ∈ (Qk −Qk−1)
2Sj ⊂ (Qk −Qk−1)Sj ⊂ Vk have the property

C−2h−2
k ≤ a(v, v)

(v, v)
≤ ch−2

k ,

where (·, ·) denotes the scalar product in L2. In this sense, the subspaces Vk represent a scale

of frequencies. The relation of high frequencies and locality is discussed to some extend in a

survey by Xu [57].

Convergence properties of general successive subspace correction methods (cf. Algorithm

3.2) can be analyzed in an abstract framework as developed by Bramble et al. [49,58], Bramble

and Pasciak [59], Dryja and Widlund [60], Xu [46] and others. The underlying arguments were

partly anticipated by Yserentant [48] for the special case of hierarchical splittings

V0 = I0Sj , Vk = (Ik − Ik−1)Sj , k = 1, · · · , j, (3.21)

where Ik : Sj → Sk denotes nodal interpolation.

Using this abstract theory, the most crucial point in the proof of Theorem 3.2 is to show

that the splitting (3.14) is stable. This means that each v ∈ Sj can be decomposed into a sum

v = v0 + v1 + · · ·+ vj of vk ∈ Vk in such a way that

j
∑

k=0

4k‖vk‖2L2(Ω) ≤ C1‖v‖2 (3.22)

holds with some C1 independent of j. Note that the approximation property (3.20) together

with H1-stability of Q0 provides (3.22) with C1 growing linearly in j. Utilizing the equiva-

lence of norms in suitable Besov and Sobolev spaces, (3.22) was first shown by Oswald [61]

and Dahmen and Kunoth [62]. For extensions related to adaptively refined grids, we refer to

Bornemann and Yserentant [63] and Bramble and Pasciak [59] or Xu [46]. In contrast to the

classical multigrid convergence theory of Hackbusch [53] and Braess and Hackbusch [64] no ad-

ditional regularity of u is required in order to obtain (3.22) and the resulting mesh-independent

convergence (3.16). On the other hand, we get no information how multiple smoothing would

improve the convergence rate.

Note that the stability of the hierarchical splitting (3.21) deteriorates quadratically in two

space dimensions and exponentially for d = 3. As a consequence, the convergence rates of asso-

ciated hierarchical basis multigrid methods deteriorate quadratically and exponentially for two

and three space dimensions, respectively (cf. Yserentant [48], Bank, Dupont and Yserentant [65],

Deuflhard, Leinen and Yserentant [66]). On the other hand, hierarchical splittings have some

advantages concerning complexity and robustness which make them competitive for certain

two-dimensional problems.
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For further information on successive subspace correction and multigrid, we recommend the

monograph of Bramble [67] and the surveys of Xu [46,55,57] and Yserentant [68]. The relation

of subspace correction and domain decomposition is discussed in some detail by Smith, Bjørstad

and Gropp [69].

4. Subset Decomposition Methods

We now concentrate on the obstacle problem

uj ∈ Kj : J (uj) ≤ J (v) ∀v ∈ Kj

as stated in Section 2.1. As minimization over Sj is now replaced by minimization over Kj , it

is natural to replace the decomposition (3.7) of Sj into subspaces Vl by a related decomposition

Kj = K1 +K2 + · · ·+Km, Kl ⊂ Vl, (4.1)

of Kj into closed, convex subsets Kl. We assume that there is a family of mappings Rl : Kj → Vl

satisfying

Rlv ∈ Kl, v =

m
∑

l=1

Rlv ∀v ∈ Kj . (4.2)

Then successive minimization of the energy J on Kl leads to the following basic subset

decomposition algorithm.

Algorithm 4.1. (Subset Decomposition Method)

given: w0 = uν
j ∈ Kj.

for l = 1, · · · ,m do:

{
Dl = −Rlu

ν
j +Kl (local defect constraints)

solve:

vl ∈ Dl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Dl (local minimization)

wl = wl−1 + vl (intermediate iterates)

}
new iterate: uν+1

j = wm = uν
j +

∑m
l=1 vl.

By construction, all intermediate iterates wl are feasible in the sense that wl ∈ Kj and

J (wl) ≤ J (wl−1), l = 1, · · · ,m.

Remark 4.1. The defect constraints Dl only depend on the given iterate uν
j and not on the

intermediate corrections vl.

As a first example, let us consider the nodal splitting (3.8) of Sj into subspaces Vl =

span{λ(j)
pl
}. In this case, the corresponding subset decomposition

Kj =

nj
∑

l=1

Kl, Kl = {v ∈ Vl | v(pl) ≥ ϕj(pl)} (4.3)
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and the restrictions Rlv = v(pl)λ
(j)
pl

are uniquely determined. Inserting these specifications

into the basic Algorithm 4.1, we obtain the well-known projected Gauß-Seidel relaxation (cf.

Glowinski [6, Chapter V]). The local corrections vl are given by

vl = max

{

rl(λ
(j)
pl )

a(λ
(j)
pl
, λ

(j)
pl

)
,−uν

j (pl) + ϕ(pl)

}

λ(j)
pl

(4.4)

denoting rl = ℓ − a(wl−1, ·) ∈ S′j . We introduce the corresponding iteration operator Mj :

Kj → Kj defined by

Mj(u
ν
j ) = uν

j +

nj
∑

l=1

vl (4.5)

for further reference.

Generalizing its unconstrained counterpart, the projected Gauß-Seidel relaxation typically

inherits rapidly deteriorating convergence rates for decreasing mesh size. We expect faster con-

vergence from additional corrections representing a scale of frequencies and therefore introduce

a multilevel decomposition into the subsets

Kl = {v ∈ Vl | vl ≥ φl} ⊂ Vl = span{λl}, l = 1, · · · ,mS , (4.6)

associated with the multilevel nodal basis functions λl = λ
(kl)
pl

(cf. Remark 3.1). Recall that

the subspaces Vl = span{λl} lead to classical multigrid methods as explained in the preceding

section. The local obstacles φl ∈ Vl are chosen in such a way that

ϕj =

mS
∑

l=1

φl. (4.7)

This decomposition is not unique. However, it will turn out below that the following construc-

tion of restriction operators Rl : Kj → Kl leads to an algorithm which does not depend on the

actual choice of the local obstacles φl. As a starting point, we define modified interpolation

operators I⊖k : Sj → Sk, k = 0, · · · , j, according to

I⊖k v =
∑

p∈Nk

vpλ
(k)
p , vp = min{v(q) | q ∈ Nj ∩ int suppλ(k)

p }.

Obviously, I⊖j v = v. Moreover, we have

v ≥ 0 ⇒ I⊖k v ≥ 0, I⊖k v ≥ I⊖k−1v ∀v ∈ Sj , (4.8)

because int suppλ
(k)
p ⊂ int suppλ

(k−1)
p . For convenience, we set I⊖−1 = 0. Utilizing l = l(pl, kl),

we now define the restrictions

Rlv =
(

I⊖kl
(v − ϕj)− I⊖kl−1(v − ϕj) + φl

)

(pl)λl, l = 1, · · · ,mS . (4.9)

As a consequence of (4.8), the restrictions Rl satisfy the conditions (4.2).

Inserting Kl and Rl as defined in (4.6) and (4.9), respectively, into the basic Algorithm 4.1,

we obtain a multilevel subset decomposition method. It was originally proposed and analyzed

by Tai [21] under the name constraint decomposition method. Here we have described a slight

modification by taking the minimum over the nodes p ∈ int suppλ
(k)
p and not over suppλ

(k)
p

in the definition of I⊖k . This modification might lead to slightly faster convergence by slightly
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less restrictive coarse grid correction and clarifies the relation to monotone multigrid methods

to be presented later. Similar to the projected Gauß-Seidel method the corrections provided by

multilevel subset decomposition can be evaluated in closed form according to

vl = max

{

rl(λl)

a(λl, λl)
,−Rlu

ν
j (pl) + φl(pl)

}

λl, (4.10)

where pl is the supporting point of λl = λ
(kl)
pl .

The convergence analysis of the multilevel subset decomposition algorithm (4.10) will be

based on the following abstract convergence result by Tai [21].

Theorem 4.1. Assume that the restriction operators Rl fulfill the stability condition

mS
∑

l=1

‖Rlv −Rlw‖2 ≤ C0‖v − w‖2 ∀v, w ∈ Kj (4.11)

with a constant C0 ≥ 0 and that the underlying space decomposition (3.7) satisfies the condition

(3.12).

Then, for any u0
j ∈ Kj the iterates (uν

j )ν≥0 produced by Algorithm 4.1 satisfy the error

estimates

J (uν+1
j )− J (uj) ≤ ρ

(

J (uν
j )− J (uj)

)

∀ν ≥ 0, (4.12)

‖uν
j − uj‖2 ≤ 2ρν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0 (4.13)

with

ρ = 1− 1

(
√

1 + C∗ +
√
C∗)2

, C∗ =
(

2C1 + C0C
2
1

)

. (4.14)

Observe that (4.13) follows directly from (4.12) and

J (v)− J (uj) ≥ 1
2‖v − uj‖2 ∀v ∈ Kj .

Remark 4.2. In the unconstrained case Kj = Sj , the estimate (4.11) is equivalent to (3.11),

if the restrictions Rl are linear mappings.

As a first example, we consider the projected Gauß-Seidel relaxation (4.4).

Proposition 4.1. The restriction operators Rl induced by the nodal splitting (4.3) satisfies

condition (4.11) with the same constant C0 = O(h−2
j ) as appearing in Proposition 3.2.

The iterates (uν
j ) produced by the projected Gauß-Seidel relaxation (4.4) satisfy

‖uν
j − uj‖2 ≤ 2(1− Ch2

j )
ν
(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. As nodal interpolation Rlv = v(pl)λ
(j)
pl is linear, the conditions (4.11) and (3.11) are

equivalent. �

Now we concentrate on the multilevel relaxation (4.10). In contrast to the convergence

results for linear multigrid methods as presented in the preceding section, the following theorem
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is restricted to quasiuniform meshes and a suitable ordering of the spaces Vl = span{λ(kl)
pl
} on

each level kl. More precisely, we decompose

Nk =

i0
⋃

i=1

N i
k, k = 0, · · · , j, (4.15)

by coloring the planar graph consisting of the nodes and edges of the triangulation Tk with

i0 colors. Such a decomposition exists with i0 ≤ 4 by the famous four-color theorem. By

construction, we have

int suppλ(k)
p ∩ int suppλ(k)

q = ∅ ∀p, q ∈ N i
k, p 6= q. (4.16)

We assume that the spaces Vl = span{λ(kl)
pl } on each level kl are ordered according to the

decomposition (4.15) in the sense that the sets N i
k are enumerated one after the other. The

following convergence result is due to Tai [21].

Theorem 4.2. Assume that the space dimension is d = 2. Then the restriction operators Rl

defined in (4.9) fulfill the condition (4.11) with

C0 = O(j + 1)2. (4.17)

For any u0
j ∈ Kj the iterates (uν

j )ν≥0 produced by multilevel subset decomposition method (4.10)

satisfy

‖uν
j − uj‖2 ≤ 2(1− C(j + 1)−2)ν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. Let v, w ∈ Kj . Denoting

v(k) = I⊖k (v − ϕj)− I⊖k−1(v − ϕj), w(k) = I⊖k (w − ϕj)− I⊖k−1(w − ϕj)

we can collect the summands according to the levels to obtain

mS
∑

l=1

‖Rlv − Rlw‖2 =

j
∑

k=0

∑

p∈Nk

|v(k)(p)− w(k)(p)|2‖λ(k)
p ‖2

�
j
∑

k=0

h−2
k

∑

p∈Nk

|v(k)(p)− w(k)(p)|2 h2
k �

j
∑

k=0

h−2
k ‖v(k) − w(k)‖2L2(Ω). (4.18)

Note that the local obstacles φl appearing in (4.9) cancel out each other. Furthermore, we have

used that in d = 2 space dimensions ‖λ(k)
p ‖ is uniformly bounded by a constant depending only

on the shape regularity of T0 and that the weighted sum of squared nodal values is equivalent

to the L2-norm. Now the cornerstone of the proof is the stability estimate

‖I⊖k (v − ϕj)− I⊖k (w − ϕj)− (v − w)‖2L2(Ω) � (1 + j − k)hk‖v − w‖2 (4.19)

stated in Theorem 2 by Tai [21] which can be shown literally in the same way for the slightly

modified operators I⊖k . Using (4.19), we immediately get

‖v(k) − w(k)‖2L2(Ω) � (j − k + 1)h2
k‖v − w‖2.
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Inserting this estimate into (4.18), we obtain condition (4.11) with C0 � (j + 1)2.

In order to check condition (3.12) we consider the splitting

Sj = V0 +

j
∑

k=1

i0
∑

i=1

V i
k, V0 = S0, V i

k = span{λ(k)
p | p ∈ N i

k}. (4.20)

As a consequence of (4.16), the subset decomposition method induced by the decomposition

Ki
k =

⋃

p∈N i
k

Kl(p,k), Ri
k =

∑

p∈N i
k

Rl(p,k) k = 0, · · · , j, i = 1, · · · , i0, (4.21)

is producing exactly the same iterates as the original multilevel method (4.10). Moreover, the

decomposition (4.21) directly inherits condition (4.11) with C0 � (j+1)2 from the original split-

ting. The reason for this reinterpretation is that for the underlying space decomposition (4.20)

the condition (3.12) with C1 = O(1) immediately follows from the well-known strengthened

Cauchy-Schwarz inequality (cf. Yserentant [48, Lemma 2.7])

|a(vk, wl)| �
(

1√
2

)|k−l|

‖vk‖‖wl‖ ∀vk ∈ Sk, wl ∈ Sl.

The final error estimate is an immediate consequence of Theorem 4.1. �

The proof of the estimate (4.17) essentially relies on the stability of nodal interpolation and

therefore is restricted to d = 2 space dimensions. While even mesh-independent bounds are

available for d = 1 only exponential bounds can be shown in three space dimensions.

We now concentrate on the efficient reformulation of the multilevel subset decomposition

method (4.10) as a multigrid V−cycle. While the intermediate iterates can be removed in a

similar way as in the linear case, we now have to find a way to check the constraints Dl without

visiting the fine mesh. For given uν
j ∈ Kj the constraints Dl can be rewritten as

Dl = −Rlu
ν
j +Kl = {zλl | z ≥ ψl}

where

ψl = ψ(kl)(pl), ψ(k) = −(I⊖k − I⊖k−1)(u
ν
j − ϕj).

We emphasize that the choice of the local obstacles φl in the decomposition (4.6) has no effect on

Dl and thus on the whole iteration. It is convenient to introduce the counterparts I⊕k : Sj → Sk

of I⊖k by

I⊕k v =
∑

p∈Nk

vpλ
(k)
p , vp = max{v(q) | q ∈ Nj ∩ int supp λ(k)

p }

and I⊕−1 = 0. Note that −I⊕k v = I⊖k (−v). The modified interpolation operators I⊕j satisfy the

recursion formula

I⊕k−1v = Rk−1
k I⊕k v, k = 1, · · · , j, I⊕j v = v ∀v ∈ Sj

with monotone restriction operators Rk−1
k : Sk → Sk−1 defined by

(

Rk−1
k v

)

(p) = max{v(q) | q ∈ Nk ∩ int suppλ(k−1)
p }, p ∈ Nk−1, (4.22)

for k = j, · · · , 1 and R−1
0 = 0. As a consequence, the interpolated defect obstacles χ(k) =

I⊕k (ϕj − uν
j ) can be evaluated recursively according to

χ(k−1) = Rk−1
k χ(k), k = j, · · · , 0, χ(j) = ϕj − uν

j .
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The resulting hierarchical decomposition

ϕj − uν
j =

j
∑

k=0

ψ(k), ψ(k) = χ(k) − χ(k−1)

of the defect obstacle ϕj − uν
j is illustrated in Figure 4.1. The left picture illustrates the

monotone restriction χ(j−1) (dashed) of a given defect obstacle (solid). Further monotone

restriction provides χ(j−2) as depicted in the right picture. A hierarchical decomposition is

obtained from the increments ψ(j), ψ(j−1), and ψ(j−1).

0

 

 

fine obstacle χ(j)

coarse obstacle χ(j−1)

interior of suppλ
(j−1)
p

0

 

 

fine obstacle χ(j)

coarse obstacles χ(j−k)

Fig. 4.1. Restriction (left) and hierarchical decomposition (right) of defect obstacle.

We are now ready to reformulate the multilevel subset decomposition algorithm (4.10) as a

multigrid V-cycle with optimal complexity O(nj).

Algorithm 4.2. (Multigrid V-cycle with 1 pre-smoothing step)

given: uν
j

initialize: rj = ℓ− a(uν
j , ·), aj(·, ·) = a(·, ·), χ(j) = ϕj − uν

j

for k = j, · · · , 1 do:

{
χ(k−1) = Rk−1

k χ(k) (monotone restriction)

Dk = {v ∈ Sk | v ≥ ψ(k)}, ψ(k) = χ(k) − χ(k−1) (defect obstacles)

solve:

v(k) ∈ Dk : bk(v(k), v − v(k)) ≥ rk(v − v(k)), ∀v ∈ Dk (pre-smoothing)

rk := rk − ak(v(k), ·) (update of the residual)

rk−1 = rk|Sk−1
ak−1(·, ·) = ak(·, ·)|Sk−1×Sk−1

(canonical restriction)

}
solve:

v(0) ∈ D0 : b0(v
(0), v − v(0)) ≥ r0(v − v(0)), ∀v ∈ D0 (initial grid smoothing)

for k = 1, · · · , j do:

{
v(k) := v(k) + v(k−1) (canonical interpolation)

}
new iterate: uν+1

j = uν
j + v(j)
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Algorithm 4.2 can be implemented as a V (1, 0)-cycle multigrid method with projected Gauß-

Seidel smoother and canonical restrictions and prolongations. Only the monotone restrictions

Rk−1
k of the defect obstacles have to be added to an existing multigrid code. In order to

incorporate several pre- or postsmoothing steps the original sets Kl and restrictions Rl are

repeated several times after certain modifications preserving the consistency conditions (4.1)

and (4.2). For example, a V (1, 1) cycle is obtained by 2mS restriction operators R̃l which are

defined by R̃l = 1
2Rl for l = 1, · · ·mS and repeated in reverse order for l = m + 1, · · · , 2mS .

Analogously, the convex sets K̃l are generated by φ̃l = 1
2φl for l = 1, · · ·mS and repeated in

reverse order for l = m+ 1, · · · , 2mS . We will use this setting in our numerical computations.

The convergence analysis of such algorithms can be carried out along the lines explained above.

4.1. Concluding remarks

It seems that Algorithm 4.2 is the first multigrid method for obstacle problems that allowed

for polylogarithmic bounds for the convergence rates. Moreover, to our knowledge it is still the

only algorithm with proven multigrid convergence rates which can be implemented as a V -cycle

(cf. Section 5).

The same theoretical framework can be used to analyze Jacobi-like versions of Algorithm 4.1.

The advantage of such methods is that the corrections can be computed in parallel, because the

update of the intermediate iterates is simply skipped. On the other hand, convergence has to

be enforced by damping parameters α ≤ nj which might slow down convergence considerably

in comparison with the sequential version. We refer to Tai [21, 70] for details.

Similar to linear subspace decomposition, the abstract convergence result can be also applied

to overlapping domain decomposition methods. For further information, we refer to Tai [21,70,

71] and the references cited therein.

5. Projected Subspace Decomposition Methods

5.1. Projected relaxation methods

Another natural extension of linear subspace correction to obstacle problems is to perform

successive constrained minimization on the subspaces Vl. For a given splitting (3.7) of Sj such

kind of direct extension of Algorithm 3.1 to the obstacle problem (2.10) reads as follows.

Algorithm 5.1. (Successive minimization)

given: w0 = uν
j ∈ Sj.

for l = 1, · · · ,m do:

{
Dl =

(

− wl−1 +Kj

)

∩ Vl (local defect constraints)

solve:

vl ∈ Dl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Dl (local minimization)

wl = wl−1 + vl (intermediate iterates)

}
new iterate: uν+1

j = wm = uν
j +

∑m
l=1 vl.

Remark 5.1. In contrast to the subset decomposition Algorithm 4.2 the defect constraints

now depend on the intermediate iterates and thus on the preceding corrections vl.
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As a first example, we consider the nodal splitting (3.9). In this case, the basic Algorithm 5.1

is again producing the projected Gauß-Seidel relaxationMj with local corrections vl given in

(4.4).

In order to generalize classical multigrid methods, we now insert the multilevel splitting (3.9)

into Algorithm 5.1. The resulting projected multilevel relaxation was suggested by Mandel [24,

72,73] and later investigated by many authors [22,23,25,70,71]. The corresponding corrections

vl are given explicitly by

vl = max

{

rl(λl)

a(λl, λl)
, max

p∈Nj∩int suppλl

−wl−1(p) + ϕ(p)

λl(p)

}

λl. (5.1)

The convergence analysis of (5.1) will be based on the following abstract convergence result

by Badea, Tai, and Wang [23] for the basic Algorithm 5.1.

Theorem 5.1. Assume that the splitting (3.7) has the following two properties:

(i) There is a constant C0 > 0 such that for all v, w ∈ Kj and sl ∈ Vl with w+
∑l−1

i=1 si ∈ Kj

for l = 1, · · · ,m there exist zl ∈ Vl, 1, · · · ,m, satisfying

v − w =

m
∑

l=1

zl, w +

l−1
∑

i=1

si + zl ∈ Kj , l = 1, · · · ,m,
m
∑

l=1

‖zl‖2 ≤ C0

(

‖v − w‖2 +

m
∑

l=1

‖sl‖2
)

.

(5.2)

(ii) The condition (3.12) holds with a constant C1 > 0.

Then the iterates (uν
j ) produced by Algorithm 5.1 satisfy the error estimates

J (uν+1
j )− J (uj) ≤ ρ

(

J (uν
j )− J (uj)

)

∀ν ≥ 0, (5.3)

‖uν
j − uj‖2 ≤ 2ρν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0 (5.4)

with

ρ = 1− 1

(
√

1 + C∗ +
√
C∗)2

, C∗ =
(

2(1 +
√

C0)C1 + C0C
2
1

)

. (5.5)

Remark 5.2. In the unconstrained case Kj = Sj , the condition (5.2) is equivalent to condition

(3.11) with v replaced by v − w.

Let us first apply Theorem 5.1 to the projected Gauß-Seidel relaxation (4.4).

Proposition 5.1. The nodal splitting (3.8) satisfies condition (5.2) with the same constant

C0 = O(h−2
j ) as appearing in Proposition 3.2.

The iterates (uν
j ) produced by the projected Gauß-Seidel relaxation (4.4) satisfy

‖uν
j − uj‖2 ≤ 2(1− Ch2

j )
ν
(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. For given v, w and sl the unique decomposition zl = (v(pl) − w(pl))λ
(j)
pl

clearly

satisfies the estimate in (5.2) with the same constant as in (3.11). The remaining condition

w +
∑l−1

i=1 si + zl ∈ Kj , l = 1, · · · , nj , is automatically fulfilled. �

A polylogarithmic upper bound for the multilevel relaxation (5.1) has been shown just

recently by Badea [22].
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Theorem 5.2. Assume that the space dimension is d = 2 and that dim S0 = 1. Assume further

that the spaces Vl = span{λ(kl)
pl
} on each level kl are ordered according to the decomposition

(4.15). Then the multilevel splitting (3.9) satisfies condition (5.2) with

C0 = O(j + 1)5. (5.6)

The iterates (uν
j ) produced by the projected multilevel relaxation (5.1) satisfy

‖uν
j − uj‖2 ≤ 2(1− C(j + 1)−5)ν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0 (5.7)

with a constant C > 0 independent of j.

As in the proof of Theorem 4.2, a coloring argument yields condition (3.12) with a constant

C1 = O(1). The corner stone of the estimate (5.6) of the stability constantC0 is a stability result

for a modified interpolation operator I+
k : Sj → Sk. Similarly to I⊖k appearing in Algorithm 4.2,

the operator I+
k (we adopt the notation of Tai [21] and Badea [22], respectively) is defined by

I+
k v =

∑

p∈Nk

v+
p λ(k)

p , v+
p = min{v+(q) | q ∈ suppλ(k)

p }, v+ = max{0, v},

and, for d = 2, has the stability properties

‖I+
k v − v‖L2(Ω) � h2

k(1 + j − k)‖v‖2,
‖I+

k v‖L2(Ω) � ‖v‖L2(Ω), ‖I+
k v‖2 � (1 + j − k)‖v‖2,

according to Lemma 4.3 in [22]. Due to the well-known Sobolev imbedding theorem even mesh-

independent stability holds for d = 1 but only exponential bounds are available in three space

dimensions. We emphasize that I+
k only appears in the proof and not in the algorithm itself.

In the case dim S0 > 1, the results of Theorem 5.2 hold for the splitting

Sj = S0 +

mS
∑

l=n0+1

Vl,

or, equivalently, for exact solution on the coarsest grid.

Remark 5.3. In contrast to the multilevel subset decomposition Algorithm 4.2 the multilevel

relaxation (5.1) cannot be implemented as a multigrid V -cycle, because the intermediate it-

erates wl enter the defect constraints Dl in an nonlinear way. More precisely, an additional

interpolation to the fine grid Tj is necessary to evaluate the correction at each node p on each

refinement level k. Therefore the numerical complexity of each iteration step is ranging from

O(nj lognj) in case of uniform refinement to even O(n2
j ) for highly locally refined grids.

5.2. Monotone multigrid methods

The multilevel relaxation (5.1) suffers from two drawbacks

• sub-optimal complexity ranging from O(nj lognj) up to O(n2
j).

• poor asymptotic convergence speed due to poor coarse grid correction.
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While the first issue has already been addressed in Remark 5.3, the second one requires further

explanation. Assume, for the moment, that the coincidence set N •
j is known so that we are left

with the linear reduced problem (2.12). Then, all subspaces Vl with the property

int suppλl ∩ N •
j 6= ∅

must not contribute to the correction, because λl 6∈ S◦j . Such kind of poor coarse grid correction

often slows down the asymptotic convergence speed of the multilevel relaxation (5.1) in com-

parison with the unconstrained case. Following Kornhuber [25], we therefore iteratively adapt

the multilevel nodal basis functions λl to the reduced space S◦j . More precisely, we introduce

so-called truncated nodal basis functions λl, l > nj, according to

λ̃l(p) =

{

0 if p ∈ N •
j (ūν

j ),

λl(p) else,
p ∈ Nj . (5.8)

As the exact coincidence set N •
j is not known a priori, we truncate with respect to its actual

approximation

N •
j (ūν

j ) = {p ∈ Nj | ūν
j (p) = ϕ(p)}

provided by fine-grid smoothing

ūν
j =Mj(u

ν
j ) (5.9)

of the given iterate uν
j . Note that truncation (5.8) just means nodal interpolation of λl to the

actual approximation

S̃j = S̃j(ū
ν
j ) = {v ∈ Sj | v(p) = 0 ∀p ∈ N •

j (ūν
j )} (5.10)

of the reduced space S◦j . The corresponding splitting

Sj =

nj
∑

l=1

Vl +

mS
∑

l=nj+1

Ṽl, Ṽl = span{λ̃l}, (5.11)

gives rise to a truncated multilevel relaxation. The subspaces Vl = span{λl}, l = 1, · · · , nj

reproduce the leading projected Gauß-Seidel step (5.9). The truncated subspaces Ṽl improve

the coarse grid correction, because now all λ̃l with the property int suppλl ∩
(

Nj \N •
j

)

6= ∅ do

contribute once N •
j (ūν

j ) = N •
j is known. Until then, the actual splitting (5.11) is adapted to

the actual coincidence set N •
j (ūν

j ) in each iteration step. The corrections vl ∈ Ṽl are given by

vl = max

{

rl(λ̃l)

a(λ̃l, λ̃l)
, max

p∈Nj∩int supp λ̃l

−wl−1(p) + ϕ(p)

λ̃l(p)

}

λ̃l. (5.12)

for λ̃l 6= 0 and vl = 0 otherwise.

Remark 5.4. By construction of the coarse grid spaces Ṽl = span{λ̃l}, we have

N •
j (ūν

j ) ⊂ N •
j (uν+1

j ).

Hence, in contrast to the original multilevel relaxation (5.1), inactivation, i.e. removing nodes

from N •
j , is now exclusively performed by projected Gauß-Seidel relaxation.
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A second modification of the multilevel relaxation (5.1) is needed to allow for an implementa-

tion as a multigrid V -cycle with optimal complexity. To this end, we consider the minimization

problems

vl ∈ D̃l : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ D̃l, (5.13)

with modified coarse-grid constraints

D̃l = {zλ̃l | z ≥ ψl}, l = nj + 1, · · · , nS ,

and local defect obstacles ψl ∈ Vl. Once ψl is available, the constraint D̃l can be checked

without visiting the fine grid. The condition

0 ≥ ψl ≥ max
p∈int supp λ̃l

−wl−1(p) + ϕ(p) (5.14)

on the local defect obstacles ψl provides

0 ∈ D̃l ⊂
(

− wl−1 +Kj

)

∩ Ṽl

and thus guarantees feasibility (cf. Algorithm 5.1).

Remark 5.5. Replacing −wl−1 +Kj by the coarse grid constraints D̃l can be regarded as an

intrinsic damping of (5.12). More precisely, denoting the corrections provided by (5.12) and

(5.13) by v∗l and vl, respectively, we have

vl = ωlv
∗
l (5.15)

with some ωl ∈ [0, 1].

We now present a recursive construction of local defect obstacles ψl. Let ψl = ψ(kl)(pl)with

suitable defect obstacles ψ(k) ∈ Sk to be defined as follows. Starting with v(j) = 0 and ψ(j) ∈ Sj ,

defined by

ψ(j)(p) =

{

−∞ if p ∈ N •
j (ūν

j ),

−ūν
j (p) + ϕ(p) else,

successive update and monotone restriction

ψ(k−1) = Rk−1
k

(

ψ(k) − v(k)
)

inductively guarantees condition (5.14). Using the enumeration l = l(p, k) (cf. Remark 3.1),

the overall correction v(k) on level k < j is given by

v(k) =
∑

p∈Nk

vl(p,k) ∈ S̃k = span{λ̃l(p,k)} | p ∈ Nk}.

The restriction operator Rk−1
k : Sk → Sk−1 defined in (4.22) has been already used in Algo-

rithm 4.2.

Now, the solution of the local problems (5.13) on level k can be equivalently formulated as

projected Gauß-Seidel smoothing

v(k) ∈ Dk : b̃k(v(k), v − v(k)) ≥ rk(v − v(k)) ∀v ∈ Dk
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with the constraints

Dk = {v ∈ S̃k | v(p) ≥ ψ(k)(p) ∀p ∈ Nk} ⊂ S̃k,

the bilinear form

b̃k(v, w) =

nk
∑

i,l=1

i≤l

v(pi)a
(

λ̃(k)
pi
, λ̃(k)

pl

)

w(pl), v, w ∈ S̃k, (5.16)

and the residual rk = ℓ− a(ūj , ·)−
∑j−1

i=k+1 a(v
(i), ·) ∈ S′j ⊂ S̃′k.

Finally, truncation of λl(p,k) = λ
(k)
p can be performed recursively according to

λ̃(k)
p =

∑

q∈Nk+1

λ(k)
p (q) λ̃(k+1)

q , p ∈ Nk, (5.17)

starting with λ̃
(j)
p = 0, if p ∈ N •

j (ūν
j ) and λ̃

(j)
p = λ

(j)
p , otherwise.

The resulting truncated multigrid method can be formulated as a multigrid V -cycle with

optimal complexity. It is called monotone, because, by construction, the coarse grid correction

does not increase the energy.

Algorithm 5.2. (Truncated monotone multigrid V-cycle with 1 pre-smoothing step)

given: uν
j

fine grid smoothing: ūν
j =Mj(u

ν
j ), v(j) = 0

initialization of residual and bilinear form: rj = ℓ− a(ūν
j , ·), aj(·, ·) = a(·, ·)

truncation: rj := rj |S̃j
, aj(·, ·) := aj(·, ·)|S̃j×S̃j

initialization of defect obstacle: ψ(j)(p) = −ūν
j (p) + ϕ(p) ∀p ∈ Nj

truncation: ψ(j)(p) := −∞, if p ∈ N •
j (ūν

j )

initial restriction:

rj−1 = rj |S̃j−1
, aj−1(·, ·) = aj(·, ·)|S̃j−1×S̃j−1

, ψ(j−1) = Rj−1
j ψ(j)

for k = j − 1, · · · , 1 do:

{
solve:

v(k) ∈ Dk : b̃k(v(k), v − v(k)) ≥ rk(v − v(k)) ∀v ∈ Dk (pre-smoothing)

rk := rk − ak(v(k), ·) (update of the residual)

ψ(k) := ψ(k) − v(k) (update of the defect obstacle)

rk−1 = rk|S̃k−1
ak−1(·, ·) = ak(·, ·)|S̃k−1×S̃k−1

(canonical restriction)

ψ(k−1) = Rk−1
k ψ(k) (monotone restriction)

}
solve:

v(0) ∈ D0 : b0(v
(0), v − v(0)) ≥ r0(v − v(0)) ∀v ∈ D0 (initial grid smoothing)

for k = 1, · · · , j do:

{
v(k) := v(k) + v(k−1) (canonical interpolation)

}
new iterate: uν+1

j = uν
j + v(j)
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Implementation of the truncation step amounts to annihilating all rows and columns of the

stiffness matrix and the right hand side that correspond to active nodes p ∈ N •
j (ūν

j ). Then,

according to (5.17), the algebraic formulation of the canonical restriction of the residual rk and

the bilinear form ak(·, ·) from S̃k to S̃k−1 involves the same weights as for the standard spaces

Sk and Sk−1. After prolongation, we only have to set v(j)(p) := 0 for all p ∈ N •
j (uν

j ). No other

changes of canonical restriction and prolongation procedures are necessary. Projected Gauß-

Seidel smoothing has to be modified in order to skip all coefficients with vanishing diagonal

elements. Only monotone restriction of the defect obstacles has to be newly added to an existing

multigrid code.

Remark 5.6. In addition to the initial restriction on the fine grid, truncation can be performed

recursively on all levels. According to numerical computations, this variant often leads to a

faster detection of the coincidence set.

Of course, it is possible to apply the concept of modified defect constraints Dl directly

to the multilevel relaxation (5.1) without any truncation of λl. This immediately leads to a

modification of (5.1) which can be implemented as a multigrid V-cycle. As just the standard

multilevel nodal basis functions are involved in this case, such algorithms are called standard

monotone multigrid method.

Algorithm 5.3. (Standard monotone multigrid V-cycle with 1 pre-smoothing step)

proceed as in Algorithm 5.2 but skip the truncation of rj, aj(·, ·), and ψ(j)

Remark 5.7. In contrast to the truncated Algorithm 5.2, the standard version Algorithm 5.3

allows for activation and inactivation by coarse grid correction.

Monotone multigrid methods with multiple pre- and post-smoothing or W -cycles can be

derived in a similar way.

The global convergence of monotone multigrid methods relies on the following lemma.

Lemma 5.1. Assume that the iterates uν
j are produced by an algorithm of the form

ūν
j =Mj(u

ν
j ), uν+1

j = Cj(ūν
j ) (5.18)

with Mj : Kj → Kj denoting the projected Gauß-Seidel iteration (4.4) and some Cj : Kj → Kj

satisfying the monotonicity condition

J (Cj(w)) ≤ J (w) ∀w ∈ Kj . (5.19)

Then uν
j → uj holds for any initial iterate u0

j ∈ Kj.

Proof. The sequence of iterates is bounded, because J (uν
j ) ≤ J (u0

j) holds for all ν. As

Sj has finite dimension and Kj is closed, there is a subsequence (uνk

j ) and u∗j ∈ Kj such that

uνk

j → u∗j for k → ∞. The local corrections vl depend continuously on the intermediate

iterates wl−1 so that, consisting of nested continuous functions, the Gauß-Seidel relaxationMj

is continuous on Kj . The monotonicity (5.19) implies

J (u
νk+1

j ) ≤ J (uνk+1
j ) ≤ J (Mj(u

νk

j )) ≤ J (uνk

j )
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and passing to the limit k → ∞, we obtain J (Mj(u
∗
j )) = J (u∗j ). This leads to Mj(u

∗
j ) = u∗j ,

because the local corrections vl = 0 are uniquely determined by (4.4). Denote r = ℓ − a(u∗j , ·).
Then (4.4) yields the complementarity property

r(λ(j)
p ) ≤ 0, u∗j (p) ≤ ϕ(p), r(λ(j)

p )(−u∗j (p) + ϕ(p)) = 0 ∀p ∈ Nj .

providing r(v − u∗j ) ≤ 0 for all v ∈ Kj . Hence, u∗j solves (2.11). As uj = u∗j is uniquely

determined, each convergent subsequence of (uν
j ) must converge to uj. This concludes the

proof. �

By construction of the algorithms, our first convergence result is an immediate consequence

of Lemma 5.1.

Theorem 5.3. The monotone multigrid algorithms 5.2 and 5.3 converge for any initial iterate

u0
j ∈ Kj.

We now concentrate on the asymptotic convergence speed of the truncated monotone multi-

grid method 5.2.

Lemma 5.2. Assume that the non-degeneracy condition (2.13) is satisfied. Then, after a suf-

ficiently large number of steps, Algorithm 5.2 is reducing to a linear multigrid method for the

reduced linear problem (2.12) which is generated by the splitting

S◦j =

mS
∑

l=1

V ◦
l , V ◦

l = span{λ◦l }, (5.20)

with λ◦l obtained by nodal interpolation of λl to S◦j .

Proof. First, we show that

N •
j (uν

j ) = N •
j ∀ν ≥ ν0 (5.21)

holds for sufficiently large ν0. Let p ∈ Nj \ N •
j . Then the convergence uν

j → uj implies

uν
j (p) > ϕ(p) and thus N •

j (uν
j ) ⊂ N •

j for sufficiently large ν. Conversely, if p ∈ N •
j , then the

strict complementarity (2.13) and the convergence of the intermediate iterates wl → uj (which

follows by the same arguments as used in the proof of Lemma 5.1) asymptotically provide

ℓ(λ̃l)− a(wl−1, λ̃l) < 0

for all λ̃l with p ∈ int supp λ̃l. Here, we have set λ̃l = λ
(j)
pl

for l = 1, · · · , nj. As a consequence,

we get p ∈ N •
j (ūν

j ) and vl = 0 for all l = nj , · · · ,mS with p ∈ int supp λ̃l. Hence, p ∈ N •
j (uν

j )

and thus N •
j ⊂ N •

j (uν
j ) for sufficiently large ν.

The equality (5.21) provides vl = 0, if pl ∈ N •
j (uν

j ), l = 1, · · · , nj, and λ̃l = λ◦l , l =

nj + 1, · · · ,mS , for ν ≥ ν0. Hence, the original splitting (5.11) asymptotically reduces to

(5.20). We now show that there is some ε ∈ R such that

0 > −ε ≥ ψl ∀ν ≥ ν1 (5.22)

holds for all l with λ◦l 6≡ 0 and sufficiently large ν1 ≥ ν0. First note that ψl = ψl(w0, · · · , wl−1)

is a continuous function of the intermediate iterates. By construction, we have

ψ∗
l := ψl(uj , · · · , uj) = max

p∈int supp λ◦
l

−uj(p) + ϕ(p) < 0
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for λ◦l 6≡ 0. Let ψ∗ < 0 be the maximum of all such ψ∗
l < 0. Then, (5.22) clearly holds for any

positive ε < −ψ∗ and sufficiently large ν. As uj solves (2.12) and wl → uj , we asymptotically

get |rl(λ◦l )| ≤ ε. In combination with (5.22), this proves the assertion. �

Utilizing Lemma 5.2, Kornhuber [25] showed asymptotic convergence rates of truncated

monotone multigrid methods by adopting linear multigrid convergence theory.

Theorem 5.4. Assume that the strict complementarity condition (2.13) holds and let d = 2.

Then, there is a ν0 ∈ N such that the iterates (uν
j ) produced by Algorithm 5.2 satisfy the error

estimate

‖uν+1
j − uj‖ ≤

(

1− c(j + 1)−4
)

‖uν
j − uj‖ (5.23)

with a constant c > 0 independent of j.

Proof. The assertion follows directly from Theorem 2.5 by Neuss [50] using Theorem 5.3

by Kornhuber and Yserentant [26] to verify condition (V1) with K0 = O((j + 1)2) and the

Cauchy-Schwarz inequality to provide condition (V2) with K1 = O(j + 1). �

Remark 5.8. In arbitrary space dimensions, the asymptotic convergence rate is bounded by

1 − c(j + 1)−3 under the additional condition that the coincidence set N •
j is rich enough in a

certain sense. For example, coincidence sets consisting of single lines or points are excluded.

We refer to Kornhuber and Yserentant [26, Section 6] for details.

The truncated multilevel relaxation (5.12) with sub-optimal complexity shows exactly the

same asymptotic behavior as Algorithm 5.2.

Remark 5.9. The asymptotic convergence rates of the standard monotone multigrid method

stated in Algorithm 5.3 are even bounded by 1 − c(j + 1)−2 in 2D and, under the additional

assumptions on N •
j mentioned above, by 1 − c(j + 1)−1 in arbitrary space dimensions. The

improvements result from a strengthened Cauchy-Schwarz inequality that holds for decompo-

sitions from standard coarse grid spaces Sk (cf. Yserentant [48, Lemma 2.7]).

The original projected multilevel relaxation (5.1) shows exactly the same asymptotic behav-

ior as Algorithm 5.3.

Recall from the Remarks 5.4 and 5.7 that inactivation both in the truncated multilevel

relaxation (5.12) and in Algorithm 5.2 is performed exclusively by projected Gauß-Seidel re-

laxation on the fine grid. Hence, starting with u0
j = ϕj , a global detaching effect of a point

source f is distributed only by next-neighbor interaction. This simple example contradicts

global mesh-independent convergence rates for the truncated monotone multigrid methods.

Mesh-independent convergence rates for the standard version were observed in practical com-

putations but theoretical justification still seems to be an open problem.

5.3. Concluding remarks

Standard and truncated multigrid methods were introduced by Mandel [24, 73] and Korn-

huber [25], respectively. A related algorithm by Brandt and Cryer [74] relies on the FAS (full

approximation storage) approach by Brandt [75]. In order to guarantee that the exact solution

of the obstacle problem is a fixed point of the method, they modified the restriction of the

residual (but not of the stiffness matrix) similar to the truncation appearing in Algorithm 5.2.
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The methods often exhibits similar convergence speed as truncated multigrid but sometimes

fails to converge (see Bollrath [76, p. 29] or Kornhuber [25] for a comparison). Preliminary

experimental results for cascadic-type iterations have been presented by Blum, Braess, and

Suttmeier [77].

First results on asymptotic multigrid convergence rates are due to Kornhuber [25]. Ma-

jor contributions to global bounds for the convergences rates were made by Badea, Tai and

coworkers [22,23,70,78]. They also used the same theoretical framework to analyze Jacobi-like

versions of Algorithm 5.1, where the update of the intermediate iterates is simply skipped so

that the corrections can be computed in parallel. As for related subset decomposition methods,

convergence has to be enforced by severe damping which might slow down convergence consid-

erably in comparison with the sequential version. Similar to linear subspace decomposition, the

abstract convergence result can be also applied to overlapping domain decomposition methods.

For further information, we refer to Badea, Tai and Wang [23] and the references cited therein.

A projected space decomposition method of domain-decomposition-type was proposed by

Schöberl [79] for Signorini problems in linear elasticity. Exploiting that the number of un-

knowns in the bulk grows with higher order than the number of unknowns on the boundary

he showed mesh-independent convergence. Block versions of monotone multigrid methods for

scalar obstacle problems can be also applied directly to Signorini’s problem in linear elasticity,

provided that the normal directions are constant along the Signorini boundary (cf., e.g., Bel-

sky [80]). Spatially varying normal directions can be incorporated by suitable weighting factors

as suggested by Kornhuber and Krause [81]. Wohlmuth and Krause [82] extended monotone

multigrid to mortar-discretized two-body contact. Their main idea is a hierarchical splitting of

the ansatz space into a linear space with vanishing relative deformation and the (constrained)

nodal displacements at the slave side of the (potential) contact boundary. The resulting algo-

rithm preserves the asymptotic convergence speed of unconstrained multigrid methods even for

realistic 3D geometries in biomechanical applications [83].

Projected multilevel relaxation and monotone multigrid has been extended to smooth non-

quadratic energy functionals [71, 84] and also to variational inequalities of the form

uj ∈ Sj : a(uj , v − uj) + φj(v)− φj(uj) ≥ ℓ(v − uj) ∀v ∈ Sj ,

with suitable superposition operators φj , see [9, 11]. Applications include frictional contact in

elasticity [85] or phase field models [12, 86].

6. From Truncated Multigrid to Inexact Active Set Methods

6.1. A nonsmooth Newton-like method and inexact variants

The truncated monotone multigrid method stated in Algorithm 5.2 has the flavor of an

active set approach: The actual coincidence set N •
j (ūν

j ) is fixed by the leading projected Gauß-

Seidel relaxation and then is essentially preserved by subsequent coarse grid correction. We

will now clarify this analogy by deriving a nonsmooth Newton-like method which will turn out

to be closely related to Algorithm 5.2. Conversely, reduction of energy suggests a natural way

to provide global convergence of inexact active set methods involving approximate solutions of

the arising linear problems as resulting from, say, one multigrid step.

The main idea is to reformulate the obstacle problem (2.10) as the nonlinear system

uj ∈ Sj : Fj(uj) = 0, Fj =Mj − I, (6.1)
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whereMj denotes projected Gauß-Seidel relaxation (4.4) and I is the identity operator on Sj .

Observe that Fj is not differentiable, but Lipschitz-continuous.

In order to derive a nonsmooth Newton-like method for (6.1), it is convenient to identify

finite element functions with the coefficient vectors of their nodal basis representation:

v =

nj
∑

i=1

viλ
(j)
pi
∈ Sj ←→ v = (vi)

nj

i=1 ∈ R
nj .

In this way, (6.1) can be reformulated as the nonsmooth, nonlinear system

u ∈ R
nj : F (u) = 0, F = M − I, M(v) =Mj(v),

with I denoting the unit matrix in R
nj . From now on, we drop underlines, as long as no

confusion is likely to occur, e.g., we simply write ϕ = (ϕi)
nj

i=1 instead of ϕ
j
. We finally introduce

the usual stiffness matrix A,

A = L+D +R, A = (aik)
nj

i,k=1, aij = a(λ(j)
pi
, λ(j)

pk
),

which is split into its lower diagonal, diagonal, and upper diagonal parts L, D, and R, respec-

tively.

Let us consider some fixed w ∈ R
nj , denoting w̄ = M(w). We define the corresponding set

of active indices

N• = N•(w̄) = {i ∈ N | w̄i = ϕi}, N = {1, 2, · · · , nj},

and the subset

U = U(N•) = {v ∈ R
nj | (M(v))i = ϕi ⇔ i ∈ N•} ∈ R

nj

of all vectors such that projected Gauß-Seidel relaxation provides the same active set N•. It will

turn out that F is affine linear on U . In order to derive an explicit representation of y = F (w),

w ∈ U , we reformulate (4.4) by straightforward calculation to obtain

yi = (ϕ− w)i ∀i ∈ N•,
(

(L +D)y
)

i
= (b−Aw)i ∀i ∈ N \N•.

Using the truncation matrix T = T (N•) = (Tik) ∈ R
nj ,nj defined by

Tik =

{

1, if i = k ∈ N \N•,

0, else,

this leads to the desired formula

F (w) =
(

T (L+D) + I − T
)−1(

T (b−Aw) + (I − T )(ϕ− w)
)

. (6.2)

By construction, (6.2) holds for arbitrary w ∈ U . As the mapping w 7→ N•(w) ⊂ N is well-

defined on R
nj , we have

R
nj =

⋃

N•⊂N

U(N•), N•
1 6= N•

2 ⇒ U(N•
1 ) ∩ U(N•

2 ) = ∅.

Hence, for given w ∈ R
nj , (6.2) suggests the linearization

∂F (w) = −
(

T (L+D) + I − T
)−1(

TA+ (I − T )
)

, T = T (N•(w̄)), w̄ = M(w).



Multigrid Methods for Obstacle Problems 29

As the sets U(N•) ⊂ R
nj might degenerate to lower-dimensional objects, ∂F might not be

a generalized derivative in the sense of Clarke [87, Chapter 2]. Hence, the associate iterative

scheme

uν+1 = uν −
(

∂F (uν)
)−1

F (uν) (6.3)

can be regarded as a nonsmooth Newton-like method.

We derive a more convenient representation of uν+1. Inserting the above definition of ∂F

and the representation (6.2) into (6.3), we get the linear system

(TA+ I − T )uν+1 = Tb+ (I − T )ϕ, T = T (N•(ūν)), ūν = M(uν) (6.4)

for uν+1. By definition of T and by application of I − T to equation (6.4) we get

(I − T )ūν = (I − T )uν+1 = (I − T )ϕ.

Using these identities, (6.4) can be reformulated as the linear system

(TAT + I − T )vν = T (b−Aūν), T = T (N•(ūν)), ūν = M(uν) (6.5)

for the correction vν = uν+1 − ūν ∈ R
nj .

In terms of finite element functions this system takes the form

vν+1
j ∈ S̃j : a(vν+1

j , v) = ℓ(v)− a(ūν
j , v) ∀v ∈ S̃j , ūj =Mj(u

ν
j ), (6.6)

with S̃j defined in (5.10). We are ready to state a crucial observation of this section.

Remark 6.1. An inexact variant of the nonsmooth Newton-like method (6.3) is obtained by

simply ignoring the coarse-grid defect obstacles ψ(k) in Algorithm 5.2.

Let ṽν
j be some approximation of the solution vν+1

j of (6.6). In order to enforce global

convergence, we enforce decreasing energy by successive projection and damping. In a multigrid

context, it is natural to use fine-grid smoothing

wν
j =Mj(ū

ν
j + ṽν

j )

for the projection of ūν
j + ṽν

j to Kj (simple lumped L2-projection leads to very similar results).

Subsequent damping leads to the new iterate

uν+1
j = ūν

j + ων(wν
j − ūν

j ), ων = argmin
ω∈[0,1]

J (ūν
j + ω(wν

j − ūν
j )). (6.7)

By Lemma 5.1, the resulting iterative scheme is globally convergent for any choice of ṽν
j ∈ Sj .

Approximating the solution of (6.6) by one truncated multigrid sweep, we obtain the following

algorithm (recall the definition (5.10) of S̃j).
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Algorithm 6.1. (Truncated nonsmooth Newton multigrid V-cycle with global damping)

given: uν
j

fine grid smoothing: ūν
j =Mj(u

ν
j ), v(j) = 0

initialization of residual and bilinear form: rj = ℓ− a(ūν
j , ·), aj(·, ·) = a(·, ·)

truncation: rj := rj |S̃j
, aj(·, ·) := aj(·, ·)|S̃j×S̃j

initial restriction:

rj−1 = rj |S̃j−1
, aj−1(·, ·) = aj(·, ·)|S̃j−1×S̃j−1

for k = j − 1, · · · , 1 do:

{
solve:

v(k) ∈ S̃k : b̃k(v(k), v − v(k)) = rk(v − v(k)) ∀v ∈ S̃k (pre-smoothing)

rk := rk − ak(v(k), ·) (update of the residual)

rk−1 = rk|S̃k−1
, ak−1(·, ·) = ak(·, ·)|S̃k−1×S̃k−1

(canonical restriction)

}
solve:

v(0) ∈ S̃0 : b0(v
(0), v − v(0)) = r0(v − v(0)) ∀v ∈ S̃0 (approx. sol. on T0)

for k = 1, · · · , j do:

{
v(k) := v(k) + v(k−1) (canonical interpolation)

}
wν

j =Mj(ū
ν
j + v(j)) (projection)

ων = argmin
ω∈[0,1]

J (ūν
j + ω(wν

j − ūν
j )) (global damping)

new iterate: uν+1
j = ūν

j + ων(wν
j − ūν

j )

Implementation of the truncation step amounts to annihilating all rows and columns of the

stiffness matrix and the right hand side that correspond to active nodes p ∈ N •
j (ūν

j ). Then,

essentially, any standard multigrid implementation can be used for the coarse grid correction

v(j). The only modifications are that Gauß-Seidel smoothing has to skip all coefficients with

vanishing diagonal elements and that we have to set v(j)(p) := 0 for all p ∈ N •
j (ūν

j ) after

prolongation.

Remark 6.2. Algorithm 6.1 is open for various kinds of modifications, such as cg-acceleration

of coarse grid correction, multiple nonlinear post-smoothing before or after global damping or

line search ω ∈ R instead of mere damping.

We abandon these options in favor of a better comparison with the other algorithms presented

in this paper. In any case, convergence follows from Lemma 5.1.

Theorem 6.1. Algorithm 6.1 converges for any initial iterate u0
j ∈ Sj.

Remark 6.3. Inactivation in Algorithm 6.1 is performed exclusively by projected Gauß-Seidel

relaxation, as in truncated monotone multigrid.

As a consequence of Remark 6.3, we can hardly expect global mesh-independent convergence

rates of Algorithm 6.1. Indeed, if we start with u0
j = φj in case of a point source f and an exact

solution uj > φj , then the number of next-neighbor inactivation steps cannot be independent
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of nj . This was already pointed out at the end of Section 5.2. On the other hand, we expect

high convergence speed for reasonable initial iterates, i.e., if the coincidence set N •
j is resolved

sufficiently well.

6.2. Concluding remarks

The truncated nonsmooth Newton multigrid method as stated in Algorithm 6.1 can be

regarded as an active set strategy combined with a linear multigrid method for the resulting

reduced linear problems. Other active set strategies combined with multigrid are well-known

for quite a while. We refer, e.g., to the pioneering work of Hackbusch and Mittelmann [13]

or the now often called primal dual active set strategies by Hoppe [14, 15, 88]. In contrast to

our approach, primal dual active set strategies are essentially iterating on the complementarity

condition. For a recent re-interpretation in terms of non-smooth analysis, we refer, e.g., to

M. Ulbrich [17] or Hintermüller, Ito, and Kunisch [16]. The convergence proofs typically rely

on M-matrix properties of the stiffness matrix and assume that the reduced linear subproblems

are solved exactly. Both assumptions are seldom met in practical computations. For example,

adaptive mesh refinement involving edge bisection already violates the M-matrix property.

Nevertheless, inexact versions on adaptively refined grids are often used on a heuristic basis.

Numerical experiments for Signorini’s problem by Krause [20] indicate that the convergence

properties of the overall iteration strongly depend on the choice of the multigrid solver for

the reduced linear subproblems. According to his computations, truncated linear multigrid,

as involved in Algorithm 6.1 seems to be the best choice. Truncated linear multigrid was

introduced by Hoppe and Kornhuber [18] and later analyzed by Kornhuber and Yserentant [26].

Numerical experiments for two-body contact problems by Sander [89] confirm the observations

of Krause [20] that truncated nonsmooth Newton multigrid 6.1 usually converges faster than

truncated monotone multigrid 5.2.

7. Numerical Assessment

7.1. Numerical test problems

For most of the multigrid algorithms to be described below numerical experiments with

“generic” test problems like, e.g., simplified elasto-plastic torsion [6, Chapter II] have been

already reported elsewhere [25]. The two following examples are particularly designed to check

the robustness of multigrid algorithms with respect to complicated and unstable coincidence

sets. We always consider the square Ω = (−1, 1)2, the initial triangulation T0 consisting of four

congruent triangles and apply j = 9 uniform refinement steps to obtain the final triangulation

Tj with 523 265 interior nodes.

7.1.1. Spiral problem

The fact that the coincidence set N •
j usually has no representation on coarser grids sets a

particular challenge for any kind of multigrid approach to obstacle problems. In order to

highlight this intrinsic difficulty, we consider the obstacle function

ϕ(x(r, φ)) = sin(2π/r + π/2− φ) +
r(r + 1)

r − 2
− 3r + 3.6, r 6= 0,
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Fig. 7.1. Coincidence sets of spiral problem (left) and degenerate problem (right).

and ϕ(0) = 3.6 with polar coordinates x(r, φ) = reiφ. For the right hand side f = 0 this choice

leads to the spiral set N •
j as illustrated in the left picture of Figure 7.1. Obviously, functions

v ∈ S0 do not have much to do with the approximate solution uj on the final level j = 9.

7.1.2. Degenerate problem

Many multigrid solvers for obstacle problems reduce to linear multigrid methods for the re-

duced linear problem (2.12), once the coincidence set N •
j has been detected. For sufficiently

good initial iterates, such methods take advantage of the good convergence properties of linear

multigrid. In order to check their robustness, we consider a degenerate continuous problem with

an approximate coincidence set N •
j that is extremely hard to find. Related practical problems

occur, e.g., in the simulation of deep drawing processes. For the given obstacle

ϕ(x1, x2) = −(x2
1 − 1)(x2

2 − 1),

the selection of the right hand side f = −∆ϕ causes u = ϕ on Ω to be the solution of (2.1).

As a consequence, the solution uj of the discretized obstacle problem, the solution of its un-

constrained analogue, and the obstacle ϕj converge to a common limit. As a consequence, the

coincidence set N •
j becomes arbitrarily unstable with increasing refinement and thus can be

hardly detected by iterative solvers. According to the right picture in Figure 7.1, the (black)

coincidence set is not only unstable but fairly complicated as well.

7.2. Multilevel Subset Decomposition Versus Projected Multilevel Relaxation

In our numerical experiments, we check the robustness of the convergence behavior with

respect to given “bad” initial iterates and “good” initial iterates as obtained by nested iteration.

The convergence behavior is illustrated by iteration histories showing the algebraic error ‖uj −
uν

j ‖ over the iteration steps ν. In order to evaluate possible mesh-dependence, we introduce the

asymptotic convergence rates

ρk = ν∗

√

‖uj − uν∗

k ‖
‖uj − u1

j‖
, k = 0, · · · , j, (7.1)

where ν∗ is chosen such that ‖uj−uν∗

k ‖ < 10−11 and the initial iterate u0
j is obtained by nested

iteration.



Multigrid Methods for Obstacle Problems 33

We first compare the convergence behavior of the multilevel subset decomposition method

MSD stated in Algorithm 4.2 and of the projected multilevel relaxation (4.10) called PMLR.

We always consider V (1, 1) cycles.

7.2.1. Spiral problem

In our first experiment, we consider the discrete problem stated in Section 7.1.1 with a com-

plicated, spiral coincidence set. We first observe that the convergence behavior of MSD and

PMLR is almost independent of the choice of the initial iterate x0
j . This is illustrated in Fig-

ure 7.2 and the left picture in Figure 7.3, showing the iteration histories for initial iterates on

the obstacle u0
j = ϕj , above the obstacle u0

j = ϕj + 10 and obtained by nested iteration. For

bad initial iterates as considered in Figure 7.2, the leading fast reduction of the error is due to

fast reduction of high-frequency components. The asymptotic convergence rates both of MSD

and PMLR seem to saturate with increasing refinement level j as depicted in the right picture

of Figure 7.3. This is in good accordance with the theoretical results stated in Theorem 4.2 and

Theorem 5.2, respectively. However, due to the dynamic adaptation of the underlying splitting

of the defect obstacles uν
j −ϕj , PMLR shows a considerable faster convergence speed than MSD

as soon as the exact coincidence set N •
j is detected. While the asymptotic convergence rates of

PMLR seems to be bounded by 0.7, the convergence rates of MSD exceed 0.9 on level j = 9.
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Fig. 7.2. Spiral problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j = ϕj +10 > ϕj

(right).
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Fig. 7.3. Spiral problem: Iteration history for nested iteration (left) and asymptotic convergence rates

(right).
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7.2.2. Degenerate problem

Comparing the convergence behavior of MSD and PMLR for the degenerate problem stated in

Section 7.1.2 we first observe a similar robustness of both methods with respect to different

initial iterates as before. This is illustrated by the iteration histories for initial iterates on the

obstacle u0
j = ϕj , above the obstacle u0

j = ϕj +10 and obtained by nested iteration as depicted

in Figure 7.4 and the left picture in Figure 7.5. Observe that this time PMLR exhibits leading

fast convergence even for nested iteration, illustrating that the resulting initial iterate is not too

good in this (almost) degenerate case. In contrast to the spiral example the exact coincidence

set is now hard to detect. As a consequence, apart from a slightly faster leading convergence of

PMLR, the convergence speed of MSD and PMLR is very similar for all the three initial iterates.

As before, the asymptotic convergence rates seem to saturate for both methods. According to

the right picture in Figure 7.5 they seem to be bounded by 0.7 for both methods. We should

not forget at this point that PMLR has a higher complexity than MSD (cf. Remark 5.7). More

precisely, for j = 9 levels the cpu time for each step is about twice as large for PMLR than for

MSD.
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Fig. 7.4. Degenerate problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j =

ϕj + 10 > ϕj (right).
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Fig. 7.5. Degenerate problem: Iteration history for nested iteration (left) and asymptotic convergence

rates (right).

To sum up, both the convergence behavior of PMLR and MSD is almost invariant with

respect to different initial iterates and/or degeneracy of the problem. Such kind of robustness
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nicely reflects the convergence analysis reported in Section 5.1, where non-degeneracy does not

play a role as well.

7.3. Projected Multilevel Relaxation Versus Monotone Multigrid

We investigate the convergence behavior of the truncated monotone multigrid method

TMMG stated in Algorithm 5.2 and of the standard version SMMG stated in Algorithm 5.3. As

we are interested to see to which extend the convergence properties of PMLR are preserved by

its V -cycle counterpart SMMG, we include the results of PMLR for a comparison. We always

consider V (1, 1) cycles.

7.3.1. Spiral problem

We consider the discrete problem stated in Section 7.1.1. The iteration histories for the “bad”

initial iterates u0
j = ϕj , u

0
j = ϕj + 10 > ϕj and nested iteration are shown in Figure 7.6 and

the left picture of Figure 7.7, respectively.

Let us first notice that the intrinsic damping (cf. Remark 5.5) leading to optimal complexity

hardly slows down the convergence of SMMG as compared to PMLR. Optimal resolution of

the constraints at the cost of suboptimal complexity improves the convergence speed of PMLR

only for u0
j = ϕj + 10. Both methods provide almost identical results otherwise. In particular,

the convergence behavior of SMMG is still almost independent of the choice of initial iterates.

This is different for TMMG. Starting with u0
j = ϕj the iteration begins very slowly, because

inactivation is performed exclusively by projected Gauß-Seidel relaxation (cf. Remark 5.4).

However, once the coincidence set is approximated sufficiently well, the iteration accelerates

tremendously. The asymptotic convergence rates of TMMG are essentially the same as for

the corresponding linear multigrid method applied to an unconstrained Poisson problem on

Ω. This supports our heuristic reasoning in Section 5. For u0
j = ϕj + 10 > ϕj coarse grid

correction can contribute right from the start. This leads to faster convergence throughout the

iteration as illustrated in Figure 7.6 (right). Again, the asymptotic linear convergence speed

is reached once the coincidence set is approximated sufficiently well. According to Figure 7.7

(left) asymptotic linear convergence starts immediately for nested iteration. In this case, the

performance of TMMG can be hardly distinguished from classical multigrid for unconstrained

problems. Figure 7.7 shows ρk over the corresponding number of unknowns nk, k = 2, · · · , 9.

The asymptotic convergence rates seem to saturate at about 0.73 (PMLR and SMMG) and

0.41 (TMMG). In comparison with previous computations for generic problems [25, 90], the

complicated coincidence set does not seem to deteriorate the convergence properties of all three

methods.

7.3.2. Degenerate problem

We consider the discrete problem stated in Section 7.1.2. The iteration histories of PMLR,

SMMG, and TMMG for the initial iterates u0
j = ϕj , u

0
j = 0 > ϕj , and nested iteration are

depicted in Figure 7.8 and Figure 7.9 (left), respectively.

Let us first compare the convergence properties of PMLR and SMMG. Both methods per-

form quite similarly for u0
j = ϕj . However, the decelerating effect of intrinsic damping in

SMMG is clearly visible in the remaining two cases. This effect is stronger than before, because

in this example uj and ϕj are almost identical. Starting with u0
j = ϕj , TMMG also behaves

qualitatively as before: After a transient phase dominated by slow inactivation by projected



36 C. GRÄSER AND R. KORNHUBER

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

 

 

PMLR
SMMG
TMMG

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

 

 

PMLR
SMMG
TMMG

Fig. 7.6. Spiral problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j = ϕj +10 > ϕj

(right).
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Fig. 7.7. Spiral problem: Iteration history for nested iteration (left) and asymptotic convergence rates

(right).

Gauß-Seidel relaxation, the iteration accelerates considerably, reaching linear multigrid conver-

gence speed. However, this time it takes about 80 steps until the coincidence set is approximated

sufficiently well. If u0
j = 0 or nested iteration is used, the behavior of TMMG now can be hardly

distinguished from SMMG. In contrast to the non-degenerate case, truncation now does not

have much of a positive effect, because the exact coincidence set is detected not until one or

two steps before the desired accuracy is reached. As a consequence, the asymptotic convergence

rates depicted in Figure 7.9 (right) are now comparable for all three methods. Summing up,

SMMG and PMLR do not suffer from degeneracy while, apart from possible slow inactivation,

TMMG now essentially behaves like SMMG.

7.4. Truncated Monotone Multigrid Versus Truncated Nonsmooth Newton Multi-

grid

We apply the truncated nonsmooth Newton multigrid method TNMG stated in Algo-

rithm 6.1 to the test problems introduced in Section 7.1. For a comparison we include the

results of the related truncated monotone multigrid method TMMG stated in Algorithm 5.2.

We always consider V (1, 1) cycles.

In our numerical experiments, we check the robustness of the convergence behavior with

respect to given “bad” initial iterates and “good” initial iterates as obtained by nested iteration.
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Fig. 7.8. Degenerate Problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j = 0 > ϕj

(right).
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Fig. 7.9. Degenerate Problem: Iteration history for nested iteration (left) and asymptotic convergence

rates (right).

The convergence behavior is illustrated by iteration histories showing the algebraic error ‖uj −
uν

j ‖ over the iteration steps ν. In order to evaluate possible mesh-dependence, we consider the

asymptotic convergence rates ρk, k = 0, · · · , j as introduced in (7.1).

7.4.1. Spiral problem

We consider the discrete problem stated in Section 7.1.1. The iteration histories for the “bad”

initial iterates u0
j = ϕj , u

0
j = ϕj + 10 > ϕj and for nested iteration are shown in Figure 7.10

and the left picture of Figure 7.11, respectively. As expected from Remark 6.3, inactivation by

projected Gauß-Seidel iteration initially slows down the convergence speed for the initial iterate

u0
j = ϕj . Fast convergence throughout the iteration is observed for u0

j = ϕj + 10 > ϕj . While

TNMG performs slightly better than TMMG for those “bad” initial iterates, both methods

provide almost identical results, if nested iteration is applied. In this case the performance of

both TMMG and TMMG can be hardly distinguished from classical multigrid for unconstrained

problems. The asymptotic convergence rates, apparently saturating at about 0.41, are almost

the same, cf. Figure 7.11 (right). In view of its simplicity and its potential for further improve-

ments (line search, cg-acceleration) these results suggest that TNMG should be preferred to

TMMG.
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Fig. 7.10. Spiral problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j = 0 > ϕj

(right).
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Fig. 7.11. Spiral problem: Iteration history for nested iteration (left) and asymptotic convergence rates

(right).

7.4.2. Degenerate problem

We consider the discrete problem stated in Section 7.1.2. The iteration histories for the initial

iterates u0
j = ϕj , u

0
j = 0 > ϕj and for nested iteration are shown in Figure 7.12 and the left

picture of Figure 7.13, respectively. Note that u0
j = ϕj provides the minimal initial error in

this case. Nevertheless, starting from the obstacle, next-neighbor inactivation by projected

Gauß-Seidel relaxation slows down the convergence speed of TNMG until the coincidence set is

approximated sufficiently well. As in the preceding experiment, TNMG performs only slightly

better than TMMG in this case. However, starting from u0
j = 0 > ϕj , TMMG is clearly

outperformed by TNMG: While intrinsic local damping is reducing the effect of coarse grid

correction in TMMG, global damping as used in TNMG is less pessimistic in this case.

The situation is quite different, if nested iteration is applied. After a very fast reduction of

the high-frequency components of the error, the coarse grid correction of TNMG produces some

kind of undershoot in the sense that the approximate coincidence set is much too large. This

leads to slow convergence during the following inactivation phase. Finally, once the coincidence

set is approximated sufficiently well, asymptotic linear convergence is reached. This behavior

occurs on all refinement levels k = 2, · · · , 9. Hence, the increasing asymptotic convergence

rates depicted in the right picture of Figure 7.13 rather reflects the increasing length of the

intermediate inactivation phase than the asymptotic convergence speed itself. More robust

global inactivation by standard monotone multigrid will be discussed below.
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Fig. 7.12. Degenerate Problem: Iteration histories for the initial iterates u0
j = ϕj (left) and u0

j = 0 > ϕj

(right).
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Fig. 7.13. Degenerate Problem: Iteration history for nested iteration (left) and asymptotic convergence

rates (right).

7.5. Concluding remarks

Our numerical experiments show that there is a certain tradeoff between robustness and

convergence speed. In perfect agreement with theory the multilevel relaxation MSD, the pro-

jected multilevel relaxation PMLR and its V -cycle counterpart show a remarkable amount of

robustness, but much slower convergence than classical multigrid methods for related uncon-

strained problems. Conversely, truncated monotone multigrid TMMG and the related truncated

nonsmooth Newton multigrid method TNMG are very fast for generic problems and initial it-

erates but might run into trouble for certain bad initial iterates (cf. Remark 5.4 and 5.7) and

degenerated cases.

Similar to truncated monotone multigrid TMMG or truncated nonsmooth Newton multigrid

TNMG the inactivation in present primal dual active set strategies is based on local next-

neighbor interaction [14–16]. This explains why mesh-independent convergence of such methods

is still (and might remain) open. In addition, local inactivation typically leads to deteriorating

convergence speed, if the approximate coincidence set is much too large. As a remedy, it seems

natural to use global inactivation by one step of the standard monotone multigrid STDMG.

The resulting hybrid multigrid method HMG thus combines robustness with fast asymptotic

convergence. Note that, by construction, such hybrid multigrid method are globally convergent.

To illustrate the possible benefit of the hybrid approach, we again consider the degenerate
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Fig. 7.14. Degenerate Problem: Iteration history for nested iteration (left) and asymptotic convergence

rates (right).

problem stated in section 7.1.2 with initial iterates obtained by nested iteration. The iteration

history of HMG is shown in the left picture of Figure 7.14. For a fair comparison with SMMG

and TNMG, we counted each step of HMG twice. Combining the robustness of multilevel

relaxation with fast asymptotic convergence of truncated multigrid, HMG clearly outperforms

SMMG and TNMG. According to the right picture in Figure 7.14 the convergence rates seem

to saturate at about 0.3. A theoretical justification is left to future research.
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C.R. Acad. Sci., 298 (1984), 469-472, Ser. I.

[74] A. Brandt and C. Cryer, Multigrid algorithms for the solution of linear complementary problems

arising from free boundary problems, SIAM J. Sci. Stat. Comput., 4 (1983), 655-684.

[75] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31 (1977),

333-390.

[76] C. Bollrath, Zwei Mehrgitterverfahren zur numerischen Berechnung von stationären Strömungen
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