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Abstract

In this paper, we discuss the a posteriori error estimate of the finite element approx-
imation for the boundary control problems governed by the parabolic partial differential
equations. Three different a posteriori error estimators are provided for the parabolic
boundary control problems with the observations of the distributed state, the boundary
state and the final state. It is proven that these estimators are reliable bounds of the finite
element approximation errors, which can be used as the indicators of the mesh refinement
in adaptive finite element methods.
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1. Introduction

Finite element approximation plays a very important role in the numerical methods for
optimal control problems. There have been extensive theoretical and numerical studies in this
research direction. For instance, the error analysis for optimal control problems governed by
linear elliptic equations has been established in [12,13], the error estimates for some important
flow control problems are given in [14], the error estimates for Dirichlet boundary control
governed by semilinear elliptic equations are provided in [6]. Some recent progress in this area
has been summarized in [24].

In recent years, the adaptive finite element method has been investigated extensively. It has
become one of the most popular methods in the scientific computation and numerical modelling.
Adaptive finite element approximation ensures a higher density of nodes in a certain area of the
given domain, where the solution is more difficult to approximate, indicated by a posteriori error
estimators. Hence it is among the most important means to boost the accuracy and efficiency
of finite element discretizations. We acknowledge the pioneering work due to Babuska and
Rheinboldt [2]. Further references can be found in the monographs [1,3,28], and the references
therein.

Earlier works on a posteriori error estimates are concentrated on the elliptic partial differen-
tial equations. Later, there are many works about the a posteriori error estimates for parabolic
problems. We mention the work of Eriksson and Johnson [10,11], which is based on the analysis
of linear dual problems of the corresponding error equations. The derived a posteriori error
estimates depend on the H? regularity assumption on the underlying elliptic operator. In [25],
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Picasso derived a posteriori error estimator in the classical L?-norm in time and H'-norm in
space based on the energy method, and a lower bound for the local error is also derived for
the associated a posteriori error indicator. Recently, Chen and Jia [7] obtained an efficient and
reliable a posteriori error estimate for linear parabolic equations, which is also in the energy
norm and based on a direct energy estimate argument.

In the decades, there appear many works concentrating on the adaptivity of various optimal
control problems. For example, [4] studied the adaptive finite element method for the optimal
control problems governed by PDE, while a posteriori error estimators for convex distributed
optimal control problems governed by elliptic equations, parabolic equations, Stokes equations,
integral equations and integro-differential equations are derived in [5,17,19,21-23], respectively,
the a posteriori error estimates for the boundary control problems governed by elliptic equation
are also discussed in [15, 20].

The main objective of this paper is to establish the a posteriori error estimate of the finite
element approximation for the boundary control problems governed by the parabolic partial
differential equations. Three different a posteriori error estimators are provided for the parabolic
boundary control problems with the observations of the distributed state, the boundary state
and the final state. It is proven that these estimators are reliable bounds of the finite element
approximation errors, and can be used as the indicators of the mesh refinement in adaptive
finite element methods. Although we use some ideas and techniques, which have been applied
in our earlier work for the parabolic distributed optimal control and the elliptic boundary
control (see, e.g., [19,20,23]), in the a posteriori error estimate analysis of this paper, there are
some obviously different difficulties which should be solved for the parabolic boundary control
problems.

The paper is organized as follows: In section 2, we introduce the model problems and their
weak formulations, provide their fully discrete finite element approximation schemes. Then
we discuss the a posteriori error estimate of the finite element approximation for the parabolic
boundary control problems in Section 3. We provide three different a posteriori error estimators
for the parabolic boundary control problems with the observations of the distributed state, the
boundary state and the final state in Subsections 3.1, 3.2 and 3.3, respectively.

2. Model Problems and Finite Element Approximations

In this section, we will introduce the boundary control problems governed by the parabolic
partial differential equations with three kinds of different observations and their finite element
approximations.

Let Q be a bounded domain in R™(n < 3) with a Lipschitz boundary 9. In this paper,
we adopt the standard notation W™P(Q) for Sobolev spaces on  with norm || - || o and
seminorm | - |, p.0. We denote W™?2(Q) by H™(Q2) and set H}(Q) = {v € HY(Q) : v|sa=0}-
We denote by L*(0,T; W™P(Q)) the Banach space of all L*® integrable functions from (0,7)
into W™?(Q) with norm

1

T s
R O R ) R T

and the standard modification for s = co. Similarly, one define the spaces H'* (0, T, wmp (Q))
and C! (0, T; W"”’(Q)). In addition ¢ or C denotes a general positive constant independent of
the mesh size parameter h.
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In the rest of the paper, we shall take the state space W = L2(0,T;V) with V = HY(Q),
the control space X = L%(0,T;U) with U = L?(992), the observation space Y will be specified
later depending on the different observations. The model problem we will study in this paper
is the following control problems governed by parabolic equation:

min{g"(y) + " (u)}. (212)
% —div(AVy) +apy = f, z€Q, t€(0,T], (2.1b)
(AVy) -n=Bu+z, x€dQ, tel0,T], (2.1c)
y(x,0) = yo(z), z=€9Q, (2.1d)

where control appears in the Neumann boundary conditions, g* and j* are strictly convex
functionals which are continuously differentiable on the observation space Y and control space
X. We further assume that j*(u) — +oo as |lu]|x — +oo and that the functional g*(-) is
bounded below. In (2.1), the given functions f € L?(0,T;L*(Q)), yo € H'(Q), 2 € L*(0Q),
ag € L>() with ag > ¢, and A(-) = (a;;(-)) € (L‘X’(Q))nxn such that there is a constant
¢ > 0 satisfying

nxn

X'AX > c|| X ||k, VX € R™

Moreover, let the constraint set K be a closed convex set in the control space X, B be a linear
continuous operator from X to L? (0, T, L2(8Q)).

2.1. Boundary control problem with observation of the distributed state

Firstly, let us consider the boundary control problem (2.1) with observation of the distributed
state, i.e., the observation space Y = L? (0, T; LQ(Q)). Set

g*<y>/OT/Qg<y>, j*(u)/OT/mj(u),

where g(-) and j(-) are strictly convex continuously differentiable functions such that the as-
sumptions on ¢g*(-) and j*(-) are satisfied. An example for g*(-) and j*(-) is

* 1 g 2 % @ g 2
9" () =5 y—ys) J(w=x5 s,
2Jo Ja 2 Jo Joo
where y, € L%(Q) is a given function, « is a positive number. Let
a(y,w) = /(AVy) -Vw + agyw Yy, w € H'(Q),
Q
(f1, f2) = / fifa Vi, f2 € L2(9),
Q
(v, w)y :/ vw Yv,w € L*(09).
o0

Then a weak formula of the parabolic boundary control problem (2.1) reads:

min {9 () + 77w}, (2:2)
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subject to
(%m}) +a(y,w) = (f,w) + (Bu+ 2z, w)u, Yw eV, t e (0,T], (2.3a)

It is well known (see, e.g., [18]) that the control problem (2.2)-(2.3) has a unique solution (y, ),
and that a pair (y,u) is the solution of (2.2)-(2.3) if and only if there is a co-state p € W such
that the triplet (y,p,u) satisfies the following optimality conditions:

(%,w) +a(y,w) = (f,w) + (Bu+ zp,w)y, YweV, te(0,7T],
y(z,0) = yo(z), (2.4)
- (%4]) +a(q,p) = (9'(y),q), YgeV, tel0,T),
p(:L',T) = 07 (25)
T
/ (4'(u) + B*p,v —u)ydt > 0, Yv € K, (2.6)
0

where B* is the adjoint operator of B.

Let us consider the finite element approximation of the control problem (2.2)-(2.3). Here
we consider only n-simplex elements, as they are among the most widely used ones. Also we
consider only conforming Lagrange elements.

Let Q" be a polygonal approximation to € with a boundary 9Q". Let T" be a partitioning
of Q" into disjoint regular n-simplices 7, so that Q" = Urern
) is a polygon or polyhedron such that Q" = Q. Associated with 7" is a finite dimensional
subspace V" of C(Q"), such that x|, are polynomials of m-order (m > 1) for Vx € V" and
T € Th. It is easy to see that V* C V.

Let Tﬁ be a partitioning of dQ" into disjoint regular (n — 1)-simplices s, so that 9Q" =
UseT[;} 5. Associated with T is another finite dimensional subspace U" of L2(9Q"), such that
X|s are polynomials of m-order (m > 0) for Vx € U" and s € T}*. Here there is no requirement
for the continuity. Let X" = L2(0,T;U"), K" = X" N K. Let h, and hy denote the maximum
diameter of the element 7 in 7" and s in Tﬁ, respectively.

7. For simplicity, we assume that

Then the semi-discrete finite element approximation of (2.2)-(2.3) is as follows:

Juin, {g"(yn) + 57 (un) }, (2.7)
subject to
(%’wh) + a(yn, wn) = (f,wn) + (Bup, + 20, wp)u, Ywn, € V", t € (0,T),
yn(z,0) = yi(z), z€Q, (2.8)

where y, € H(0, T V"), and yg € V" is an approximation of yj.
It follows that the control problem (2.7)-(2.8) has a unique solution (yn,up) and that a pair
(yn,up) is the solution of the problem (2.7)-(2.8) if and only if there is a co-state p;, such that
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the triplet (yp,pn,up) satisfies the following optimality conditions:

(%awh) + a(yn, wn) = (f,wn) + (Bup + zp, wp)y, Yw, € V",

yn(z,0) = yg (), =€, (2.9)
- (%ﬂh) + alqn,pn) = (9'(n), an), Yan € V",

pn(@,T)=0, z€Q, (2.10)
ATUWU+B%mwquﬁZO,Wm€K@ (2.11)

We next consider the fully discrete approximation for above semidiscrete problem by using
the backward Euler scheme in time.

Let O=to<t1 < - <ty_1<itn=T,k;j=t;—ti1,i=1,2,--- /N, k:maxie[l’N]{kzi}.
For i =1,2,---, N, construct the finite element spaces V;* € H(Q) (similar to V") with the
mesh T/, Similarly, construct the finite element spaces U € L%(9f2) (similar to U") with the
mesh (T%);. Let h,i(hy) denote the maximum diameter of the element 7¢(s%) in T((T}):).
Define mesh functions 7(-), s(-) and mesh size functions h. (), hs(-) such that

TOlettirtg =7 sOlicr] = Pe®lic@irt] = hris hs(®)lic,_y .t = hsi-

For ease of exposition, we shall denote 7(t), s(t), h,(t) and hs(t) by 7, s, h, and hs, respectively.
Let K!' = UM N K. Then the fully discrete approximation scheme of (2.7)-(2.8) is to find
(yi,ut) € Vh x KI' i=1,2,--- | N, such that

7

N
i ks W)+ h(up)) ¢, 2.12
in, { > JRECIRRITNY (2.12)
Yh— U : :
(hTh,wh) + a(yp, wn) = (f(@,t:), wn) + (Buj, + 25, wn)u,
Vw, €V, i=1,--- N, y)(z)=yl(x), =€ (2.13)

It follows that the above control problem has a unique solution (Y}/,U}), i =1,2,---, N,
and that a pair (Y},Uj) € V* x KI', i = 1,2,---, N, is the solution of (2.12)-(2.13) if and
only if there is a co-state P;fl € V' i=1,2,--- N, such that the triplet (Yh",Pffl, Uj) e
VI x Vh x K i=1,2,---, N, satisfies the following optimality conditions:

DA , .
(hTh,wh) +a(Yy,wp) = (f(:n,ti),wh) + (BU}, + 2z, wh)u,
Vw, € VP, i=1,--- N, Y(x)=yl(z), z€Q, (2.14)
Pifl _Pi - ]
(L) +alan P = (9. an).
Vgn €V, i=N,---,1, PN(z)=0, z€Q, (2.15)
('(UL) +B* Py on — UL, >0, Vo, € K'i=1,2,--- N. (2.16)

Fori=1,2,--- N, let

Yalesrtg = ((t = tic) Vs + (ti — )Y, ) ks,
Puliti v = ((t = tic)) P+ (ts = )P ") kiy Unltiy ) = Up.-
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For any function w € C(O, T; LQ(Q)), let (2, )|, ,¢,] = w(w, t;), W(z,1)
Then the optimality conditions (2.14)-(2.16) can be restated as

(ti—1,ts] = w(x, ti—l)-

(%,wo + a(f/h,wh) = (f, wy) + (BU, + 2z, wp)y, Ywp, €V, 1<i<N,
Yi(z,0) = yil(z), z€Q, (2.17)
oP, S 0 .

- (Wth) +alqn, Pr) = (¢’ (Y2),an), Van € V", N <i<1,

Pu(z,T) =0, z€Q, (2.18)

(j'(Un) + B*Py,vn — Un),, 20, Yo, € K, 1<i<N. (2.19)

2.2. Boundary control problem with observation of the boundary state

Next, let us consider another case: the boundary control problem (2.1) with observation of
the boundary state, i.e., the observation space Y = L? (0, T, L2(8Q)). Set

g*(y)=/OT/mg(y), j*(U)=/OT/mj(U),

where again ¢g(-) and j(-) are strictly convex continuously differentiable functions such that the
assumptions on g*(+) and j*(-) are satisfied. Again, the example for ¢g*(-) can be

9" (y) = %/OT /m(y —ys)?,

where y, is a given function, and j*(-) is defined in the example in the last subsection. In this
case, the optimality condition of the control problem (2.1) is

(8y )—l—a(y,w)z(f,w)—i—(Bu—i—zb,w)U, YweV, te (0,T),

E,w
y(z,0) = yo(z), (2.20)
dp ,
— (55-9) +ala.p) = (/&) ), Vg€ V; te(0,T)
p(z,T) =0, (2.21)
/T(j'(u) + B*p,v —u)ydt >0, Vv € K. (2.22)

Comparing the problem with the observation of the distributed state, it can be found that
only costate equation is changed. More precisely, the Neumann boundary of the costate equation
is changed from zero to ¢'(y), and the source term is changed from ¢’(y) to zero.

Using the finite element space introduced in the last subsection, we have the fully discrete
finite element approximation of the control problem similar to (2.12)-(2.13), which is equivalent
to the following fully discrete optimality condition:

oYy, . ; ‘
(6—;,wh> +a(Yh,wh): (f,wh)+(BUh+zb,wh)U, Ywy, G‘/;h, 1<i <N,
Y (2,0) = yg (z), © € Q, (2.23)
OP, ~ ~ .
- (6—:’%) +algn, Pr) = (9 (Va)an)» Yan € V", N <i<1,

Py(z,T) =0, z€Q, (2.24)
(J'(Un) + B*Py,vn — Up), 2 0, Yo, € K", 1<i<N. (2.25)
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2.3. Boundary control problem with observation of the final state

We now consider an important and more practical case: the boundary control problem (2.1)
with observation of the final state, i.e., the observation space Y = L?(Q) for the final state

y(T). Set .
v = [ o). 5w=[ [ iw.

where g(-) and j(-) are strictly convex continuously differentiable functions such that the as-
sumptions on ¢*(-) and j*() are satisfied. An example for g*(-) is
g (y) = 5 (y(:L’,T) - ys(z)) dl‘,
Q

where y,(-) is a given function, and j*(-) is defined in the example in Subsection 2.1. In this
case, the costate equation is

0
—a—]t)—div(A*Vp)-l-aop:Q er, le [O7T]a

(A*Vp) -n=0, ze€0dQ, tel0,T],
p(va) = g/(y(l',T)), x €.

Then we have the following optimality conditions:

(%, w) +aly.w) = () + (But 2, w), YweV, te©T)

ot
y(x,0) = yo(x), (2.26)
- (%A) +a(g,p) =0, YgeV, t€[0,T],
p(:E, T) = gl (y(x, T))v (227)
(j'(u) + B*p,v —u), >0, Yve K. (2.28)

Using the finite element space introduced in the Subsection 2.1, we have the fully discrete finite
element approximation of the control problem similar to (2.12)-(2.13), which is equivalent to
the following fully discrete optimality condition:

(%v“’ﬁ + a(Yn,wp) = (f, wn) + (BU + 2, wn)u, Ywn € VI, 1<i <N,

Vi(z,0) =yh(z), z€Q, (2.20)
B (%’Qh) +a(qn, Pn) =0, Vg, € V', N <i<1,

Pp(z,T) = g'(Yh(ac,T))h7 z € Q, (2.30)
(j/(Uh)+B*phvvh*Uh)UZO, vthKiha 1<i<N, (2.31)

where ¢'(Y(z,T)), € V" is an approximation of ¢/(Y, (2, T)). For instance when

9(y) = = (y(@,T) — ys()),

N =

we have that
gl (Yh(xv T))h = Yh(xv T) - y?(l'),

where y" € V" is an approximation of ;.
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3. A Posteriori Error Estimates for Boundary Control Problem

In this section, we will derive a posteriori error estimates for the boundary control problems
governed by the parabolic equations. We shall assume the following convexity conditions:

(' (w) = j' (v),u =), = cllu—vllz;, Yu,veU, (3.1)
(g'(v) —g'(w),v — w)y >0, Yo,weY, (3.2)

where Y is the observation space which has been defined in Subsections 2.1-2.3.
In this paper, we assume that the constraint on the control is an obstacle type such that

K={veX: v>0, ae. indQx(0,7T]}. (3.3)
To derive the sharp a posteriori error estimates, we divide the boundary 0f2 into three parts:
00" ={z€0Q: (B*P,)(z) +5'(0) < 0},
Q0 = {x €9 (B*Py)(x) +j/(0) > 0, Up(z) =0},
o0t = {z €9Q: (B*Py)(z) +5'(0) > 0, Up(z) > 0}.

It is easy to see that the partition of above three subsets is dependent on ¢. For all ¢, the three
subsets are not intersected each other, and

0 =900~ U’ uUonT.

Moreover, we introduce the well known error estimates for the Clément type interpolation
(see [9] and [26] for more details), which will be used in a posteriori error estimate analysis in
this section.

Lemma 3.1. Let & be the Clément type interpolation operator defined in [9]. Then for any
v € HY Q) and all element T,

v = 70l L2y + he V(0 = 70) L2y € Y Che| Vg2, (3.4)
T'OTAD
||’U—ﬁ"U||L2(e) < Z Ché/2|V’U|L2(T/), (35)
eCT’

where e is the edge or face of the element.

3.1. Boundary control problem with observation of the distributed state

In this subsection, we will consider the a posteriori error estimate for the boundary control
problem with observation of the distributed state. Firstly, let us derive the a posteriori error
estimate for the control u.

Lemma 3.2. Let (y,p,u) and (Yn, Pn,Up) be the solutions of (2.4)-(2.6) and (2.17)-(2.19),
respectively. Assume that j(-), g(-) satisfy the convexr assumptions (3.1)-(3.2), and j'(-) and
g'(+) are locally Lipschitz continuous. Then we have that

flu— UhH%Q(O,T;L2(BQ)) < Cﬂ% + C||Ph *P(Uh)||2L2(o,T;L2(aQ))a (3.6)

where
ni = 13" (Un) + B*Pull72 (0,102 (00 voat))»



76

and p(Up,) is the solution of the following system:

<a%£%%“9*“ﬂy@%%w)=<fﬂu
y(Un)(z,0) = yo.
4(@£@
ot

p(Up)(x,T) = 0.
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) + (BUh + zb,w)U, Yw eV,

0) +ala.p(U) = (¢ W(UW).a), Vg€V,

Proof. From the uniform convexity of j, we have

cllu = UnllZ 2072200

< [ G =i

=/OT (J"(u) + B p,u — Up) ,dt + /OT (

+/ (B*(Py — p(Un)),u — Uy) ,dt +/ (B*(p(Un) — p),u— Up) ,dt
0 0

4
:?ZE:]L
i=1
We first estimate I;. Note that U, € K" ¢ K. Tt
T
h=[ GweB,
0

Next we estimate I>. Note that

T
I :/ (j'(Un) + B* Py,
0

§'(Un) + B* Py, Uy, — ) ,dt

follows from (2.6) that

u—Up),dt <O0.

Uy, — u)Udt

Tl s
0 oQ-UoN+

+ /OT /aszo (4'(Un)
/oT /zm—uam b'w

<C(O)|§"(Un) + B* Py

and

+6lu—Unl?

<C(0)i + dllu—Unl?,

where § is an arbitrary small positive number. Fu

§'(Uy) + B*P, > j'(0) + B*P, > 0,

+ B*ph)(Uh — u),

+ B*ph)(Uh — u)

£2(0,1;L2 (92~ UdQH))

£2(0,7522 (90~ UdQ+))

(0,7522(59))°
rthermore, we have that

Up,—u=0—u<0 on a00.

(3.9)

(3.10)

(3.11)

(3.12)
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It yields that
T
/ / (7' (Un) + B*Py)(Up — u) < 0. (3.13)
0 00

Then (3.11)-(3.13) imply that
I < OO + dllu — Unll2(0,7;12(00)) - (3.14)

Moreover, it is clear that
T ~
I =/ (B (P, — p(Un)),u — T),, dt
0
T ~
<C [ 1B (B = p(U) lz2(omllu = Unllzz omy it
0

T T
<€) [ 18" (=0 Brcomydt +5 [ = Uil oyt

5 ) o
CO)[I1Ph (Uh)||L2(OTL2(6Q)) +ollu h”L2(0TL2(6Q)) (3.15)
Now we turn to I4. Note that
y(@,0) = y(Un)(2,0) = yo(x) p(z,T) = y(Un)(z,T) = 0.
It follows from (2.4)-(2.5) and (3.7)-(3.8) that
T
u:/(ﬂ@wm—mu—mha
0
T
:/ (p(Un B(u—Uy)),,d
0
T
Ay —y(Un)) y (Un))
-/ ( 2(U) - )+a@mwmmwnm>a
0
T p)
:/ ,yfy(Uh)) +a(y —y(Un),p(Un) —p) |dt
0
T
:/(y (U) = 99y~ y(U))de < 0. (3.16)
0
Thus, we obtain from (3.9)-(3.10) and (3.14)-(3.16) that
2 _ 2
o= Vs o, ggomy) < €8 PR =PRI o
which proves (3.6). O
Next we estimate the error || P, —p(Un)llz20,1;22(00))- Let [|[¢ll| = (a(e, ©))z. It is easy to

see that the norms ||| - ||| and || - || z1(q) are equivalent.

Lemma 3.3. Let (Yy, Py, Ups) be the solutions of (2.17)-(2.19), and let (y(Un),p(Ur)) be the
solution of (3.7)-(3.8). Assume that g'(-) is locally Lipschitz continuous. Then,

9
5 2 2 2
LGOI NS CARS AN SETE) DR L

=2
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where

n? = / Z h2||— + dio(A*V By) — a0 P + g/ (V)| 220,

B= [ X AR+ [ Rl R,

eNoN=0 eCOoN
7 = / 1Py — Bulll?, o2 = / Zh2||— Yh 4 dio(AVVR) — a0V + Far)
n = / > he|[AVY - n ||L2(e)+/ > hel|AVYs -0 — BUL = 2|72,
eNoN=0 eCOoN

T
77? :/o [[Yn — Yh|\|2a 77§ = [|Ya(z,0) — ?/O(I)Hiz(n)a 7752) =|f- fH%z(o,T;B(Q))a

where h. is the size of face e, [AVYh -n]e and [A*Vﬁh -n]e are the A—normal and A*—normal
derivative jumps over the interelement face e respectively, defined by

[AVY), - ne = (AVYh|r — AVY|2) - m,

[A*Vph -Tl]e = (A*vph|7—61 - A*Vph|7.62) ‘n,

where n is the unit normal vector on e = 72 N 72 outwards 7).
Proof. Tt follows from (2.18) that for all ¢ € H(Q) and g € V*, t € (t;_1,ti],
op,
( ot a@) +a(90aph)
- 0P, - .
=- (g’(Yh) + e Q) +alp—q,Pn) + (9'(Ya), ) (3.18)
Then from (3.8) and (3.18) we have
O(Pn — p(Un))
ot ’

op, .

= (¢ () + 5o —a) —ale = a.P) + (g (w(Un) — g/ (Fh). 9)- (3.19)

w) +a(e,p(Uy) — Pr)

Set
¢ =p(Ur) — Pn, q=7(p(Un) — Pn)

n (3.19), where 7 : H'(Q) — V" is the Clément type interpolation operator defined in Lemma
3.1. Note that

a(p — q, Pr) :/ V(p — q)A*V P, + agPr(p — q)
Q

- / (aoPy, — div(A*VPy)) (¢ — q) +Z / (A*VPy) - n(p — q)ds
Q

- / (ag Py — div(A*VP,)) + > / [A*V P, - n](p — q)ds
a2 endn=p "¢

+ Z/A*VPh n)(¢ — q)ds

eC o0
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and
a(p(Un) = Po,p(Uy) — B)
=B~ O + 211 1Px — DU — 2 1B — Bl
We have that

1, = 1
- EEHPh PU)720) + §H|Ph — p(Un)II> + §H|Ph — p(Un)|I?

= 37— Pall?
+ [ () + T+ A"V B = s ) (o0 ~ P = 700~ )

- > /A*VPh n](p(Us) — Py — #(p(Up) — Pp))ds

enoN=0

_ Z/A*VPh n)(p(Un) — Pn — #(p(Un) — Pr))ds

eCoN

+ (' (W(Un)) = g'(Yn), p(Un) — P).

By integrating (3.20) in time from ¢;_; to ¢; and using (3.4) and (3.5), we have

1 Lt
SI(Ph = U i) By + 5 [ (11 = ORI + 1P~ p(U)] )
1 ) 1 )

<51 (Ph = p(UR)) t)l 20) + 5 t [ Bn — Pu|[*dt

+ C/ (Zh2|\g Yh + — + le(A*VPh) — a()PhHLQ(T))dt

ti1

2O [ (X RAAVR e+ Y AP nlag )
tic1 " ena0=0 eCON

ti N 1 tl
+ C/ lg' (w(Un) = ' (Vi)lI T2t + 5 / lp(Un) — Puldt.
ti—1

i—1

Summing up from 1 to N and noting that (P, — p(Up))(x,T) = 0, we have

1 2 1 g D 2 2
S 1 (Bh = p(Un))(O0)l|z2(0) + —/ En = pUWII" + [[[Pn = p(Un)|I7)dt

1

0P,
2 2 *
< 5/ (|||Ph - B|ll*+ CZh || )+ ot + div(A VPh) — aOPhHLQ( ))

e / ST AP il + S R AP nlag, )t
eNdN=0 eCON

. 1 T
+ Clly(Un) — Yl 20 1:12(0)) + 5/0 1P — p(Un)||[*dt

4 T
1
<CY 0 +Clly(Un) = YallZaoriz2) + 5 / 1P = p(Un) [t

=2

79

(3.20)
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which implies that

4

1P DO ey <€ T+ ) =l ) (3.21)
Similarly, from (2.17) we have that for any ¢ € H*(Q) and w € V", t € (t;_1,t;]
9 .
(%k,6) +al¥i. 0)
(f - %,Qﬁ w) +a(Yn, ¢ — w) + (BU, + 25, w)u + (f, ). (3.22)
Then from (3.7) and (3.22) we have
O(y(Un) — Yn)
(T,qs) a(y(Un) = Yi,9)

Set ¢ = y(Up) — Yj, and w = #(y(Us) — Y3) in (3.23), where # : H*(2) — V;" is the Clément
type interpolation operator defined in Lemma 3.1. Note that

a(Yh, ¢ —w) :/ AVY, V(¢ — w) + agYi(p — w)

:/Q (aOYhdeV(AVYh)) ¢ —w +Z/ AVYh (d)fw)ds
Z / [AVY}, - n](¢ — w)ds

:/ (aoyhdeV(AVYh
@ eN9Q=0

+Z/AVYhn¢ w)ds

eCoN

and

a(y(Uy) — Ya,y(Uy) — Y3)
1 N 1 1. -
= §H|y(Uh) - Yalll? + §|||Yh —y(Un)l)? - §|||Yh — Y3l

We have that

1d ) 1, , 1 5
Qﬁnh YOy + 115 = @I + 51— y(@)]
= S I% ~ Vil

/Q <f — % —+ le(AVYh) — aoYh) ( (Uh) h — 7T( (Uh) — Yh))

- > /AVYh n](y(Un) — Yi — #(y(Un) — Y3))ds

enoN=0

- /AVYh n— BU, — 2)(y(Un) — Yo — #(y(Un) — Y2))ds

eCoN

+(f = f,y(Un) = Y2). (3.24)
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By integrating (3.24) in time from ¢;_; to ¢; and summing up from 1 to N we have
1 2 Lt 2 2
SNV = y(U))(D)lZ20) + 5 ; UIYn = yUII" + [[1Yn = y(Un)l|")dt
1 2 e 2
< S0 =) +C [ (1% -l
) . .
+y n2f - &5 T div(AVY,) — aoYn|72(r)

+ Y Rel[AVYy ][ Fa + D he||(AVYh-n—BUh—zb)H?y(e))dt

eNdN=0 eCON
e ) r -
+3 ) [V — y(Un)[[7dt + C ; 1f = fllZ2(0dts

9 T
1
<Cyoi+g [ I —uwl P
=5

which implies that

2 ” 2 2
10 0O oy + ¥ 0O ) < O S (329
Note that
1900 = ¥l o 1oy < IR = Vil 1 )
Then (3.17) follows from (3.21) and (3.25). O

Using Lemmas 3.2 and 3.3, we can derive following a posteriori error estimate:

Theorem 3.4. Let (y,p,u) and (Yn, Pn,Up) be the solutions of (2.4)-(2.6) and (2.17)-(2.19),
respectively. Assume that all the conditions in Lemma 3.2 and 3.3 are valid. Then

+llp = Pul?

2
+ly = Yl 2(0,1:H ()

2
lu = Unll £2(0,1:H ()

£2(0,1522(59))
9
<Cy n, (3.26)
1=1

where 11 is defined in Lemma 3.2, n;,2 <1¢ <9, are defined in Lemma 3.3.

Proof. It follows from Lemmas 3.2 and 3.3 that

= UnllZ20.1.02(09))
< Oni + C|| Py = p(Un)|1Z2(0,7;2200)
9
< Cni 4 Cl|Pr = p(Un) 17200711 52y < szg- (3.27)

i=1

Note that

ly — Yall£2(0, 150 ()
<y = y(Un)ll 20,711 (2)) + |¥(Un) = YallL2 0,701 ()
+IYh = Yall 20,7581 () (3.28)
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lp = Prll2co,7: 51 ()
<llp = p(Un)llL2(0,7;m1 () + [IP(Un) = PrllL2 0,101 ()

+|Pr = Pallr20.m:m1 () (3.29)
and
1y = y(Un)llL20.mm1 (@) < Cllu = UnllL20.7:L2(00). (3.30)
lo = p(Un)|lL20,1:m1 ) < Clly — y(Un)ll 20,751 (2))
< Cllu = Unll2(0,1:22(59))- (3.31)

Then, it follows from Lemma 3.3 and (3.27)-(3.31) that

— 2 - 2
||y Yh”LQ(O,T;Hl(Q)) + Hp Ph||L2 (07T;H1(Q))
< Cllu— Un? + Clly(Un) = Vil

2(0.1:L2(09))

D12
+Clp(Un) — Ph”m (0,711 ()

2 (0,111 ()

+ C’n? + C’ni

9
<C> (3.32)
i=1
Therefore, (3.26) follows from (3.27) and (3.32). O

3.2. Boundary control problem with observation of the boundary state

Note that for all v € L2(0,T; H'(Q)),

lvllL20,m:L2(00)) < CllvllLzo,mm1 @)-

Then we can derive a posteriori error estimates for the boundary control problem with observa-
tion of the boundary state similar to the last subsection. Because the proof is similar, we just
state the results in the following, and omit the proof.

Lemma 3.5. Let (y,p,u) and (Yn, Pn,Up) be the solutions of (2.20)-(2.22) and (2.23)-(2.25),
respectively. Assume that j(-), g(-) satisfy the conver assumptions (3.1)-(3.2), and j'(-) and
g'(+) are locally Lipschitz continuous. Then we have that

llu— UhH%?(o,T;L?(aQ)) < Cﬁ% + C”Ph _p(Uh)H%?(O,T;L?(aQ))a (3.33)

where 7 is defined in Lemma 3.2, and p(Uy) is the solution of the following system.:

(24U ) 4 afy(©). w) = () + (BU, + 20, 0)0, V€ V.

y(Un)(x,0) = yo, (3.34)
- (%[tjh),q) +a(q,p(Un)) = (9'(y(Un)).q) > Ya €V,
p(Un)(2,T) = 0. (3.35)
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Lemma 3.6. Let (Y, Py, Up) be the solutions of (2.23)-(2.25) and let (y(Up),p(Uy)) be the
solution of (3.34)-(3.35). If ¢'(-) is locally Lipschitz continuous, then,

|| Py — P(Uh)||2L2(o,T;H1(Q)) + ly(Un) — }A/hHQL?(O,T;Hl(Q))

9
<CYy i, (3.36)
i=2
where 1; = n;, 1; s defined in Lemma 3.3, 4 <1 <9, and
T
N oPy, P -
= [ SR+ AP ~ 0P,

T
3 :/ > hel[AV Py nl72
0 cnon=0

T
n / 3" hel ATV 0 — g Vi)l
0 ccon

where he and [A*Vﬁh -nle are defined in Lemma 3.3.

Theorem 3.7. Let (y,p,u) and (Yy, Py, Uy) be the solutions of (2.20)-(2.22) and (2.23)-(2.25),
respectively. Assume that all the conditions in Lemmas 3.5 and 3.6 are valid. Then

lu = UnllZ2 00200 + 1Y = YallZeo.mm @) + 1P = Pall 220 1.8 )

9
<Cy i, (3.37)
i=1
where 171 is defined in Lemma 3.5, 7;,2 < i < 9, are defined in Lemma 3.6.

3.3. Boundary control problem with observation of final state

Last we will derive a posteriori error estimates for the boundary control problems with
observation of the final state.

Lemma 3.8. Let (y,p,u) and (Yn, Pn,Up) be the solutions of (2.26)-(2.28) and (2.29)-(2.31),
respectively. Assume that j(-), g(-) satisfy the conver assumptions (3.1)-(3.2), and j'(-) and
g'(+) are locally Lipschitz continuous. Then we have that

[l — UhH%?(o,T;L?(aQ)) < Cﬁ% + C”Ph _p(Uh)H%?(O,T;L?(aQ))a (3.38)

where 7y = m s defined in Lemma 3.2 and p(Up,) is the solution of the following system:

(24U ) 4 afy(©). w) = () + (BUL + 20,0}, V€ V.

y(Un)(,0) = yo, (3.39)
77(1) +a(q,p(Un)) =0, Vg eV,
p(Un) (2, T) = g'(y(Un)(,T)). (3.40)
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Proof. Similar to Lemma 3.2, it can be proved that

cflu — Uh||2L2(o,T;L2(aQ))

S/O (7' (w) = §"(Un),u — Up) ,dt
T

T
:/ (j’(u)+B*p,u7Uh)Udt+/ (' (Up) + B* Py, Up, — u)ydt
0 0

+/ (B*(Py = p(Un)),u — Uy) ,dt +/ (B*(p(Un) = p),u—Up) ,dt
0 0
4
=:y I (3.41)

The estimates for Iy, I5, I3 are the same as those in Lemma 3.2. As to I, using (2.26)-(2.27),
(3.39)-(3.40) and setting w = p(Up) — p, ¢ = y — y(Ur), we have
T T
L= [ (B 000 = 9w Uiyt = [ (p(U) = p. Bu = U) i
0 0

_ /T (0(y —y(Un))

ot P(Un) _p) +a(y —y(Un), p(Un) —p))dt

:/O ( - (W,y - y(Uh)) +a(y —y(Un), p(Un) *p))dt
(y —y(Un),p(Un) — p)(T) = (y — y(Un), p(Un) — p)(0)
= (y(T) = y(U(D), g (y(UW)(T) — ¢ W)(T)) < 0. (3.42)

Thus, we obtain from (3.10), (3.14), (3.15), (3.41) and (3.42) that

lu = UnllZ2(0,1:22(00)) < CAt + CllPy = (U720, 12002
This proves (3.38). O
Below we estimate the error || P, — P(Un)|l 20,7;12(09)) -

Lemma 3.9. Let (Yy, Py, Uy) be the solution of (2.29)-(2.31) and let (y(Un),p(Un)) be the
solution of (3.39)-(3.40). Assume that ¢'(-) is locally Lipschitz continuous. Then,

10

th - P(Uh)||2L2(o,T;H1(Q)) + ly(Un) — }A/hHQL?(O,T;Hl(Q)) < chh?, (3.43)
i=2

where o = 12 s defined in Lemma 3.6, 1; = n;, 1 = 3,---,9, are defined in Lemma 3.3, and

o = 1(g'(Y)n — g’ (V))(T)lI72(0-

Proof. From (2.30) we know that, Vo € H*(Q) and q € V', t € (t;-1,t],

7(%"/’) +a(¢,15h):f(%’¢,q) +alp — g, ). (3.44)
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Then it follows from (3.40) and (3.44) that

d(Py — p(Un))
( ot ’

aPh ~
( Bn ,so—q) —a(p —q, Pp). (3.45)

w) +a(e,p(Un) — Pr)

Let o = p(Uy) — P, ¢ = 7(p(Un) — Py) in (3.45), where 7t : H'(2) — V" be the Clément type
interpolation operator defined in Lemma 3.1. Similar to Lemma 3.3, we have that

1d 1= 1
- §E||Ph PU)72(q) + §H|Ph —p(Un)|II” + §|||Ph — p(Un)|II?
= Z||1Py — Pyl

2HI h — Phl|]

+/Q (%erw(A*VPh)faoPh)( (Un) — hiﬂ( (Uh)fph))

+ Z /A*VPh n)(p(Up) — h*ﬂ( (Uh)*Ph))dS

eNoN=0
s /A*VPh 1) (p(Un) — Py — 7 (p(Un) — Pr))ds,
eCoN

and

1 R AR
11 (Pr = p(UR)) (ti-1)lI72 0 + §/t (1P = PO + 1Ph — p(Un)][*) dt

1 1 [t -
<5l (Pn = p(U)) (1)) + 5 / 1P — Pall e

+C <Zh2|

ti—1

i—1

(A*VP;Z) — aoPh||L2

+ Y Re[AVE ]| Ta + D he||A*V]5h~n|%2(e)>dt
eNdN=0 eCoN

1 t;
5 [ e - PP

Summing up from 1 to N, we have that

S1(P =2 Ol + 5 [ (1B = pO)IE + 1Ps = TP}

[\

l\’)lr—t

T
<3P~ s O ey + 5 [ (WP = PR+ @)~ PP

0Py e ~
-+ CZ h?_”w -+ le(A VPh) — aoph”%g(T)

+C Y he|[AVE ][ fa +C heIA*VPn-nI%z<e>>dt
enoN=0 eC o2

1 T
CZ +Cll(g' V)n = ' U)) (D)l 720) + 5 /HIP(Uh — Pl
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Note that
(9" (Yi)n — o' @(U)) (D)7 20)
<CI(g' Yn)n — ' (Yn)) (D)7 20
+Cll(g' (Ya) — ¢'w(U)) (D)7 20
<Chty + Cll(Ya — y(Un))(T)1720)-
Then we have

||13h - p(Uh)H%Q(O,T:Hl(Q))
4
<O 0F + Cify + Cll (Ya — y(Un) (D)7 20 - (3.46)
i=2

Again similar to Lemma 3.3, it can be proved that (see (3.25))
9

(Y = y(U) (D)1 200y + IVn = (U720, 1001 ) < C D7 (3.47)
i=5

Then (3.43) follows from (3.46) and (3.47). O

Theorem 3.10. Let (y,p,u) and (Y, Py, Up) be the solutions of (2.26)-(2.28) and (2.29)-(2.31),
respectively. Assume that all the conditions in Lemmas 3.8 and 3.9 are valid. Then

flu— Uh||%2(O,T;L2(BQ)) +[ly — Yh||2L2(o,T;H1(Q)) +lp — Ph”%z(O,T;Hl(Q))
10
<y i, (3.48)
=1

where 71 is defined in Lemma 3.8, 7;, 2 < i < 10, are defined in Lemma 3.9.

Proof. Similar to the proof of Theorem 3.4, it follows from Lemmas 3.8 and 3.9 that

lu — UnllZz(0.7.02(00))
< CA + C|| P = p(Un)I72(0.7:12 (00
10
< O} + Cl| By — p(Un)l 320 711 (7)) < szﬁ (3.49)

i=1
Note that

I (y = y(Un) (M)l 20y + 1y — y(Un)l 20, 7:51 (2

< Cllu— Unllz2(0,7:22(09)) 5 (3.50)
lp = p(Un) 20,1501 ) < Cll(y — y(Un)) (1)l 2()
< Cllu = Unllz2(0,1:L2(59)- (3.51)

Then, it follows from (3.28)-(3.29), (3.49)-(3.51) and Lemma 3.9 that

ly — YhH%Q(O,T;Hl(Q)) +lp— Ph||2L2(O,T;H1(Q))
< Cllu = Unlliz01:22(00)) + Cly(Un) = Yall72(0 01 )
10
+ClIp(Un) = Pull (o, rim ) + CiE + Cii < C Y. (3.52)

i=1
Therefore, (3.48) follows from (3.49) and (3.52). O
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4. Discussions

In this paper, we investigate the a posteriori error estimate of the finite element approxima-
tion for the boundary control problems governed by the parabolic partial differential equations.
We provide three different a posteriori error estimators for the parabolic boundary control
problems with the observation of the distributed state, the boundary state and the final state.

There are many important issues still to be addressed in this area. For example, the discon-
tinuous Galerkin method and the high order approximation scheme in time variable should be
investigated. The optimal control problems governed by evolutionary advection-diffusion equa-
tions are also very important. Especially, many computational issues have to be addressed, e.g.,
adaptive refinement strategy should be investigated the optimal control problems governed by
evolution equations.
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