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Abstract

In this paper, we study numerical methods for an optimal control problem with point-
wise state constraints. The traditional approaches often need to deal with the delta-
singularity in the dual equation, which causes many difficulties in its theoretical analysis
and numerical approximation. In our new approach we reformulate the state-constrained
optimal control as a constrained minimization problems only involving the state, whose
optimality condition is characterized by a fourth order elliptic variational inequality. Then
direct numerical algorithms (nonconforming finite element approximation) are proposed
for the inequality, and error estimates of the finite element approximation are derived.
Numerical experiments illustrate the effectiveness of the new approach.
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1. Introduction

In this paper, we consider the following state-constrained optimal control problem:

{3 [ a5 [ e
min { — — dr + — u“dx 1.1
yg(p{Q/Q(y Yo) > ), (1.1)

—Ay=u in €
y=0 on 09Q.

subject to

where @ > 0 is a parameter, Q is a bounded domain in R? with the Lipschitz continuous
boundary 99, yo € L?(Q) is the desired state, and ¢ is a given function. We further assume
that p|aq > 0, and more details will be specified later.

Such a state-constrained optimal control is a very important model in many applications
and there has already existed much research on the numerical approximation of the above state
constrained optimal control problem in the literature. Many numerical strategies were proposed
and both a priori and a posteriori error analysis were investigated. At first, we should mention
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the work of Casas in [7], where the optimality conditions and important theoretical analysis
of the problem were provided. For the standard finite element approximation of the control
problem, a priori error estimates were derived by Deckelnick and Hinze in [11], where non-
classic techniques were developed to handle the delta-singularity of the co-stated equation, see
below. An augmented Lagrangian method was proposed to solve state and control constrained
optimal control problems by Bergounioux and Kunisch in [3]. They also proposed another
method: a primal-dual strategy to solve problem (1.1) in [4]. Casas proved convergence of
finite element approximations to optimal control problems for semi-linear elliptic equations
with finitely many state constraints in [8]. Casas and Mateos extended these results in [9] to a
less regular setting for the states, and proved convergence of finite element approximations to
semi-linear distributed and boundary control problems. In [25], the state-constrained control
problem was approximated by a sequence of control-constrained control problems, and then the
interior point method was applied to approximating the solutions. In recent years, a level set
approach was applied to state-constrained problems in [16].

Furthermore all the research mentioned above was based on the first order optimality condi-
tions of the control problem, in which an adjoint state p and a Lagrange multiplier A\ are intro-
duced. The first order optimality conditions can be stated as: The pari (y,u) € HE(Q) x L?(Q)
is the unique solution of (1.1) if and only if there exist an adjoint state p € L?*(Q) and a
Lagrange multiplier A € M() such that

—Ay=u inQ, y=0 on 9N
- (pa AU})Q+ < )\,U} >M,C: (?JO - yaw)ﬂa Yw € HOI(Q) N H2(Q)7

<ANz—y>mc <0, Vz e C(R), z <, (1.2)
p = au,
y<¢ in{,

where (-, -)q denotes the L? inner product in Q, < -, > ¢ denotes the duality pairing between
C(Q) and M(©2). We denote by M () the space of real regular Borel measures on 2 and recall
that it can be identified with the dual C*(£2) of C(Q2). In particular, every element A € C*(Q2)
generates an element [A\] € M(Q) such that < X,y >c-c= [,u d[)] for all y € C(Q). The
details can be found in [4,5,16], for example.

One of the main computational difficulties in solving the above system is that the multiplier A
is often a delta measure, which has infinite values at some unknown points on the free boundary
of the coincidence set {z : y = p}. Whatever discretization methods are used, special care needs
to be taken for these (unknown) areas in order to obtain reasonable computational efficiency.
In finite element method, normally adaptive meshes are needed so that they are refined around
these points guided by some error estimators. This is the main motivation of a posteriori error
analysis of the finite element method. In this regard, a goal-oriented adaptive finite element
concept was developed in [14], while Hoppe and Kieweg provided a posteriori error estimators of
residual-type for the state constrained optimal control problem in [17]. However there seemed
to still exist many issues in the formulation and analysis of these a posteriori error estimators
due to the presence of the delta measure.

In this paper, we adopt a different approach for approximating this state-constrained optimal
control problem, which avoids using the first order optimality conditions. The main idea is:
substitute the control v in the minimizing functional (1.1) by u = —Ay, which is based on the
state equation, and reformulate it as a constrained minimization problem involving only state
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y. So the original problem (1.1) can be restated as follows

1
min{—/(yyo)2d:c+g/ |Ay|2d:c}. (1.3)
v<¢ (2 /g 2 Ja

It will be shown in the next sections that the minimizing problem (1.3) is equivalent to a fourth
order variational inequality. Thus we convert the state-constrained optimal control problem to
a variational inequality problem. Consequently our approach only needs to solve a variational
inequality of fourth order to obtain the state y, which is in fact quite smooth. Then the
numerical procedures and the theoretical analysis seem to become simpler, and in fact often
were well-studied already in the literature. Furthermore this idea seems to be applicable for
wider range of state-constrained control problems.

The paper is organized as follows: In Section 2, we introduce a new weak formulation for the
state constrained optimal control problem. Then its finite element approximation is proposed
in Section 3. In Section 4 we discuss regularity of the the solution for the state-constrained
optimal control problem and then derive a priori error estimates. In Section 5, we discuss
the numerical methods for solving the fourth order variational inequality, and present some
numerical examples to illustrate effectiveness of our new approach.

2. The New Formulation

Let © be a bounded domain in R? with the Lipschitz boundary 9. In this paper we adopt
the standard notation W"™4(Q) for Sobolev spaces on © with norm || - ||m,q.0 and seminorm
| |m.q.0. We set Wy %(Q) = {w e WH(Q) : w|pq = 0}. We denote W™2(Q) (W0m2(Q)) by
H™(Q)(H (). In addition, ¢ or C' denotes a general positive constant independent of .

Let

a(u,v) = /Q(ozAu “Av+u-v)de Yu,v € HY(Q) N H?(Q),
(f,v) = /Qf-vdx Vf,v € L*(Q).
Let K be a close convex set defined by
K={v: ve HH(Q) NH*Q), v<¢ ae. inQ}, (2.1)

where ¢ is a given function. Then it is easy to prove that the minimizing problem (1.3) is
equivalent to the following variational inequality

Find y € K, such that
(2.2)

aly,w—y) > (yo,w—y), Ywe K.

Let V = H}(Q)N H?(Q). It is clear that the bilinear form a(y, w) is continuous over V x V and
V —elliptic. Since K is a closed, convex and non-empty subset of V', problem (2.2) has a unique
solution by the standard argument. Moreover, with the assumption ¢|sq > 0, it can be proven
that for the problem (1.1), the optimal control u|sn = 0, which means Ay|sq = 0 (see [16] for
more details). We further assume that ¢ € H2(f2) in our theoretical analysis (see Theorem 4.3
and Remark 4.5).
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We define the non-coincidence set and coincidence set with respect to the state y by

Ot ={rcQ: yx) <o)},
Q0 ={reQ: y@) = @)}

Then we can derive a boundary value problem satisfied by (2.2).

Lemma 2.1. The fourth order variational inequality (2.2) is equivalent to the following bound-
ary value problems:
alA?y+y=1yo in QF,
alA?y +y <yo in Q°

2.
y<o n Q, (25)
y=Ay=20 on Of.
Proof. Using the Green’s formula in (2.2), we have that for all w € K,
w —
/ (aA%y +y —yo) - (w — y)dx + / aAdes
Q o0 on
0(Ay)
— o w—y)ds > 0. 2.6)
| T (
Since y,w € K, we have
wlog =ylon =0, and y<¢ in Q. (2.7)
Thus (2.6) reduces to
O(w —
/(aAQy +y—yo) (w—y)dx +/ aAdes >0, Ywe K. (2.8)
Q o0 on
Let w=y+¢v e K,V € D(Q): ¢ <0. We have
/(ozAQy—l—y—yo)-wdsz, Vi € D) : ¢ <0,
Q
which implies that
aA?y+y<yy in Q. (2.9)

Note that V6(z) € D(R2), 0 < 6(z) < 1, we have w = 0(z) - o+ (1 — 6(z)) -y € K. Considering
(2.8), we have

/Q(aAQery —y0) 0(x) - (p—y)dz >0, VOeD(Q): 0<0(x) <1
that is
| @ty =) ) (o~ o 2 0, ¥ D) 02 6(2) < L (2.10)
Q+

which implies

al®y 4y —yo >0 in QF. (2.11)
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Therefore, it follows from (2.9) and (2.11) that
al®y4+y—yo=0 in Q. (2.12)

Moreover, note that ylaon = 0 < ¢|aq. Then Vz € 99, there exists a subdomain w, of z with
dist(z, 0w, \ 9Q) = r, > 0 and y|,, < ¢. Therefore for all § € Hj (w.) N H?(w,) there exists a
positive number € such that y + e < ¢, and hence w = y +€f € K. Then it follows from (2.8)
and (2.12) that

+ea /89 Ay%ds >0, V0c Hi(w,)N H*(w.), (2.13)

which implies
Aylog = 0. (2.14)
Then (2.5) follows from (2.7), (2.9), (2.12) and (2.14). O

It should be pointed that the method proposed in this paper can be extended to more
general cases. Consider the problem:

1
min {— / (y — yo)*dx + a / (u— uo)de} (2.15)
2 Ja 2 Jo
subject to
—Ay=u in
y=0 on Of.

y € K1 and u € Ko,

where K, K, are closed convex subsets of H}(Q) and L?(Q2), respectively.

As in the beginning of Section 2, we can reformulate the problem (2.15) as the following
minimization problem:

. 1 2 « 2
;g;pgb/ﬁ(y—yo) dw+§/Q|Ay+uo| dfc}, (2.16)
where

Ky={yc H*(Q)NH}N): ye K1, —Ayc Ks}.
Then the equivalent variational form reads

Find y € K3, such that
{ yEas (2.17)

a(y,w—1y) > (Yo, w — y) + b(ug,v), Yw € Ks,

where

b(w,v)z—/w-Av, Yw € L*(Q), v e H*(Q).
Q
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3. Nonconforming Finite Element Approximation

In order to introduce the nonconforming finite element approximation of problem (2.2), we

rewrite the bilinear form a(y,w) as
a(y, w) = / (@dijy - Bijw +y - w)dz, Vy,w € Hy(Q) N H?(Q),
Q

where 0;;y, 0;;w denotes

0%y 0w
axiaxj ’ 8Iian ’

respectively, the summation convention of repeated indices is used. It is clear that
a(y, w) = a(y, w) when y,w € Hi(Q) N H(Q).
The problem (2.2) is then restated as

Find y € K, such that
a’(yawfy)Z(yOawfy)a Vw € K.

(3.1)

Let Q" be a polygonal approximation to € with boundary 9Q". Let 7" be a partitioning of

Q" into disjoint regular triangle 7, such that Q" = |

-ern T- For simplicity, we assume that

is a polygon or polyhedron such that Q" = Q. We denote N'(2) and £(£2) the unions of all the
interior vertices and internal edges of the triangulation 7", A(99) and £(92) the unions of all
the vertices and edges on the boundary 95, respectively. We approximate V = H}(Q) N H?(Q)
by using the nonconforming Morley’s triangular finite element. The finite dimensional space

V3, is defined by

Vi z{vh € L2(Q) : wp|r € Py(7), vy, is continuous at each vertex a € N (),

5]
/ [%} ds =0, Vee&(Q),vp(a)=0, Vaec N(@Q)},
e
where [22:]|, denotes the jump of 22 across the edge e.

We construct an interpolation operator 1T, : Hg () N H2(2) — V}, as follows

v € Vp, Yo eV,
Iyv(a) = v(a), Yae N(2)UN(OQ),

0 ov
/S%H;lvds —/%ds, Ve € £(2) UE(09N).

€

Then it is natural to approximate the convex set K and the bilinear form a(y,w) by
Ky = {vn| vh € Vi, wn(a) < p(a), YaeN(Q)UN(ON)},

an(yn,wn) = Z (a0ijyn - Osjwn + yn - wp)dx,  Yyp,wp € V.
TeTh T

(3.2)
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N|=

Under the above definitions, it is obvious that |lvp|n = (dh(vh,vh))
Morley nonconforming finite element approximation of problem (3.1) reads

is a norm on V. The

(3.5)

Find yn € K, such that
an(Yn, wn —yn) = (Yo, wn — yn), Ywp € Kp,.

Since K}, is clearly a closed convex set of Vj,, ap(-, ) is continuous over Vj, x V3, and Vj, —elliptic,
problem (3.5) admits a unique solution.

It is well known that g, is a piecewise quadratic polynomial over triangulation 7". Recall
(1.1), which presents the relation between the state y and the control u, and we can set that
up|r = —Aynlr, V7 € T". Then the state-constrained optimal control problem can be solved by
approximating the variational inequality using the nonconforming finite element scheme (3.5).

4. Error Analysis

In order to analyze the error of the finite element approximation, we first presented known
regularities of the solution of the problem (1.1) under some conditions. The regularities of the
optimal state y and control u have been discussed by Bergounioux and Kunisch in [5] under
the following assumptions:

Assumption (A):

l
QOZ UA“ AZ:A“ QoﬁaQ:@,
i=1
A;, i=1,--- 1 are pairwise disjoint,

A; is connected with €' boundary for each 4,
Assumption (B):

Q c R2, and Q° is a Lipschitzian, strongly

non-self-intersecting curve in Q with Q° N 9Q = 0,

where the coincidence set Q0 is defined in (2.4).

Let the first order optimality system of state-constrained optimal control problem (1.1) be
defined by (1.3), then we have (see [5]) the following lemmas:

Lemma 4.1. Assume that (A) holds. Then p € HE(Q), plgo € H?(Q0), plo+ € H2(QF).
Lemma 4.2. Assume that (B) holds. Then p € Wy*(Q) for every s € (1,2).

From the above lemmas we can conclude that: when Assumption (A) holds, we have that
we H(Q) and y € HE(Q) N H3(Q); while when Assumption (B) holds, we have u € W, *(Q)
and y € H}(Q) N W35(Q) for all s € (1,2). Using these conclusions on the regularity of the
solution, we can derive the following a priori error estimate.

Theorem 4.3. Let y and yy, be the solutions of problems (2.2) and (3.5), respectively. Assume
that yo € L?(Q), ¢ € HX(), and Assumption (A) holds. Then we have

ly = ynllh + allu — unllg o < C(h* +a™"hY), (4.1)

where u = —Ay is the solution of (1.1), and up, = —Ayy, on all the element 7 € T".
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Proof. Recalling the definition of IT;, defined in Section 3, we have that IIpy € Kj. Then it
follows from the definition of || - ||, and the inequality (3.5) that

Ty — yall7
= an(Ilhy — yn, Uny — yn)
= an(Ilpy — y, Iy — yn) + an(y — yn, Hny — yn)
< My = ylln 1ny = yalln + an(y, Doy — yn) — (yo, ny — yn),

which implies that

MIhy — yulln
an(, IIhy — yn) — (Yo, Hpy — yn
<My — gl + (¥, Tny —yn) — (o, Thy —yn)
MIhy — yulln
Using the triangle inequality we can derive that
1y — ynlln
an(y, ny — yn) — (Yo, 1ny — yn
<Clly -~ Wyl + 02 - ! (4.2
ITIhy — yulln

By the standard interpolation error estimate [10,23] we have
ly — Hnylln < Chlyls. (4.3)

In the following, we will analyze the term a (y, ny—yn)— (Yo, Lpy—yn). Letting wp = Hpy—yn,

we have
an(y; Uny = yn) = (Yo, lny — yn)
= Z /T(aaijy - Oijwp, +y - wp)dx — /Qyo ~wpdx
= Z /T alAy - Awpdx + /Q(y — o) - wpdzx
+ Z /(% aOpsy - Oswpds — Z /(% a0ssy - Onwpds
=: L+ 1+ I3+ Iy (4.4)
where

Ony = Zaiy'm', asyzzaiy'sia

Onsy = Z aijy * NSy, Ossy = Z aijy ©5iSj,
j

ij

and n = (n1,n2), s = (s1, s2) are the unit vectors of the outward normal and the anticlockwise
tangential directions, respectively.
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By the standard nonconforming finite element error analysis techniques [10,23] we have

I3 = Z/ aOnsy - Oswpds
or
Z /a@néy [Oswp]ds + Z /a@néy Oswpds

INON=0 INONAD

~a Y [Ouy =) (2] - B

1N9N=0

+ « Z / nsY — ansy) (a wp — a wh)

INONAD

<CaY " > h2|Onsyllrh? |0swn - < Chlyls|lwsn, (4.5)
I lcoT

where [v]; is the jump of v on the edge I, while © denotes the integral average of v on the edge
I. In (4.5), we have used the fact that [,[@sws] = 0 for all the edges because that wy, € Vj, and
hence [wp] = 0 on all the nodes. Similarly, it can be deduced that

— Z/ a0OssY - Opwy, ds
or
Z /aaasy nwh d5 - Z /aawy Onpwy, ds,

INON=0 INON#D

and

Z /aassy a wh

INoN=0

=« Z / 5ay awy ([6 wh] [anwh]) ds
1NON=0
<Chlyls||wn]ln-
Note that 9ssy|oa = 0 because y € H}(Q). Therefore we have that

[Ls| < Chlyls|lwnl|n- (4.6)

As to I, we have
11:Z/aAy-Awh dx
:—Z/aVAy thJrZ/ aly - —d. (4.7

Note that Ay|aq = 0. Then similar to Iy, it can be derived that

wh

ds\ < Chlylallwnln. (4.8)
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Let w! be the conventional piecewise linear Lagrange interpolation of w, then we have
— Z / aV(Ay) - Vwpdx + I
== 3" [av(a)- Yl —uf)+ [ @) (wn - wf)ds
T T Q

- / aV(Ay) - Vwldr + / (y — yo) - widz. (4.9)
Q Q
By the standard interpolation error estimates we have

> [ av(ay) - Vwn - wf)ds| < Chiglsfun]n (4.10)

and

\ o= w)- wn — uhas
v lwns)’

o) llwn 1. (4.11)

Note that w! € H}(Q) N C(Q) and denote R(y) := aA%y + y — yo. We have

< Ch?ly = yol

<Ca~2h*(|lyl

0.2+ (%ol

- / aV(Ay) - Vwide + / (y — yo) - widx
Q Q
= /Q R(y) - widx = /QR(y) (Opy — yn) da

:/R(y)~(thfy)1dx+/R(y)~(yfyh)ld:v
Q Q

~ [ R -
:/ R(y) - (y —o)dz + / R(y) - (¢ — yn)'dz, (4.12)
Q

Q

where we have used the fact that (IT,y—y)! = 0in (4.12). Since y;, € K}, we have (¢—yp)! > 0.
Moreover note that R(y) = aA%y +y — yo < 0. Therefore,

/ R(y) - (¢ —yn)"dz < 0. (4.13)
Q
It follows from Lemma 2.1 that
alA®y+y—yo=0in QF, aA’y+y=alA®p+pin Q°.
Using the fact (aA2y +y —yo) - (y — ¢) = 0 we have that
/QR(y) (y—¢)da

= R(y)-(y—¢) dc= / R@y) - ((y—o) = (y—¢))ds
QU QO

< R (ol

00+ 18%ll0.0 + Ielos) (Il + ela). (4.14)
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Combining (4.7)-(4.14) we have

1
I + Iy < Chlylsllwnlla + Ca™ 312 (Jlyllo.e + lyolo. ) lwnln

+ 012 (lolloe + 18%ell0.0 + ¢lon ) (Ibl20 + [ole)-

Then (4.4)-(4.6) and (4.15) imply that

an(y, 1y = yn) — (yo, Hny — yn)
< Chlylsllwnlln + Ca™ 2 (Jlyllo.c + lyollo) lwnln
+Ch2(llyollog + 18%¢ll0.0 + I¢llos) (Iyla + el ).
It h(ylz + Ipl20) < lwnla, then
an(y, 1ny = yn) — (o, Uny — yn)
< ch(llylls.a + 18% 0.0 + Ielo + lollo.c ) lwnla

+ Ca™ 02 (|lyllo.a + lvollo ) lwnli.

Then it follows from (4.2), (4.3) and (4.16) that

_1
ly = nlln < Ch(lylls.c + lellie + lwollog) + a1 (Il + luollos)-

Otherwise we have

ly = yulln <lly —pylln + |lwnlln
< Chlyls + Ch(lylz.o + l¢l2.0)
< Ch(llylls.e + lel2,)-

Summing up, we conclude from (4.17) and (4.18) that

ly — ynlln < Ch+ Ca~2h2.
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(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

From the definition of || - ||;, and the fact that u = —Ay and up = —Ayy, on all the elements,

we have
allu —unllf o < lly — ynlli < Ch* + Ca™'h*.

Thus (4.1) follows from (4.19) and (4.20).

Remark 4.4. It follows from Theorem 4.3 that
ly = ynll7 + cllu— Uh||c2>,9 < Ch?,
if a > Ch%. Moreover, if & > Ch?, 0 < v < 2, we have

||u — ’U/h||07Q < Chl~ 2.

(4.20)

|
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Remark 4.5. In Theorem 4.3 and Remark 4.4, we provided the error estimate of the finite
element approximation under the assumption of the regularity of the solution, i.e., y € H3().
Similar to [13], we can prove the convergence result under weaker regularity conditions. Let y
and y;, be the solutions of problems (2.2) and (3.5), respectively. Assume that yo € L?(2), the
state y € V, the control u € L*(Q), ¢ € H?(2), and ¢ > 0 on JQ. It can be proven that

lim [ly = ynlln =0, lim [lu—wunfo,0 = 0.

Furthermore, when y has further regularity, i.e., y € W3?(Q), 1 < p < 2, as Lemma 4.2, it can
be proven that
1
ly — yullf + afju— uhH(QLQ < Oop*i=%) 4 Ca~'h4,

where we used the results of the embedding theorem: W3P(Q) — H"(2), r = 2(1 — 1/p), and
H*(Q) = Whi(Q), g =p/(p—1), s =2—2/¢=2/p.

5. Numerical Examples

In this section, we will present some numerical examples to illustrate our new approach.

5.1. Numerical algorithms

At first, we will give two numerical algorithms for the fourth order variational inequality.
The first one is the projected SOR algorithm proposed in [1] (the similar over-relaxation method
can be founded in [12]), which can be stated as:

Algorithm 5.1. Let K denote the unions of internal nodes, 0 < w < 2, § be a given
tolerance, and initial value y§) € Vj,.
(a) Set y) := min{y}, ¢}, and k = 1.
(b) Set K := K and yf =y~ ".
(i) Choose z € K.
(i)) Compute the minimize t* for Ju(yF +t.) among allt € R such that yk +ty, € Kp,
where 1, is the basis function at nodal z.
(i) Set yi“ = Py, (y¥ + wt*1,), where Pk, (y) denotes the projection of y on Kj,.
(i) Set K =: K\{z} and go to (i) if K #0.
(¢) Set yn = yi™ and stop if |lyy ™ — yFllo2.0 < 6.
(d) Set k =:k+1 and go to (b).

Next, we will introduce another widely used algorithm known as the dual iterative method
for solving fourth order variational inequalities (2.2), which has been discussed in [12] in details.
We first consider the dual iterative method for continuous problem (1.3). When y € H?(£2) N
H} (), ¢ € L?(Q2), it is reasonable to define

A= {plpeL*(Q),(1,v)r2) >0 Vo€ L*(), v>0 ae. in Q}. (5.1)

Following Glowinski ( [12]), we introduce the Lagrangian functional .¥ : V x L*(Q) — R
associated with problem (1.3) defined by

Ly, p) = J(y) + /Q w- (y — p)dz, (5.2)
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where J(y) is the minimization functional

1 «
3 [ o—wiaas G [ |y (5.3)

Now the duality algorithm can be described as follows.

Algorithm 5.2’: Given a tolerance TOL and a parameter p € (0,1)
(i) A% € A is chosen arbitrarily;
(ii) For \™ € A, calculate y™ and A" "1 by means of

y" €V =H*(Q)N H(Q); (5.4)
a(y™,v) = (yo,v) — (\*,v), YveV,
A= P (A" 4+ p(y" — ¢)), p>0, (5.6)

where a(-,+) is defined in Section 2 and Py is a projection operator on A;

(i) Calculate Error(y) = |ly™ —y" |12 and Error(A) = [[A" = A"||2(q), output
y =y" and stop if Error(y) + Error(\) < TOI;

(i) Set n =: n+1 and go to (i).

In the next step we consider the discrete variants of Algorithm 5.2, which takes the noncon-
forming finite element approximation into account.
Analogous to (5.1)-(5.2), we define the Lagrangian functional %, : Vj, x A, — R by

Zn(Vn; pn) = Jn(vn) + Z pn(vn — @)d, (5.7)
reTh”T
where J}, is defined as follows:
1 9 o
Jn(yn) = 3 (yn — yo)“dx + 5 Z |05 yn0sjyn|de,
Q reTh’T

and

Ap = {pn lpn € L2(Q), pnlr € P, VT € T", pp(a) >0, VYa e N(Q)UN(0Q)}.  (5.8)

Then the discrete variant of Algorithm 5.2’ reads:

Algorithm 5.2. Given a tolerance TOL and a parameter p € (0,1)
(i) A) € Ay, is chosen arbitrarily;
(%) For A} € Ap, calculate yi and )\ZH by means of

Yn € Vi, an(yp,vn) = (Yo, vn) — (A, vn), ¥V up € Vi, (5.9)
At = Py, (AR + p(yr — 9)), p >0, (5.10)

where ap(-,-) is defined in (3.4) and Py, is a projection operator on Ap;

(iti) Calculate Error(yn) = |lyi — i 'lz2() and Error(Ay) = |Ap+ = Xl p2(), output
yn = yp and stop if Error(yy) + Error(Ay,) <TOl;

(i) Set n =: n+1 and go to ().
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Remark 5.1. We have stated two algorithms in this section. Algorithm 5.1 (SOR algorithm)
is simpler and easier to implement. Algorithm 5.2 (the dual iterative method) is a standard
method for solving fourth order variational inequalities. For example, when the constrained set
K is complicated, e.g., it involves the gradient of state y, the projection operator Pk, (y) in
Algorithm 5.1 will be difficult to construct, while Algorithm 5.2 is more flexible to deal with
various constrained sets.

5.2. Numerical examples

In this section, we will illustrate some computational results solved by using Algorithm 5.1
provided in the last subsection. Numerical results obtained using Algorithm 5.2 were found to
be similar, and so have been omitted here.

Firstly, we consider the following three examples that come from Examples 5.1-5.3 in [4]
and [15]. Let us consider the following state-constrained optimal control problem:

.1 9 o 9
£%1£{§/Q(yyo) d:c+§/9u d:c} (5.11)

—Ay=u in 2, y=0 on 99,

subject to

with
K={veHj(Q): v<yae inQ=][0,1] x [0,1]}.

Then the three numerical examples are:

Example 5.1. The optimal control problem (5.11) with the data « = 0.1, ¢ = 0.01 and
yo(z,y) = 10(sin(22) +y).

Example 5.2. The optimal control problem (5.11) with the data o = 1073, ¢ = 0.1 and
Yo(z,y) = sin(2mzy).

Example 5.3. The optimal control problem (5.11) with the data a = 107%, ¢ = 1 and
yo(x,y) = sin(4dmzy) + 1.5.

In computing Examples 5.1-5.3, we adopt the relaxation parameter w = 1.5 and the tolerance
§ = 1073. The number of the elements is 4096. Note that there are no known exact solutions
for the three examples, so it is impossible for us to show the computational error. We thus just
present the figures of the numerical solutions for Examples 5.1-5.3 in Figures 5.1-5.3. Because we
use the Morley nonconforming finite element to approximation the state y, the approximation
state yy, is a discontinuous piecewise quadratic polynomial. We show y;, in the figures using the
piecewise linear interpolation of y; just for simplicity. The discrete control u;, was computed
by the relation up|, = —Aypl|,, V7 € Th. Tt is clear that wy, is piecewise constant.

By comparing the figures of y, and w, above with those shown in [15], it can be con-
cluded that the numerical results using our new approach are similar to those obtained by their
methods, and that our numerical results seem to be reasonable.

Example 5.4. In this example we consider the following example with the objective functional:

.1 «
;1&1}(1{5/0(34yO)Qd:chE/Q(uuo)Qd:c}.
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Fig. 5.3. The numerical state y(left) and control uy(right) of Example 5.3.

This example is a slight modification of an example in [17] so that we know the exact solution.
The data of the problem are as follows and Q =: [-2,2] x [—2,2],

yo = y(r) + Ap(r) + A(r), uo = u(r) +a 'p(r), v =0, a =0.1,
where r = /2% + 23, V(z1,22) € Q, and y(r), u(r), p(r) are chosen according to
y(r) = =r*n(r), ulr) = —Ay(r),

3 16
p(r) =y (r)( - 57’3 + 57”2 )
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Fig. 5.4. Example 5.4: the exact state y (top left) and numerical state y, (top right); the exact control
u (bottom left) and numerical control uy (bottom right).

2 5

Fig. 5.5. The numerical state y, (left) and control u; of Example 5.4 on local refined meshes.

where
1, r < 0.25,
yi(r) =< —192(r — 0.25)% + 240(r — 0.25)* — 80(r — 0.25)3 + 1, 0.25 < r < 0.75,
0, otherwise,

(r) = 1, r<0.75, ) = 0, r<0.75,
T2 = 0, otherwise, ~ ] 0.1, otherwise.

The figures of the exact solutions and the numerical solutions for the state y and the control
u are shown in Figures 5.4, respectively. In Table 5.1, we list the errors of the state y and the
control u, where the norm || - || is defined in Section 3, and N denotes the number of nodes

of the triangulation. Noting that in this example, y€H?3(Q) (We only have y € HQ(Q)), the
requirements of Theorem 4.3 are not satisfied. But it can be seen from Table 5.1 that when the
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Table 5.1: Error of the state y and control v on uniform meshes.

N 113 | 417 | 945 | 1601 | 3681 | 6273
v —wnlln | 1.5380 | 1.1449 | 0.9637 | 0.7208 | 0.5928 | 0.4248
o —unllo | 1.5362 | 1.1447 | 0.9634 | 0.7205 | 0.5924 | 0.4235

Table 5.2: Error of the state y and control uw on local refined meshes.

N 225 | 305 | 553 | 957 | 1837 | 3245
ly — ynlln | 1.1446 | 0.9631 | 0.7204 | 0.5931 | 0.4490 | 0.3655
w—unllo | 1.1444 | 0.9628 | 0.7201 | 0.5927 | 0.4468 | 0.3640

meshes are fine enough, convergence rate is roughly O(N 7%) = O(h), which coincides with our
theoretical analysis.

Since the solution of Example 5.4 has singularities near the free boundary z? + 22 = 0.75,
we should make local refinements near the singularities to obtain the better approximations. In
the following we show the numerical results both for the state and control on the local refined
meshes. It is clear that the computing efficiency can be improved by using the local refinement
strategy.

6. Discussion

In this paper, we study new numerical methods for an optimal control problem with point-
wise state constraints. We reformulate the state-constrained optimal control into a constrained
minimization problems only involving the state, whose optimality condition is characterized by
a fourth order elliptic variational inequality. Then direct numerical algorithms are proposed for
the inequality, and error estimates of the finite element approximation are derived. Numerical
experiments illustrate effectiveness of the new approach. There are many important issues
that remain to be studied. For example a posteriori error estimate and adaptive finite element
method can be studied by using this approach. They should be able to improve the computing
efficiency as shown in our last numerical example.
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