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Abstract

We consider an adaptive finite element method (AFEM) for obstacle problems asso-

ciated with linear second order elliptic boundary value problems and prove a reduction

in the energy norm of the discretization error which leads to R-linear convergence. This

result is shown to hold up to a consistency error due to the extension of the discrete

multipliers (point functionals) to H−1 and a possible mismatch between the continuous

and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type

error estimator consisting of element and edge residuals. The a posteriori error analysis

reveals that the significant difference to the unconstrained case lies in the fact that these

residuals only have to be taken into account within the discrete noncoincidence set. The

proof of the error reduction property uses the reliability and the discrete local efficiency of

the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given

illustrating the performance of the AFEM.

Mathematics subject classification: 65N30, 65N50.
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1. Introduction

Adaptive finite element methods (AFEMs) for partial differential equations based on residual-

or hierarchical-type estimators, local averaging techniques, the goal-oriented dual weighted ap-

proach, or the theory of functional-type error majorants have been intensively studied during

the past decades (see, e.g., the monographs [1,3,4,16,25,33] and the references therein). As far

as elliptic obstacle problems are concerned, we refer to [2, 5, 7, 8, 14, 19, 23, 26, 27,31].

More recently, substantial efforts have been devoted to a rigorous convergence analysis of

AFEMs, initiated in [15] for standard conforming finite element approximations of linear elliptic

boundary value problems and further investigated in [24]. Using techniques from approximation

theory, under mild regularity assumptions optimal order of convergence has been established

in [6,29]. Nonstandard finite element methods such as mixed methods, nonconforming elements

and edge elements have been addressed in [11–13]. A nonlinear elliptic boundary value problem,

namely for the p-Laplacian, has been treated in [32]. The basic ingredients of the convergence
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proofs are the reliability of the estimator, its discrete local efficiency, and a bulk criterion

realizing an appropriate selection of edges and elements for refinement.

For elliptic obstacle problems, the issue of error reduction in the energy functional associated

with the formulation of the obstacle problem as a constrained convex minimization problem

has been studied in [9] and [28]. The approach in [28] relies on techniques from nonlinear

optimization, whereas the convergence analysis in [9] is restricted to the case of affine obstacles.

In this paper, we focus on the error reduction property with respect to the energy norm

for general obstacles. The error estimator is of residual type and consists of element and edge

residuals. The a posteriori error analysis reveals that in contrast to the unconstrained case the

local residuals only have to be taken into account for elements and edges within the discrete

noncoincidence set.

The paper is organized as follows: In Section 2, we introduce the elliptic obstacle problem

as a variational inequality involving a closed, convex subset K ⊂ H1
0 (Ω) and address its uncon-

strained formulation in terms of a Lagrange multiplier in H−1(Ω). We further consider a finite

element approximation by means of P1 conforming finite elements with respect to a simpli-

cial triangulation of the computational domain. The unconstrained formulation of the discrete

approximation gives rise to discrete multipliers which are Radon measures, namely a linear

combination of point functionals associated with nodal points within the discrete coincidence

set. The evaluation of the discrete multipliers for the nodal basis functions of the underlying

finite element space and the specification of a consistency error due to the extension of the dis-

crete multipliers to H−1(Ω) and the mismatch between the continuous and discrete coincidence

and noncoincidence sets are the essential keys for the subsequent a posteriori error analysis.

In Section 3, we present the error estimator, data oscillations, a bulk criterion taking care of

the selection of elements and edges for refinement, and the refinement strategy. Furthermore,

the main convergence result is stated in terms of a reduction of the discretization error in the

energy norm up to the consistency error. The subsequent Section 4 is devoted to the proof

of the error reduction property which uses the reliability of the estimator, its discrete local

efficiency, and a perturbed Galerkin orthogonality as basic tools. Finally, Section 6 contains

a detailed documentation of numerical results for some selected test examples displaying the

convergence history of the AFEM and thus illustrating its numerical performance.

2. The Obstacle Problem and Its Finite Element Approximation

We assume Ω ⊂ R
2 to be a bounded, polygonal domain with boundary Γ := ∂Ω. We use

standard notation from Lebesgue and Sobolev space theory, refer to Hk(Ω), k ∈ N, as the

Sobolev spaces based on L2(Ω), and denote their norms as ‖ · ‖k,Ω. We refer to (·, ·)0,Ω as

the inner product of the Hilbert space L2(Ω). For k = 1, | · |1,Ω stands for the associated

seminorm on H1(Ω) which actually is a norm on V := H1
0 (Ω) := {v ∈ H1(Ω) | v|Γ = 0}. We

refer to V ∗ := H−1(Ω) as the dual of V and to 〈·, ·〉 as the associated dual pairing. Likewise,

〈·, ·〉Γ stands for the dual pairing between the trace space H1/2(Γ) and its dual. We denote by

V+ := {v ∈ V | v ≥ 0 a.e. on Ω} the positive cone of V and by V ∗
+ the positive cone of V ∗, i.e.,

σ ∈ V ∗
+ iff 〈σ, v〉 ≥ 0 for all v ∈ V+.

We further refer to C(Ω) as the Banach space of continuous functions on Ω. Its dual

M(Ω) = C(Ω)∗ is the space of Radon measures on Ω with 〈〈·, ·〉〉 standing for the associated

dual pairing. We refer to C+(Ω) and M+(Ω) as the positive cones of C(Ω) and M(Ω). In

particular, σ ∈ M+(Ω) iff 〈〈σ, v〉〉 ≥ 0 for all v ∈ C+(Ω).
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For given f ∈ L2(Ω) and ψ ∈ H1(Ω) with ψ|Γ ≥ 0, we consider the obstacle problem

inf
v∈K

J(v) , J(v) :=
1

2
a(v, v) − (f, v)0,Ω, (2.1)

where K stands for the closed, convex set

K :=
{
v ∈ V | v ≤ ψ a.e. on Ω

}
.

and a(·, ·) : V × V → R is the bilinear form

a(v, w) :=

∫

Ω

∇v · ∇w dx, v, w ∈ V.

It is well-known [21] that (2.1) admits a unique solution and that the necessary and sufficient

optimality conditions are given by the variational inequality

a(u, v − u) ≥ (f, v − u)0,Ω, v ∈ K. (2.2)

We define the coincidence set (active set) A as the maximal open set in Ω such that u(x) = ψ(x)

f.a.a. x ∈ A and the noncoincidence set (inactive set) I according to I :=
⋃

ε>0 Bε, where Bε
is the maximal open set in Ω such that u(x) ≤ ψ(x) − ε for almost all x ∈ Bε.

Introducing a Lagrange multiplier σ ∈ V ∗ for the constraints, (2.2) can be written in

unconstrained form as follows

a(u, v) = (f, v)0,Ω − 〈σ, v〉 , v ∈ V, (2.3)

where 〈·, ·〉 stands for the dual pairing of V ∗ and V . We note that σ ∈ V ∗
+. Moreover, the

following complementarity condition is satisfied

〈σ, u− ψ〉 = 0. (2.4)

We assume {Tℓ}ℓ∈N0 to be a shape regular family of simplicial triangulations of the com-

putational domain Ω. Given D ⊆ Ω, we refer to Nℓ(D) and Eℓ(D) as the sets of vertices and

edges of Tℓ in D, and we simply write Nℓ and Eℓ, if D = Ω. For D ⊆ Ω and E ∈ Eℓ we denote

by |D| and |E| the area of D and length of E, and we refer to fD as the integral mean of f with

respect to D, i.e., fD := |D|−1
∫

D fdx. Moreover, for T ∈ Tℓ(Ω) and E ∈ Eℓ(T ), we denote by

νE the exterior unit normal on E. For p ∈ Nℓ, E ∈ Eℓ, and T ∈ Tℓ we refer to

ωpℓ :=
⋃{

T ∈ Tℓ | p ∈ Nℓ(T )
}
,

ωEℓ :=
⋃{

T ∈ Tℓ | E ∈ Eℓ(T )
}
,

ωTℓ :=
⋃{

T ′ ∈ Tℓ | Nℓ(T
′) ∩ Nℓ(T ) 6= ∅

}

as the patches of elements associated with p, E and T , respectively. Further,

Epℓ :=
⋃{

E ∈ Eℓ | p ∈ Nℓ(E)
}

is the set of edges sharing p as a common vertex.

We denote by Sℓ the finite element space of continuous, piecewise linear finite elements with

respect to Tℓ and set

Vℓ := Sℓ ∩ V.



Error Reduction in Adaptive Finite Element Approximations of Elliptic Obstacle Problems 151

We further define ψℓ ∈ Sℓ as some approximation of ψ ∈ H1(Ω). For instance, if ψ ∈ C(Ω̄), we

may choose ψℓ ∈ Sℓ as the nodal interpoland of ψ (cf. [17]).

The finite element approximation of (2.1) amounts to the solution of the finite dimensional

constrained minimization problem

min
vℓ∈Kℓ

J(vℓ), J(vℓ) :=
1

2
a(vℓ, vℓ) − (f, vℓ)0,Ω. (2.5)

Here, the constrained discrete set Kℓ is given by

Kℓ :=
{
vℓ ∈ Vℓ | vℓ(x) ≤ ψℓ(x), x ∈ Ω

}
.

Again, the optimality conditions give rise to the variational inequality

a(uℓ, vℓ − uℓ) ≥ (f, vℓ − uℓ)0,Ω, vℓ ∈ Kℓ. (2.6)

We define the discrete coincidence set according to Aℓ := {x ∈ Ω | uℓ(x) = ψℓ(x)} and refer to

Iℓ := Ω\Aℓ as the discrete noncoincidence set. We note that Aℓ may consist of vertices and/or

edges only.

The corresponding Lagrange multiplier σℓ can be written as a linear combination of Dirac

delta functionals δp associated with p ∈ Nℓ according to

σℓ :=
∑

p∈Nℓ

αℓ(p)δp, αℓ(p) ∈ R, p ∈ Nℓ. (2.7)

As in the continuous setting, (2.6) can be written in unconstrained form as

a(uℓ, vℓ) = (f, vℓ)0,Ω − 〈〈σℓ, vℓ〉〉 , vℓ ∈ Vℓ. (2.8)

In particular, σℓ ∈ M+(Ω̄) and the complementarity condition

〈〈σℓ, ψℓ − uℓ〉〉 = 0 (2.9)

is satisfied.

Residual-type a posteriori error estimators for obstacle problems that contain the standard

edge residuals ηE := h
1/2
E ‖νE · [∇uℓ]E‖0,E , where [∇uℓ]E denotes the jump of ∇uℓ across

E, for edges within the discrete coincidence set cannot be efficient: Assume ψℓ to have a

kink that aligns with some edge E in the discrete coincidence set. Then, the edge residual

ηE = h
1/2
E ‖νE · [∇ψℓ]E‖0,E will be large, although the discretization error |u − uℓ|1,Ω can be

arbitrarily small. The same applies to the discrete local efficiency. As will be shown in the

subsequent a posteriori error analysis, the standard element and edge residuals within the

discrete coincidence set do not contribute to the error estimator. They will be eliminated in

essence by the discrete multiplier. However, the a posteriori error analysis requires an extension

of the discrete multiplier to V ∗ = H−1(Ω). This extension is motivated by the following explicit

representation of σℓ.

Lemma 2.1. The discrete Lagrange multiplier σℓ has the representation

αℓ(p) =







∑

T∈ωp

ℓ

(
f, ϕpℓ

)

0,T
−

∑

E∈Ep

ℓ

(
νE · [∇uℓ]E , ϕ

p
ℓ

)

0,E
, p ∈ Nℓ(Aℓ),

0, p ∈ Nℓ(Iℓ),
(2.10)

where ϕpℓ is the nodal basis function associated with the nodal point p.
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Proof. It is an immediate consequence of (2.9) that αℓ(p) = 0 for p ∈ Iℓ. On the other

hand, if p ∈ Aℓ, we choose vℓ = ϕpℓ . It follows from (2.8) that

αℓ(p) = 〈〈σℓ, ϕ
p
ℓ 〉〉 =

(
f, ϕpℓ

)

0,ωp

ℓ

−
(
∇uℓ,∇ϕ

p
ℓ

)

0,ωp

ℓ

. (2.11)

An elementwise application of Green’s formula to the second term on the right-hand side in

(2.11) yields
(
∇uℓ,∇ϕ

p
ℓ

)

0,ωp

ℓ

=
∑

T∈ωp

ℓ

(
∇uℓ,∇ϕ

p
ℓ

)

0,T
=

∑

E∈Ep

ℓ

(
νE · [∇uℓ], ϕ

p
ℓ

)

0,E
. (2.12)

Inserting (2.12) in (2.11) we obtain the assertion. �

In the a posteriori error analysis of obstacle problems, the Lagrange multiplier σℓ is con-

sidered as a functional on Vℓ and extended to V ; see, e.g., [8]. Usually this is done via a

representation as an L2 function. Here, for the reasons mentioned above, the construction

refers to Lemma 2.1 and edge terms are included. We set

〈σ̃ℓ, v〉 :=
∑

p∈Nℓ(Aℓ)

(
1

3

∑

T∈ Ωp

ℓ

(f, v)0,T −
1

2

∑

E∈ Ep

ℓ

(
νE · [∇uℓ], v

)

0,E

)

. (2.13)

Remark 2.1. The sum in the definition of σ̃ℓ, i.e., in (2.13) is restricted to points in the active

set. If the summation runs over all nodal points of the grid and the factors are adjusted at the

boundary, then we obtain an extension σ̂ℓ with 〈σ̂ℓ, v〉 = a(uh, v)− (f, v) for all v ∈ V ; see [10].

We denote by Eℓ(Aℓ) and Tℓ(Aℓ) the sets of edges and elements having all vertices within

the discrete coincidence set Aℓ, i.e.,

Eℓ(Aℓ) :=
⋃{

E ∈ Eℓ(Ω) | Nℓ(E) ⊂ Aℓ

}
, (2.14a)

Tℓ(Aℓ) :=
⋃{

T ∈ Tℓ(Ω) | Nℓ(T ) ⊂ Aℓ

}
, (2.14b)

and we refer to Eℓ(Iℓ) and Tℓ(Iℓ) as the complements

Eℓ(Iℓ) := Eℓ \ Eℓ(Aℓ), Tℓ(Iℓ) := Tℓ \ Tℓ(Aℓ). (2.15)

We further introduce E
(i)
Aℓ

⊂ Eℓ and T
(i)
Aℓ

⊂ Tℓ as the subsets of edges and elements having

i vertices in the discrete coincidence set Aℓ, i.e.,

E
(i)
Aℓ

:=
⋃{

E ∈ Eℓ | card(Nℓ(E) ∩Aℓ) = i
}
, i ∈ {0, 1, 2}, (2.16a)

T
(i)
Aℓ

:=
⋃{

T ∈ Tℓ | card(Nℓ(T ) ∩ Aℓ) = i
}
, i ∈ {0, 1, 2, 3}, (2.16b)

and we define E
(i)
Iℓ

and T
(i)
Iℓ

analogously. In particular, Eℓ(Aℓ) = E
(2)
Aℓ

and Tℓ(Aℓ) = T
(3)
Aℓ

.

Moreover, we set

TFℓ
:= Tℓ \

(
T
A

(3)
ℓ

∪ T
I

(3)
ℓ

)
)
, EFℓ

:= Eℓ \
(
E
A

(2)
ℓ

∪ T
I

(2)
ℓ

)
)
. (2.17)

Now the summation in (2.13) can be reorganized such that each triangle and each edge

enters only once. Taking (2.14) and (2.16) into account, from (2.13) we easily deduce that for

v ∈ V there holds

〈σ̃ℓ, v〉 =

3∑

i=1

i

3

∑

T∈T
(i)
Aℓ

(f, v)0,T −
2∑

i=1

i

2

∑

E∈E
(i)
Aℓ

(
νE · [∇uℓ]E , v

)

0,E
. (2.18)
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It follows that for vℓ ∈ Vℓ

〈〈σℓ, vℓ〉〉 − 〈σ̃ℓ, vℓ〉 =
∑

T∈TFℓ

κT (f, vℓ)0,T −
∑

E∈EFℓ

κE
(
νE · [∇uℓ]E , vℓ

)

0,E
, (2.19)

where

κT := 1 −
i

3
, T ∈ T

(i)
ℓ , κE := 1 −

i

2
, E ∈ E

(i)
ℓ . (2.20)

We note that σ̃ℓ does not inherit the complementarity properties from σℓ, in particular, σ̃ℓ /∈

V ∗
+. Obviously, the contribution of σ̃ℓ reminds of the well-known residual estimators for linear

problems. Section 4 will highlight its role in the a posteriori error analysis.

3. The a Posteriori Error Estimator and the Error Reduction

Property

We consider the residual-type a posteriori error estimator

ηℓ :=

(
∑

T∈Tℓ(Iℓ)

η2
T +

∑

E∈Eℓ(Iℓ)

η2
E

)1/2

, (3.1)

where Tℓ(Iℓ) and Eℓ(Iℓ) are given by (2.15). The element residuals ηT are weighted elementwise

L2-residuals and the edge residuals ηE are weighted L2-norms of the jumps νE · [∇uℓ] of the

normal derivatives across the interior edges according to

ηT := hT ‖fT‖0,T , ηE := h
1/2
E ‖νE · [∇uℓ]E‖0,E . (3.2)

They are defined as in the linear regime (see, e.g., [33]), but in contrast to that case they only

have to be considered for elements T and edges E within the discrete non-coincidence set Iℓ.

The refinement of a triangulation Tℓ is based on a bulk criterion that has been previously used

in the convergence analysis of adaptive finite elements for nodal finite element methods [15,24].

For the obstacle problem under consideration, the bulk criterion is as follows: Given a universal

constant Θ ∈ (0, 1), we create a set of elements M
(1)
ℓ ⊂ Tℓ(Iℓ) and a set of edges M

(2)
ℓ ⊂ Eℓ(Iℓ)

such that

Θ
∑

T∈Tℓ(Iℓ)

η2
T ≤

∑

T∈M
(1)
ℓ

η2
T , (3.3a)

Θ
∑

E∈Eℓ(Iℓ)

η2
E ≤

∑

E∈M
(2)
ℓ

η2
E . (3.3b)

The bulk criterion is realized by a greedy algorithm [12, 13]. Based on the bulk criterion, we

generate a fine mesh Tℓ+1 as follows: If T ∈ M
(1)
ℓ or E = T+∩T− ∈ M

(2)
ℓ , we refine T or T± by

repeated bisection such that an interior nodal point pT in T or interior nodal points p+ ∈ T+

and p− ∈ T− are created [24]. In order to guarantee a geometrically conforming triangulation,

new nodal points are generated, if necessary.

We further have to take into account data oscillations and a data term with respect to the

right-hand side f and the obstacle ψ. The data oscillations oscℓ are given by

osc2ℓ := osc2ℓ(f) + osc2ℓ(ψ) , (3.4)
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where oscℓ(f) and oscℓ(ψ) are defined by means of

osc2ℓ(f) :=
∑

T∈Tℓ(Ω)

osc2T (f) +
∑

E∈Eℓ(Ω)

osc2ωE
ℓ

(f), (3.5a)

osc2ℓ(ψ) :=
∑

T∈Tℓ(Ω)

osc2T (ψ) +
∑

E∈Eℓ(Ω)

osc2ωE
ℓ

(ψ), (3.5b)

oscD(f) := diam(D) ‖f − fD‖0,D,

oscD(ψ) := |ψ − ψℓ|1,D, D ∈
{
T, ωEℓ

}
.

On the other hand, the data term µℓ is of the form

µ2
ℓ :=

∑

E∈M̂
(2)
ℓ

µ2
E(ψ), µE(ψ) := hE ‖νE · [∇ψ]E‖0,E , (3.6)

where

M̂
(2)
ℓ :=

{
E ∈ M

(2)
ℓ | mE ∈ Aℓ+1 and p+ ∈ Iℓ+1 or p− ∈ Iℓ+1

}

with p± denoting the interior nodal points in T± (E = T+ ∩ T−) (cf. case (ii)2,1 in the proof of

Lemma 5.3 in Section 5 below which is the only situation where µ2
ℓ occurs in the a posteriori

error analysis).

The refinement and the new mesh Tℓ+1 shall also take care of a reduction of the data

oscillations (cf., e.g., [24]). In particular, we require that

osc2ℓ+1 ≤ ρ2 osc
2
ℓ (3.7)

for some 0 < ρ2 < 1. This can be achieved by additional refinements if necessary. Likewise, we

require that

µ2
ℓ+1 ≤ ρ3 µ

2
ℓ , (3.8)

where 0 < ρ3 < 1. Since these terms can be expected to arise only in the discrete noncoincidence

set close to the discrete free boundary, (3.8) can be achieved by including edges in the vicinity

of the discrete free boundary in the refinement process.

The convergence analysis is based on the reliability and the discrete efficiency of the esti-

mator ηℓ as well as on a perturbed Galerkin orthogonality which will be addressed in detail in

the subsequent Section. These properties involve consistency errors due to the extension σ̃ℓ of

the discrete multiplier σℓ and the mismatch between the continuous and discrete coincidence

and noncoincidence sets. In particular, we define

conℓ := conrelℓ + conortℓ . (3.9)

Here, conrelℓ and conortℓ refer to the consistency errors associated with the reliability of ηℓ and

the perturbed Galerkin orthogonality:

conrelℓ := |〈σ̃ℓ, ψ − u〉|, conortℓ := 2 〈σ, ψℓ − uℓ〉. (3.10)

Due to the construction of σ̃ℓ, the consistency error conrelℓ is nonzero only in the small patch

TFℓ
∪ EFℓ

in the vicinity of the discrete free boundary (cf. (2.17)) and in C1 := Aℓ ∩ I. On the

other hand, the consistency error conortℓ is nonzero only in C2 := A ∩ Iℓ. The sets C1 and C2

represent the mismatch between the continuous and discrete coincidence and noncoincidence

sets. Usually, the sets TFℓ
∪ EFℓ

and Cν , 1 ≤ ν ≤ 2, are small and the consistency errors conrelℓ
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and conortℓ turn out to be at least one order of magnitude smaller than the other error terms

as it is the case, for instance, in the numerical examples presented in Section 6. However, if

necessary, the marking strategy can be extended by marking the elements and edges in TFℓ
∪EFℓ

and Cν , 1 ≤ ν ≤ 2, for refinement. To do so, we need to provide approximations of the mismatch

sets C1 and C2. We denote by χ(D), D ⊂ Ω, the characteristic function of D and, following [18]

and [22], define

χA
ℓ := I −

ψℓ − uℓ
γhrℓ + ψℓ − uℓ

with appropriately chosen γ, r > 0 as an approximation of χ(A). Indeed, it can be shown that

‖χA
ℓ − χ(A)‖0,T → 0 as hℓ → 0 for each T ∈ Tℓ(Ω) (cf. [18, 22]). Then, χI

ℓ := I − χA
ℓ is an

approximation of χ(I) and hence, χC1

ℓ := χ(Aℓ)χ
I
ℓ and χC2

ℓ := χ(Iℓ)χA
ℓ provide approximations

of the characteristic functions χ(C1) and χ(C2).

The main result of this paper states an error reduction in the | · |1,Ω-norm up to the consis-

tency error conℓ.

Theorem 3.1. Let u ∈ V and uℓ ∈ Vℓ, uℓ+1 ∈ Vℓ+1, respectively, be the solutions of (2.2) and

(2.8), and let oscℓ, µℓ, and conℓ be the data oscillations, data terms, and the consistency error

as given by (3.4), (3.6), and (3.9), respectively. Assume that (3.7), (3.8) are satisfied. Then,

there exist constants 0 < ρ1 < 1 and Ci > 0, 1 ≤ i ≤ 3, depending only on Θ and the local

geometry of the triangulations, such that





|u− uℓ+1|21,Ω
osc2ℓ+1

µ2
ℓ+1



 ≤





ρ1 C1 C2

0 ρ2 0

0 0 ρ3









|u− uℓ|21,Ω
osc2ℓ
µ2
ℓ



 +





C3 conℓ
0

0



 . (3.11)

Remark 3.1. If the consistency error conℓ is negligible, the error reduction property (3.11)

implies R-linear convergence of the finite element approximations uℓ ∈ Vℓ to the solution u ∈ V

of (2.2).

The proof of Theorem 3.1 will be presented in the next section.

4. Reliability

We will show that the residual-type error estimator from (3.1) provides an upper bound for

the energy norm error up to the data oscillations and the consistency error conrefℓ .

Throughout this section, we denote by C > 0 a constant depending only on the geometry

of the triangulation, not necessarily the same at each occurrence. Moreover, for A,B ∈ R we

use the notation A . B, if A ≤ CB. Likewise, A ≈ B iff A . B and B . A.

Theorem 4.1. Let u ∈ V and uℓ ∈ Vℓ be the solutions of (2.3) and (2.8), respectively, and let

ηℓ, oscℓ, and conrelℓ be the error estimator (3.1), the data oscillations (3.4) and the consistency

error (3.10), respectively. Then, there holds

|u− uℓ|
2
1,Ω . η2

ℓ + osc2ℓ + conrelℓ . (4.1)

Proof. Setting eu := u − uℓ and denoting by PVℓ
: V → Vℓ Clément’s quasi-interpolation

operator (see, e.g., [33]), we find by straightforward computation

|eu|
2
1,Ω = a(eu, eu) = r(eu − PVℓ

eu) + ℓ1(PVℓ
eu) + ℓ2(eu), (4.2)
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where

r(v) := (f, v)0,Ω − a(uℓ, v) − 〈σ̃, v〉, v ∈ V,

ℓ1(vℓ) := 〈〈σℓ, vℓ〉〉 − 〈σ̃ℓ, vℓ〉, vℓ ∈ Vℓ,

ℓ2(v) := 〈σ̃ℓ − σ, v〉, v ∈ V.

Elementwise integration by parts and the representation (2.18) leads to

r(v) =
∑

T∈Tℓ

(f, v)0,T −
∑

E∈Eℓ(Ω)

(
νE · [∇uℓ]E , v

)

0,E
− 〈σ̃ℓ, v〉

=
∑

T∈Tℓ(Iℓ)

κT (fT , v)0,T −
∑

E∈Eℓ(Iℓ)

κE
(
νE · [∇uℓ]E , v

)

0,E

+
∑

T∈Tℓ(Iℓ)

κT (f − fT , v)0,T , (4.3)

where κT and κE are given by (2.20). Standard estimation of the terms on the right-hand side

in (4.3) with v := eu − PVℓ
eu yields

|r(eu − PVℓ
eu)| .

∑

T∈Tℓ(Iℓ)

(
ηT + oscT (f)

)
|eu|1,ωT

ℓ
+

∑

E∈Eℓ(Iℓ)

ηE |eu|1,ωE
ℓ

≤
1

10
|eu|

2
1,Ω + C

(
η2
ℓ + osc2ℓ (f)

)
. (4.4)

For ℓ1(PVℓ
eu) in (4.2) we obtain

|ℓ1(PVℓ
eu)| ≤

1

10
|eu|

2
1,Ω + C

(
∑

T∈TFℓ

(
η2
T + osc2T (f)

)
+

∑

E∈EFℓ

η2
E

)

. (4.5)

Moreover, for ℓ2(eu) it follows that

ℓ2(eu) = 〈σ̃ℓ − σ, u − ψ〉 + 〈σ̃ℓ − σ, ψ − ψℓ〉 + 〈σ̃ℓ − σ, ψℓ − uℓ〉.

From the complementarity property (2.4),(2.13) and σ ∈ V ∗
+ we deduce

〈σ̃ℓ − σ, eu〉 ≤
1

10
|eu|

2
1,Ω + C

(
∑

T∈TFℓ

(
η2
T + osc2T (f)

)
+

∑

E∈EFℓ

η2
E

)

+ osc2ℓ (ψ) + conrelℓ + 〈σ̃ℓ − σ, ψ − ψℓ〉. (4.6)

It remains to estimate 〈σ̃ℓ − σ, ψ − ψℓ〉. Zero boundary conditions are not required for σ̃ℓ − σ.

We note that u ∈ V and uℓ ∈ Vℓ satisfy

a(u, v) = (f, v)0,Ω + 〈νΓ · ∇u, v〉Γ − 〈σ, v〉, v ∈ H1(Ω), (4.7)

a(uℓ, vℓ) = (f, vℓ)0,Ω + 〈νΓ · ∇uℓ, vℓ〉Γ − 〈σ̃ℓ, vℓ〉, vℓ ∈ Sℓ, (4.8)

Setting δψ := ψ−ψℓ ∈ H1(Ω) and denoting by PSℓ
: H1(Ω) → Sℓ Clément’s quasi-interpolation

operator, we obtain

〈σ̃ℓ − σ, δψ〉 = 〈σ̃ℓ − σ, PSℓ
δψ〉 + 〈σ̃ℓ − σ, δψ − PSℓ

δψ〉. (4.9)
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We have

〈σ̃ℓ − σ, PSℓ
δψ〉 =

(
〈σ̃ℓ, PSℓ

δψ〉 − 〈〈σℓ, PSℓ
δψ〉〉

)
+

(
〈〈σℓ, PSℓ

δψ〉〉 − 〈σ, PSℓ
δψ〉

)
. (4.10)

For the first term on the right-hand side in (4.10) we get
∣
∣〈σ̃ℓ, PSℓ

δψ〉 − 〈〈σℓ, PSℓ
δψ〉〉

∣
∣ . osc2ℓ (ψ) +

∑

T∈TFℓ

(
η2
T + osc2T (f)

)
+

∑

E∈EFℓ

η2
E . (4.11)

Since PSℓ
δψ is an admissible test function in (4.7) and (4.8), the trace inequality

‖νΓ · ∇(u− uℓ)‖−1/2,Γ . |u− uℓ|1,Ω, (4.12)

and Young’s inequality imply that the second term on the right-hand side in (4.10) can be

bounded from above as follows
∣
∣〈〈σℓ, PSℓ

δψ〉〉 − 〈σ, PSℓ
δψ〉

∣
∣

≤
∣
∣a(u− uℓ, PSℓ

δψ)
∣
∣ +

∣
∣〈νΓ · ∇(u − uℓ), PSℓ

δψ〉Γ
∣
∣

≤
1

10
|u− uℓ|

2
1,Ω + C osc2ℓ (ψ). (4.13)

Next, using (2.13) for dealing with σ̃ℓ and (4.7) with σ we get

〈σ − σ̃ℓ, δψ − PSℓ
δψ〉 = I1 + I2, (4.14)

where

I1 :=
(
f, δψ − PSℓ

δψ
)

0,Ω
−

∑

p∈Nℓ

(
Aℓ

)

1

3

∑

T∈ωp

ℓ

(f, δψ − PSℓ
δψ)0,Ω,

I2 :=〈νΓ · ∇u, δψ − PSℓ
δψ〉Γ − a

(
u, δψ − PSℓ

δψ
)

+
∑

p∈Nℓ(Aℓ)

1

2

∑

E∈Ep

ℓ

(
νE · [∇uℓ]E , δψ − PSℓ

δψ
)

0,Ω
.

For the first term it follows that

|I1| ≤
∑

T∈Tℓ(Iℓ)

(1 − κT )
(∣
∣(fT , δψ − PSℓ

δψ)0,T
∣
∣ +

∣
∣(f − fT , δψ − PSℓ

δψ)0,T
∣
∣

)

.
∑

T∈Tℓ(Iℓ)

(

hT ‖fT ‖0,T + hT ‖f − fT ‖0,T

)

|δψ|1,ωT

.
∑

T∈Tℓ(Iℓ)

(

η2
T + osc2T (f)

)

+ osc2ℓ(ψ).

Moreover, using (4.12) and Young’s inequality again, the second term I2 is estimated from

above

|I2| ≤
∣
∣a(eu, δψ − PSℓ

δψ)
∣
∣ +

∑

E∈Eℓ(Iℓ)

(1 − κE)
∣
∣(νE · [∇uℓ]E , δψ − PSℓ

δψ)0,E
∣
∣

+
∑

E∈Eℓ(Γ)

∣
∣〈νE · ∇(u− uℓ), δψ − PSℓ

δψ〉E
∣
∣

≤
1

10
|eu|

2
1,Ω + C

(
∑

E∈Eℓ(Iℓ)

η2
E + osc2ℓ(ψ)

)

.
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The preceding two estimates give

∣
∣〈σ − σ̃ℓ, δψ − PSℓ

δψ〉
∣
∣ ≤

1

10
|eu|

2
1,Ω + C

(

η2
ℓ + osc2ℓ(f) + osc2ℓ(ψ)

)

. (4.15)

Combining (4.4)-(4.6), (4.10), (4.11) (4.13) and (4.15) we complete the proof of (4.1). �

5. Discrete Local Efficiency, Perturbed Galerkin Orthogonality, and

Proof of the Error Reduction Property

We will prove discrete efficiency of the error estimator in the sense that it provides a lower

bound for the energy norm of the difference uℓ − uℓ+1 between the coarse and fine mesh ap-

proximation up to the data oscillations and the data terms.

Theorem 5.1. Let uℓ ∈ Vℓ, uℓ+1 ∈ Vℓ+1 be the solutions of (2.8) and let ηℓ, oscℓ as well as µℓ
be the error estimator, the data oscillations, and the data terms as given by (3.1), (3.4), and

(3.6), respectively. Then, there holds

η2
ℓ . |uℓ − uℓ+1|

2
1,Ω + osc2ℓ + µ2

ℓ . (5.1)

As usual in the convergence analysis of adaptive finite element methods, the proof of The-

orem 5.1 follows from the discrete local efficiency. The guaranteed improvements that can be

associated to the volume terms and the edge terms will be established by the subsequent two

lemmas. We adjust the concept in [9] to general obstacles, but it would be possible also to

adopt ideas from [10] or [28].

Lemma 5.1. Let T ∈ M
(1)
ℓ with an interior nodal point p ∈ Nℓ+1(T ).

(i) If p ∈ Nℓ+1(Iℓ+1), we have

η2
T . |uℓ − uℓ+1|

2
1,T + osc2T (f). (5.2)

(ii) If p ∈ Nℓ+1(Aℓ+1), due to T ∈ M
(1)
ℓ there exists p̂ ∈ Nℓ(T ) ∩ Nℓ(Iℓ), and there holds

η2
T . h2

T ‖f − fωp̂

ℓ

‖2
0,ωp̂

ℓ

+
∑

E∈Ep̂

ℓ

η2
E , (5.3)

where fωp̂

ℓ

:= |ωp̂ℓ |
−1

∫

ωp̂

ℓ

fdx.

Proof. Let p ∈ Nℓ+1(T ) be an interior node. We choose χ
(p)
ℓ+1 := κϕ

(p)
ℓ+1, κ ≈ fT , as an

appropriate multiple of the level ℓ+ 1 nodal basis function ϕ
(p)
ℓ+1 associated with p such that

h2
T ‖fT‖

2
0,T ≤ h2

T

(
fT , χ

(p)
ℓ+1

)

0,T
.

Observing ∇uℓ ∈ P0(T ) we find by partial integration

a(uℓ, v) = 0 if supp v ⊂ T and v ∈ H1
0 (T ). (5.4)

In particular, the preceding inequality yields

h2
T ‖fT ‖

2
0,T ≤ h2

T

((
fT , χ

(p)
ℓ+1

)

0,T
− a

(
uℓ, χ

(p)
ℓ+1

))

. (5.5)
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Since χ
(p)
ℓ+1 is an admissible level ℓ + 1 test function in (2.8), we have

a
(
uℓ+1, χ

(p)
ℓ+1

)
−

(
f, χ

(p)
ℓ+1

)

0,T
+ 〈〈σℓ+1, χ

(p)
ℓ+1〉〉 = 0 . (5.6)

Adding (5.5) and (5.6) results in

h2
T ‖fT ‖

2
0,T = h2

T

((
fℓ − f, χ

(p)
ℓ+1

)

0,T

+ a
(
uℓ+1 − uℓ, χ

(p)
ℓ+1

)
+ 〈〈σℓ+1, χ

(p)
ℓ+1〉〉

)

. (5.7)

Case (i): p ∈ Nℓ+1(Iℓ) implies that

〈〈σℓ+1, χ
(p)
ℓ+1〉〉 = καℓ+1(p) = 0,

and we readily deduce from (5.7)

h2
T ‖fT‖

2
0,T ≤

∣
∣uℓ − uℓ+1

∣
∣
1,T

h2
T

∣
∣χ

(p)
ℓ+1

∣
∣
1,T

+ oscℓ,T (f)hT ‖χ
(p)
ℓ+1‖0,T . (5.8)

Observing

h2
T |χ

(p)
ℓ+1|1,T ≈ h2

T |κ| ≈ hT ‖fT ‖0,T , (5.9a)

hT ‖χ
(p)
ℓ+1‖0,T ≈ hT |T |

1/2|κ| ≈ hT ‖fT‖0,T , (5.9b)

we obtain (5.2).

Case (ii): We have

h2
T ‖fT‖

2
0,T ≤h2

T

(
fT , χ

(p)
ℓ+1

)

0,T

=h2
T

(
fT − f, χ

(p)
ℓ+1

)

0,T
+ h2

T

(
f, χ

(p)
ℓ+1

)

0,T
. (5.10)

We set χ
(p̂)
ℓ := κϕ

(p̂)
ℓ , where ϕ

(p̂)
ℓ is the level ℓ nodal basis function associated with p̂, and we

choose α > 0 such that ∫

ω̂ℓ

(

ϕ
(p)
ℓ+1 − αϕ

(p̂)
ℓ

)

dx = 0. (5.11)

Since χ
(p̂)
ℓ is an admissible level ℓ test function, there holds

a(uℓ, χ
(p̂)
ℓ ) = (f, χ

(p̂)
ℓ )0,ωp̂

ℓ

. (5.12)

On the other hand, by Green’s formula

a(uℓ, χ
(p̂)
ℓ ) =

∑

E∈Ep̂

ℓ

(
νE · [∇uℓ]E , χ

(p̂)
ℓ

)

0,E
. (5.13)

Using (5.11)–(5.13) yields

h2
T

(
f, χ

(p)
ℓ+1

)

0,T

=h2
T

(
f, χ

(p)
ℓ+1 − αχ

(p̂)
ℓ

)

0,ωp̂

ℓ

+ α h2
T

(
f, χ

(p̂)
ℓ

)

0,ωp̂

ℓ

=h2
T

(
f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ

)

0,ωp̂

ℓ

+ α h2
T a

(
uℓ, χ

(p̂)
ℓ

)

=h2
T

(
f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ

)

0,ωp̂

ℓ

+ α h2
T

∑

E∈Eℓ(p̂)

(
νE · [∇uℓ]E , χ

(p̂)
ℓ

)

0,E
. (5.14)
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The right-hand sides in (5.14) can be estimated as follows

h2
T

∣
∣(f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ )0,ωp̂

ℓ

∣
∣

. hT ‖f − fωp̂

ℓ

‖0,ωhatp

ℓ

(

hT ‖χ
(p)
ℓ+1‖0,T + α |ωp̂ℓ |

1/2 ‖χ
(p̂)
ℓ )‖0,ωp̂

ℓ

)

, (5.15)

h2
T |

(
νE · [∇uℓ], χ

(p̂)
ℓ

)

0,E

. h
1/2
E ‖νE · [∇uℓ]E‖0,E h

3/2
E ‖χ

(p̂)
ℓ ‖0,E. (5.16)

Using (5.9b) and

∣
∣ωp̂ℓ

∣
∣
1/2

‖χ
(p̂)
ℓ )‖0,ωp̂

ℓ

= |ωp̂ℓ |
1/2 |κ| ‖ϕ

(p̂)
ℓ )‖0,ωp̂

ℓ

. hT ‖fT‖0,T ,

h
3/2
E ‖χ

(p̂)
ℓ ‖0,E = h

3/2
E |κ| ‖ϕ

(p̂)
ℓ ‖0,E . hT ‖fT ‖0,T ,

in (5.15) and (5.16), we find that (5.14) results in

h2
T |(f, χ

(p)
ℓ+1)0,T | .

(

hT ‖f − fωp̂

ℓ

‖0,ω̂ℓ

+
∑

E∈Ep̂

ℓ

h
1/2
E ‖νE · [∇uℓ]E‖0,E

)

hT ‖fT ‖0,T . (5.17)

Finally, using (5.9a),(5.17) in (5.10), we deduce (5.3). �
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Fig. 5.1. Notation for E ∈ M
(2)
ℓ and the adjacent elements T+, T

−
.

Lemma 5.2. Let E ∈ M
(2)
ℓ , E = T+ ∩ T−, T± ∈ Tℓ, be a refined edge with midpoint mE ∈

Nℓ+1(E) and associated patch ωEℓ := T+ ∪ T−. Then, there holds

η2
E .

∣
∣uℓ − uℓ+1

∣
∣
2

1,ωE
ℓ

+ osc2ωE
ℓ

(f) + osc2ωE
ℓ

(ψ) + µ2
E(ψ). (5.18)

Proof. Let p± ∈ Nℓ+1(T±) be interior nodes in T± and wℓ+1 := uℓ+1 − ψℓ+1 (cf. Fig. 5.1).

We distinguish the two cases

(i) wℓ+1(p+) = wℓ+1(p−) = 0,

(ii) wℓ+1(p+) < 0 or wℓ+1(p−) < 0.

Case (i): For wℓ := uℓ − ψℓ we have

hE‖νE · [∇uℓ]‖
2
0,E . hE‖νE · [∇wℓ]‖

2
0,E + µ2

E(ψ). (5.19)
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Since ∇wℓ|T , T ∈ {T±}, is a constant vector, there exists at least one element T ′ ∈ Tℓ+1(T )

such that νE · ∇wℓ|T ′ and νE · ∇wℓ+1|T ′ have different signs or are zero on T ′. Hence,

|νE · ∇wℓ|T ′ | ≤ |νE · ∇(wℓ − wℓ+1)|T ′ | ≤ |∇(wℓ − wℓ+1)|T ′ |.

Since |T ′| ≈ |T | ≈ hE |E|, it follows that

hE‖νE · [∇wℓ]E‖
2
0,E . |wℓ − wℓ+1|

2
1,T+

+ |wℓ − wℓ+1|
2
1,T−

. |uℓ − uℓ+1|
2
1,ωE

ℓ

+ osc2ωE
ℓ

(ψ). (5.20)

Combining (5.20) and (5.19) we obtain (5.18).

Case (ii): Without loss of generality we may assume that wℓ+1(p+) < 0. We distinguish the

subcases

(ii)1 wℓ+1(mE) < 0, (ii)2 wℓ+1(mE) = 0.

Case (ii)1: Denoting by ϕ
(mE)
ℓ+1 and ϕ

(p+)
ℓ+1 the nodal basis functions associated with mE and p+,

we have

a
(
uℓ+1, ϕ

(mE)
ℓ+1

)
=

(
f, ϕ

(mE)
ℓ+1

)

0,Ω
and a

(
uℓ+1, ϕ

(p+)
ℓ+1

)
=

(
f, ϕ

(p+)
ℓ+1

)

0,Ω
. (5.21)

The latter and (5.4) yield

a(uℓ+1 − uℓ, ϕ
(p+)
ℓ+1 ) = (f, ϕ

(p+)
ℓ+1 )0,Ω. (5.22)

We set ϕ
(E)
ℓ+1 := ϕ

(mE)
ℓ+1 −αϕ

(p+)
ℓ+1 , α > 0, and choose α such that ϕ

(E)
ℓ+1 ∈ H1

0 (ωEℓ ) and
∫

ΩE
ℓ

ϕ
(E)
ℓ+1 dx =

0. It follows from (5.21) and (5.22) that

1

2

∫

E

νE · [∇uℓ]E ds =

∫

E

νE · [∇uℓ]E ϕ
(E)
ℓ+1 ds

= a
(
uℓ − uℓ+1, ϕ

(E)
ℓ+1

)
+

(
f, ϕ

(E)
ℓ+1

)

0,ΩE
ℓ

= a
(
uℓ − uℓ+1, ϕ

(E)
ℓ+1

)
+

(
f − fωE

ℓ
, ϕ

(E)
ℓ+1

)

0,ωE
ℓ

.

We deduce

η2
E . |uℓ − uℓ+1|

2
1,ΩE

ℓ

+ osc2ωE
ℓ

(f),

which proves (5.18).

Case (ii)2: We distinguish between

(ii)2,1 νE · [∇uℓ]E ≤ 0 and (ii)2,2 νE · [∇uℓ]E > 0.

Case (ii)2,1: There exist T ′
± ∈ Tℓ+1(T±) such that

νE · ∇wℓ+1|T ′
+
≥ 0 ≥ νE · ∇wℓ+1|T ′

−
,

and hence,

0 ≤− νE · [∇uℓ]E = −
(
νE · ∇wℓ|T ′

+
− νE · ∇wℓ|T ′

−

)
− νE · [∇ψℓ]E

≤−
(
νE · ∇(wℓ − wℓ+1)|T ′

+
− νE · ∇(wℓ − wℓ+1)|T ′

−

)
− νE · [∇ψℓ]E

≤ |∇(wℓ − wℓ+1)|T ′
+
| + |∇(wℓ − wℓ+1)|T ′

−
| + |νE · [∇ψℓ]E |.
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Observing |ωEℓ | ≈ |T ′
±| ≈ h2

E , it follows that

η2
E . |uℓ − uℓ+1|

2
1,ωE

ℓ

+ µ2
E(ψℓ),

which shows (5.18).

Case (ii)2,2: We have

a
(
uℓ+1, ϕ

(mE)
ℓ+1

)
≤

(
f, ϕ

(mE)
ℓ+1

)

0,Ω
and a

(
uℓ+1, ϕ

(p+)
ℓ+1

)
=

(
f, ϕ

(p+)
ℓ+1

)

0,Ω
.

We construct ϕ
(E)
ℓ+1 as in Case (ii)1 and obtain

0 <
1

2

∫

E

νE · [∇uℓ]E ds =

∫

E

νE · [∇uℓ]E ϕ
(E)
ℓ+1 ds

≤ a
(
uℓ − uℓ+1, ϕ

(E)
ℓ+1

)
+

(
f, ϕ

(E)
ℓ+1

)

0,ΩE
ℓ

= a
(
uℓ − uℓ+1, ϕ

(E)
ℓ+1

)
+

(
f − fωE

ℓ
, ϕ

(E)
ℓ+1

)

0,ωE
ℓ

,

from which we deduce (5.18). �

Proof of Theorem 5.1. The upper bound (5.1) follows directly from (5.2) and (5.3) in Lemma

5.1 and from (5.18) in Lemma 5.2 by summing over all T ∈ M
(1)
ℓ and all E ∈ M

(2)
ℓ and taking

advantage of the finite overlap of the patches ωEℓ . �

The final ingredient of the proof of the error reduction property is the following perturbed

Galerkin orthogonality:

Theorem 5.2. Let u ∈ V and uk ∈ Vk, k ∈ {ℓ, ℓ+ 1}, be the solutions of (2.2) and (2.8), and

let oscℓ and conortℓ be the data oscillations (3.4) and the consistency error (3.10). Assume that

(3.7) is satisfied. Then, for any ε > 0 there holds

∣
∣uℓ − uℓ+1

∣
∣
2

1,Ω
≤

(

1 +
ε

2

) ∣
∣u− uℓ

∣
∣
2

1,Ω
− (1 − ε)

∣
∣u− uℓ+1

∣
∣
2

1,Ω

+
4

ε
ρ2 osc

2
ℓ(f) +

2

ε
(1 + ρ3) osc

2
ℓ(ψ) + conortℓ . (5.23)

Proof. By straightforward computation

∣
∣uℓ − uℓ+1

∣
∣
2

1,Ω
=

∣
∣u− uℓ

∣
∣
2

1,Ω
−

∣
∣u− uℓ+1

∣
∣
2

1,Ω
+ 2a

(
u− uℓ+1, uℓ − uℓ+1

)
. (5.24)

Now, (2.2) and (2.8) imply

2a
(
u− uℓ+1, uℓ − uℓ+1

)

= 2
(
f − fℓ+1, uℓ − uℓ+1

)

0,Ω
+ 2

(
〈〈σℓ+1, uℓ − uℓ+1〉〉 − 〈σ, uℓ − uℓ+1〉

)
. (5.25)

Using that f − fℓ+1 has zero integral mean on each T ∈ Tℓ+1, applying Young’s inequality and

(3.5), we obtain

2
∣
∣(f − fℓ+1, uℓ − uℓ+1)0,Ω

∣
∣ ≤

ε

2

(

|u− uℓ|
2
1,Ω + |u− uℓ+1|

2
1,Ω

)

+
4

ε
ρ2osc

2
ℓ(f). (5.26)
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On the other hand, taking advantage of σℓ+1 ∈ M+(Ω), the complementarity condition (2.9),

and σ ∈ V ∗
+, we find

2
(
〈〈σℓ+1, uℓ − uℓ+1〉〉 − 〈σ, uℓ − uℓ+1〉

)

= 2〈〈σℓ+1, uℓ − ψℓ〉〉
︸ ︷︷ ︸

≤ 0

+ 2
(
〈〈σℓ+1 − σ, ψℓ − ψℓ+1〉〉 − 〈σ, ψℓ − ψℓ+1〉

)

+ 2〈〈σℓ+1, ψℓ+1 − uℓ+1〉〉
︸ ︷︷ ︸

= 0

+ 2〈σ, ψℓ − uℓ〉
︸ ︷︷ ︸

= conort
ℓ

− 2 〈σ, ψℓ+1 − uℓ+1〉
︸ ︷︷ ︸

≤ 0

. (5.27)

For the estimation of the second term on the right-hand side in (5.27) we set δψℓ
:= ψℓ − ψℓ+1

and recall (4.7) as well as

a
(
uℓ+1, vℓ+1

)

=(f, vℓ+1)0,Ω −
(
νΓ · ∇uℓ+1, vℓ+1

)

0,Γ
− 〈〈σℓ+1, vℓ+1〉〉, vℓ+1 ∈ Sℓ+1. (5.28)

Since δψℓ
∈ Sℓ+1 is an admissible test function in (4.7) and (5.28), by the trace inequality (4.12)

and by Young’s inequality we find

∣
∣2

(
〈〈σℓ+1 − σ, δψℓ

〉〉 − 〈σ, δψℓ
〉
)∣
∣

≤
∣
∣2a(u− uℓ+1, δψℓ

)
∣
∣ +

∣
∣〈νΓ · ∇(u− uℓ+1), δψℓ

〉Γ
∣
∣

≤
ε

2
|u− uℓ+1|

2
1,Ω +

2

ε
(1 + ρ3) osc

2
ℓ(ψ). (5.29)

Using (5.25)–(5.27) and (5.29) in (5.24) gives (5.23). �

We have now provided the prerequisites to prove the error reduction property (3.11) as

stated in Theorem 3.1.

Proof of Theorem 3.1. The reliability (4.1), the bulk criterion (3.3a) and (3.3b), the discrete

efficiency (5.1), and the assumption (3.7) imply the existence of a constant C > 0, depending

only on Θ and on the local geometry of the triangulation, such that

|u− uℓ|
2
1,Ω ≤ C

(

|uℓ − uℓ+1|
2
1,Ω + osc2ℓ + conrefℓ

)

.

Now, invoking the perturbed Galerkin orthogonality (5.23), we deduce

|u− uℓ+1|
2
1,Ω ≤

C(1 + ε/2)− 1

C(1 − ε)
|u− uℓ+1|

2
1,Ω + CCε

(
osc2ℓ + µ2

ℓ

)
+ Cconℓ,

where Cε := max
(
(4/ε + ε/2)ρ2, 8(1 + ρ3)/ε

)
. Together with (3.5) this proves (3.11) with

ρ1 :=
(
C(1 + ε/2)− 1

)
/
(
C(1 − ε)

)
< 1 for ε < 2/(3C). �

6. Numerical Results

In this section, we provide a detailed documentation of the convergence history of the AFEM

for two illustrative elliptic obstacle problems.
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Fig. 6.1. Visualization of the solution of the obstacle problem in Example 1.

Fig. 6.2. Adaptive refined grid after 7 (left) and 10 (right) refinement steps (Θ = 0.6 in the bulk

criterion).

Example 1. We consider an obstacle problem of the form (2.1) in an L-shaped domain where

the obstacle is an ‘inverted’ pyramid. The data are as follows

Ω := (−2, 2)2 \
(
[0, 2]× [−2, 0]

)
, ψ(x) := 0.5

(
2.01 − dist(x, ∂[−2, 2]2), x ∈ Ω,

f(r, ϕ) := −r2/3 sin(2ϕ/3)
(
γ′1(r)/r + γ′′1 (r)

)
−

4

3
r−1/3γ′1(r) sin(2ϕ/3) − γ2(r),

γ1(r) =







1, r̄ < 0,

−6r̄5 + 15r̄4 − 10r̄3 + 1, 0 ≤ r̄ < 1,

0, r̄ ≥ 1,

γ2(r) =

{
0 , r ≤ 5/4,

1 , elsewhere,

where r̄ = 2(r − 1/4) and (r, ϕ) stand for polar coordinates.

Figure 6.1 displays a visualization of the solution, whereas Figure 6.2 shows the adaptively

generated finite element meshes after 7 (left) and 10 (right) refinement steps of the adaptive

loop
(
Θ = 0.6 in the bulk criterion (3.3), (3.3a)

)
. The coincidence set is a small region at the

upper fore side of the hill-like structure seen in Figure 6.1 where the solution is in contact with
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Table 6.1: Convergence history of the adaptive refinement process in Example 1.

ℓ Nℓ εℓ ηℓ oscℓ(f) µℓ(ψ) Mη,ℓ Mosc,ℓ

1 15 1.19e+00 5.61e+00 7.96e+00 2.45e+00 49.5 34.9

2 37 1.09e+00 5.57e+00 5.29e+00 1.73e+00 33.1 19.4

3 76 7.18e-01 3.90e+00 2.07e+00 1.37e+00 27.3 15.4

4 171 5.08e-01 2.70e+00 8.12e-01 1.09e+00 33.4 14.1

5 361 3.38e-01 1.82e+00 3.78e-01 8.79e-01 36.7 9.9

6 851 2.16e-01 1.20e+00 2.22e-01 7.29e-01 31.0 3.2

7 1596 1.54e-01 8.52e-01 1.46e-01 6.06e-01 34.5 3.6

8 3273 1.06e-01 5.85e-01 7.29e-02 5.04e-01 34.1 2.4

9 6356 7.54e-02 4.17e-01 4.50e-02 4.21e-01 35.2 2.0

10 12340 5.41e-02 2.98e-01 2.57e-02 3.51e-01 35.4 1.2

11 23988 3.90e-02 2.16e-01 1.60e-02 2.92e-01 34.4 0.9

12 45776 2.79e-02 1.56e-01 9.63e-03 2.44e-01 35.4 0.6

13 88439 1.99e-02 1.14e-01 5.92e-03 2.04e-01 36.0 0.4

14 166926 1.37e-02 8.36e-02 3.46e-03 1.71e-01 33.8 0.3

10-2

10-1

100

101

101 102 103 104 105 106

N

ε
l

θ = 0.2
θ = 0.4
θ = 0.6
uniform

0.5

1.0

Fig. 6.3. Energy norm of

the error as a function of the

DOFs for adaptive and uni-

form refinement in Example

1.

the inverted pyramid. We see that the refinement is dominant along the diagonal and in a

circular region around the reentrant corner where the solution exhibits singular behavior.

Table 6.1 reflects the convergence history of the AFEM where ℓ stands for the refinement

level and Nℓ for the total number of degrees of freedom at level ℓ. Further, εℓ, ηℓ, oscℓ(f), and

µℓ(ψ) denote the energy norm of the discretization error, the error estimator, and the data os-

cillations in f and ψ, respectively. The quantity Mη,ℓ refers to the percentage of elements/edges

refined at level ℓ due to the bulk criterion (3.3a), (3.3b). Finally, Mosc,ℓ denotes the percentage

of additional elements/edges that had to be refined in order to guarantee a reduction of the

data oscillations.

Figure 6.3 displays the energy norm of the discretization error εℓ as a function of the

degrees of freedom (DOFs) for adaptive and uniform refinement. We see that in this case the

adaptive refinement is only slightly beneficial with both refinements showing the same rate of

convergence.
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Example 2. We consider the torsion of an elastic, perfectly plastic cylindrical bar Q := Ω ×

(0, L) of cross section Ω ⊂ R
2 and length L > 0. Denoting by ∂QL := Ω×{L}, ∂Q0 := Ω×{0},

and ∂Qs := ∂Ω× (0, L) the top and the bottom of the bar as well as its lateral surface, at ∂QL
the bar is twisted about the x3-axis by an angle θ > 0, whereas ∂Qs is supposed to be stress

free.

Fig. 6.4. Visualization of the solution of the elastic-plastic problem.

Fig. 6.5. Adaptive refined grid after 7 (left) and 12 (right) refinement steps (Θ = 0.6 in the bulk

criterion).

Using Hencky’s law for an isotropic material, modeling the plastic region by the von Mises

yield criterion, and normalizing physical constants, it can be shown that the equilibrium stress

tensor σ = (σij)
3
i,j=1 is given by σij = ∂u/∂x2, (i, j) ∈ {(1, 3), (3, 1)}, σij = −∂u/∂x1, (i, j) ∈

{(2, 3), (3, 2)}, and σij = 0 otherwise. Here u ∈ H1
0 (Ω) is the solution of the variational

inequality
∫

Ω

∇u · ∇(v − u) dx ≥ 2C

∫

Ω

(v − u) dx, v ∈ K, (6.1)



Error Reduction in Adaptive Finite Element Approximations of Elliptic Obstacle Problems 167

and K stands for the closed, convex set

K :=
{
v ∈ H1

0 (Ω) | v ≤ ψ := dist(·, ∂Ω) a.e. on Ω
}
.

We have chosen Ω as the L-shaped domain Ω := (−2, 2)2 \ ([0, 2] × [−2, 0]) and C = 5.

The computed solution and adaptively refined grids after 7 (left) and 12 (right) refinement

steps
(
Θ = 0.6 in the bulk criterion (3.3a), (3.3b)

)
are shown in Figures 6.4 and 6.5. The

coincidence and non-coincidence sets correspond to the plastic and elastic region, respectively.

The non-coincidence set consists of the union of a neighborhood of the edges forming the

reentrant corner and a neighborhood around the diagonals. As can be expected from the

properties of the solution, the refinement is concentrated within the non-coincidence set.

The convergence history of the AFEM is documented in Table 6.2 with the same notations

as in the first example. Since the right-hand side in the variational inequality is a constant,

Table 6.2: Convergence history of the adaptive refinement process in Example 2.

ℓ Nℓ εℓ ηℓ µℓ(ψ) Mη,ℓ Mµ,ℓ

2 65 2.49e+00 8.42e+00 3.46e+00 7.5 6.2

3 84 1.95e+00 4.99e+00 2.83e+00 10.9 4.3

4 113 1.73e+00 5.73e+00 2.29e+00 9.8 4.9

5 192 1.21e+00 5.91e+00 1.90e+00 18.3 4.1

6 336 9.26e-01 4.72e+00 1.57e+00 18.6 2.6

7 533 7.21e-01 3.67e+00 1.26e+00 20.1 3.6

8 1151 5.22e-01 2.49e+00 1.05e+00 20.0 1.3

9 1849 3.77e-01 1.77e+00 8.79e-01 25.2 2.1

10 3373 2.69e-01 1.30e+00 7.36e-01 24.2 0.9

11 5720 2.01e-01 9.50e-01 6.15e-01 26.2 1.4

12 11014 1.47e-01 6.85e-01 5.14e-01 27.1 0.5

13 19461 1.08e-01 5.06e-01 4.30e-01 26.1 0.8

14 34942 7.73e-02 3.71e-01 3.60e-01 31.8 0.4

15 67114 5.52e-02 2.75e-01 3.01e-01 26.5 0.4

16 123427 3.75e-02 2.01e-01 2.52e-01 30.8 0.2
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100

101

101 102 103 104 105 106
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Fig. 6.6. Energy norm as

a function of the DOFs for

adaptive and uniform refine-

ment.



168 D. BRAESS, C. CARSTENSEN, AND R.H.W. HOPPE

the associated data oscillations are zero. Figure 6.6 displays the energy norm of the discretiza-

tion error as a function of the degrees of freedom for adaptive and uniform refinement and

demonstrates the benefits of the adaptive approach for this example.
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