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Abstract

This paper develops and analyzes a moving mesh finite difference method for solving

partial integro-differential equations. First, the time-dependent mapping of the coordi-

nate transformation is approximated by a piecewise quadratic polynomial in space and

a piecewise linear function in time. Then, an efficient method to discretize the memory

term of the equation is designed using the moving mesh approach. In each time slice, a

simple piecewise constant approximation of the integrand is used, and thus a quadrature

is constructed for the memory term. The central finite difference scheme for space and the

backward Euler scheme for time are used. The paper proves that the accumulation of the

quadrature error is uniformly bounded and that the convergence of the method is second

order in space and first order in time. Numerical experiments are carried out to confirm

the theoretical predictions.
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1. Introduction

Moving mesh methods for solving partial differential equations(PDEs) work in the way
of moving the mesh points towards the region of large gradient while keeping the number of
mesh points fixed during the process. Over the past three decades focuses have been on the
development of algorithms for both mesh generation and discretizing the physical PDEs on
variable meshes. Blom, Sanz-Serna and Verwer [2] first classify the moving mesh algorithms —
BJCN scheme (it can be regarded as a special case of Godunov methods), IEL scheme (implicit-
Euler Lagrangian scheme), and RFDM (rezoning finite difference method). After then Tang
[16] classifies the moving mesh methods into two general classes: interpolation-free algorithms
and interpolation-based algorithms. In interpolation-free algorithms, the mesh equations and
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the original PDEs are solved simultaneously for the physical solution and the mesh, see e.g.,
[5,8,17]. In the interpolation-based algorithms, the solutions of the mesh equations and physical
equations are separate. The algorithms summarized in [2, 10, 15] (see also [17] and references
therein) belong to this group. Recently, the analysis on stability and convergence has been
brought up to attention. However, little achievement has been made in this direction. Jamet [9]
gives a convergence proof of BJCN scheme for the heat equation with moving boundaries,
where the mesh evolves uniformly with the moving boundaries. Their proof highly relies on
the uniformity of the spatial mesh in each time level, while the technique cannot be used for
the variable mesh in each time level. Recently, Ma [13] gives a convergence proof of BJCN
scheme on general variable mesh — equidistributing mesh. Mackenzie and Mekwi [14] prove an
asymptotic second-order convergence for a conservative IEL scheme which can be regarded as
a variant of BJCN scheme. Lipnikov and Shashkov [11] give a rigorous analysis on a rezoning
method where the rezoning mesh is generated by minimizing a posteriori error in L2 norm
instead of by an equidistribution principle.

In this paper, we design a stable and second-order scheme for partial integro-differential
equations which arise in many applications (e.g., [3, 19] and the references). Although the
scheme is more or less motivated by Mackenzie and Mekwi [14], it improves the accuracy to
second order using quadratic approximation to the mesh trajectory. In addition, the analysis is
given for integro-differential equations. This type of equations can generate singular solutions
whose locations are not known a priori. Thus moving mesh methods deserve to solving this
type of equations. To discretize the memory term with moving mesh, a piecewise constant
polynomial is used to approximate the integrand in each time slice. The accumulation of the
quadrature error is proven to be uniformly bounded and thus the stability is derived under
several mild assumptions.

In particular, we consider a partial integro-differential equation of the form

ut + aux − κuxx +
∫ t

0

k(x, t, s)u(x, s) ds = 0, x ∈ I ≡ [xL, xR], t ∈ J ≡ [0, T ], (1.1)

u(x, 0) = u0(x), x ∈ I, (1.2)

u(xL, t) = bL(t), u(xR, t) = bR(t), t ∈ J. (1.3)

where a is a constant advection velocity and κ a constant diffusivity, the integral is called
memory term, k(x, t, s) is the kernel function satisfying

max
x∈I

|k(x, t, s)| ≤ C|A(t, s)Kα(t− s)|,

where A is sufficiently smooth in t and s, and the Hammerstein kernel

Kα(t− s) =
{

(t− s)−α, 0 < α < 1,

K(t− s), otherwise,

K is smooth function, Kα(t− s) = (t− s)−α is said to be weakly singular kernel.
The mesh movement is based on the time-dependent mapping

x(·, t) : Ic ≡ [0, 1] → I ≡ [xL, xR].

Then a function u(x, t) in physical variables is transformed into the function in computational
variables

u(x, t) = u(x(ξ, t), t).
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Thus by chain rule the material derivative is given by

u̇ = ut + ẋux.

Moreover,

ut = u̇− ẋux, ux =
uξ

xξ
, uxx =

(ux)ξ

xξ
=

(
uξ

xξ

)

ξ

/xξ. (1.4)

Put the arguments (1.4) into the original equation (1.1). Then equation (1.1) is recast into

˙(xξu)− ẋξu− (ẋ− a)uξ −
(

κ
uξ

xξ

)

ξ

+ xξ

∫ t

0

k(x, t, s)u(x, s) ds = 0. (1.5)

The moving mesh method studied in this paper is essentially the finite difference method for
the transformed equation (1.5) in computational variable ξ and temporal variable t (see (2.11)).
Furthermore, the mapping x(ξ, t) is approximated by a piecewise quadratic polynomial in space
and linear polynomial in time to obtain second order convergence which is one of the major
achievements of this paper.

2. Discretization of Moving Mesh Equation and Numerical Scheme

Define a uniform mesh in the computational variables

ξj =
j

N
, j = 0, 1, . . . , N.

Then a moving mesh is given by

xj(t) ≡ x(ξj , t), j = 0, 1, . . . , N,

where x0 ≡ xL and xN ≡ xR. The measure of each physical cell will be denoted by

hj(t) = xj(t)− xj−1(t), j = 1, 2, . . . , N.

Define a temporal mesh 0 = t0 < t1 < · · · < tL = T , and write ∆tn = tn − tn−1. Given the
mapping x(ξ, t), the location of the physical mesh points at time level t = tn and t = tn+1, is
well determined. Define

xj−1/2(tn) =
xj−1(tn) + xj(tn)

2
, j = 1, . . . , N, n = 0, 1, . . . , L.

Define xh(ξ, t) that is piecewise quadratic in space and linear in time (see figure 2.1) as an
approximation of function x(ξ, t). More precisely define

xh(ξ, tn) = xj−1/2(tn)`0(ξ) + xj(tn)`1(ξ) + xj+1/2(tn)`2(ξ),

for ξ ∈ [ξj−1/2, ξj+1/2], where ξj−1/2 is the midpoint of ξj−1 and ξj , `0, `1, `2 are quadratic La-
grange polynomials on points ξj−1/2, ξj , ξj+1/2. Then for t ∈ [tn, tn+1] and ξ ∈ [ξj−1/2, ξj+1/2],

xh(ξ, t) = xh(ξ, tn) + (t− tn)
xh(ξ, tn+1)− xh(ξ, tn)

tn+1 − tn
.
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Fig. 2.1. xh(ξ, t), (ξ, t) ∈ [ξj−1/2, ξj+1/2]× [tn, tn+1]

It is easy to see that xh(ξ, t) satisfies

(ẋh
ξ )n+1

j =
(xh

ξ )n+1
j − (xh

ξ )n
j

tn+1 − tn
=

ẋh(ξj+1/2, tn+1)− ẋh(ξj−1/2, tn+1)
4ξ

, (2.1)

where the second equality states a discrete geometric conservation law (DGCL) (or discrete
version of (4) in [4]).

We make three assumptions for the moving mesh:

(A1) |xn+1
j − xn

j | ≤ C∆tn+1 (2.2)

(A2) |hn
j+1 − hn

j | ≤ C min((hn
j+1)

2, (hn
j )2). (2.3)

(A3)
|hn+1

j+1 − hn
j+1|

min(hn+1
j+1 , hn

j+1)
≤ C∆tn+1. (2.4)

In this paper, C denotes a generic positive constant.

Remark 2.1. The limit of (A1) as tn → 0 means that the speed of mesh movement is uniformly
bounded. Assumption (A3) is also a condition on the mesh speed, which is equivalent to the
one used in Bank and Santos [1] for analysis of moving mesh finite element methods with time
being continuous. Also, we can see that using (A3) can yield (A1). In this sense, assumption
(A3) is more restrictive than (A1). However both of these assumptions hold true for the meshes
obtained by the equidistribution of a suitably smooth monitor function (cf. [6]). (A2) makes an
assumption on the smoothness of the time-dependent coordinate transformation (see also [14]).

Lemma 2.1. With assumption (A3), we have the estimations
∣∣∣(ẋh)n+1

j+1/2 − (ẋh)n+1
j−1/2

∣∣∣ ≤ C(hn+1
j+1 + hn+1

j ), (2.5)

and
∣∣(ẋh)n+1

j+1 − (ẋh)n+1
j

∣∣ ≤ C min

(
hn+1

j+1 ,
hn+1

j+1 + hn+1
j+2

2
,
hn+1

j+1 + hn+1
j

2

)
. (2.6)
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Proof. By (2.1)

∣∣∣(ẋh)n+1
j+1/2 − (ẋh)n+1

j−1/2

∣∣∣ =

∣∣∣∣∣∆ξ
(ẋh)n+1

j+1/2 − (ẋh)n+1
j−1/2

∆ξ

∣∣∣∣∣ =

∣∣∣∣∣∆ξ
(xh

ξ )n+1
j − (xh

ξ )n
j

∆tn+1

∣∣∣∣∣ .

Using

(xh
ξ )n

j ≡ xh
ξ (ξj , tn) =

xj+1/2(tn)− xj−1/2(tn)
∆ξ

=
1

∆ξ

(
hn

j+1 + hn
j

2

)
, (2.7)

gives that
∣∣∣(ẋh)n+1

j+1/2 − (ẋh)n+1
j−1/2

∣∣∣ =

∣∣∣∣∣
(hn+1

j+1 + hn+1
j )− (hn

j+1 + hn
j )

2∆tn+1

∣∣∣∣∣ .

Then using assumption (A3) leads to (2.5).
Since

ẋh(ξj , t) =
xj(tn+1)− xj(tn)

∆tn
≡ xn+1

j − xn
j

∆tn
, t ∈ (tn, tn+1], (2.8)

we have
∣∣(ẋh)n+1

j+1 − (ẋh)n+1
j

∣∣ =

∣∣∣∣∣
xn+1

j+1 − xn
j+1

∆tn
− xn+1

j − xn
j

∆tn

∣∣∣∣∣ =

∣∣∣∣∣
hn+1

j+1 − hn
j+1

∆tn

∣∣∣∣∣ .

Finally assumption (A3) gives the inequality (2.6). ¤

Now we derive the numerical scheme for (1.5) (equivalently for (1.1)). Denote the approxi-
mation of solution u by U and U(xn

j , tn) by Un
j . The forward and backward divided differences

are given by

(D+U)j =
Uj+1 − Uj

hj+1
, (D−U)j =

Uj − Uj−1

hj
,

and the average operator by

(δU)j+1/2 =
1
2
(Uj + Uj+1).

Using central finite difference method for space and Backward Euler (BE) for time to discretize
the non-integral parts of (1.5) gives that

˙(xξu)− ẋξu− (ẋ− a)uξ −
(

κ
uξ

xξ

)

ξ

≈ (xh
ξ U)n+1

j − (xh
ξ U)n

j

∆tn+1
− (ẋh

ξ )n+1
j Un+1

j

− 1
∆ξ

[
(κ(D+ −D−)U)n+1

j + ((ẋh)n+1
j − a)

(
(δU)n+1

j+1/2 − (δU)n+1
j−1/2

)]
.

Denote by φn
j the nodal basis function (piecewise linear) at point xn

j , j = 1, 2, . . . , N − 1. Then
define temporal piecewise constant and spatial piecewise linear polynomial

Ũ(x, t) ≡
N−1∑

j=0

Uk
j φk

j , t ∈ [tk, tk+1), for all k ≤ n. (2.9)
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The integral term in (1.5) is approximated by

(xh
ξ )n+1

j

∫ tn+1

0

k(xn+1
j , tn+1, s)u(xn+1

j , s) ds

=
1

∆ξ

hj + hj+1

2

∫ tn+1

0

k(xn+1
j , tn+1, s)u(xn+1

j , s) ds

≈ 1
∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)u(x, s)ds

)
dx

≈ 1
∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)Ũ(x, s)ds

)
dx. (2.10)

Hence we obtain a numerical scheme for (1.5) (i.e., for (1.1)) as follows:

(xh
ξ U)n+1

j =(xh
ξ U)n

j + ∆tn+1(ẋh
ξ )n+1

j Un+1
j

+
∆tn+1

∆ξ

[
(κ(D+ −D−)U)n+1

j + ((ẋh)n+1
j − a)

(
(δU)n+1

j+1/2 − (δU)n+1
j−1/2

)]

− ∆tn+1

∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)Ũ(x, s)ds

)
dx. (2.11)

3. Stability and Convergence

Define a mesh-dependent L2 norm (noting the homogeneous boundary conditions)

‖U‖n =




N−1∑

j=1

(
hn

j + hn
j+1

2

)
(Uj)2




1
2

=

∥∥∥∥∥∥

N−1∑

j=1

Ujχ
n
j

∥∥∥∥∥∥
L2

, (3.1)

where functions χn
j , j = 1, . . . , N − 1 are given by

χn
j (x) =

{
1 if x ∈ (xn

j −
hn

j

2 , xn
j + hn

j+1
2 );

0, otherwise.
(3.2)

Approximations of the derivatives will be measured in the cell-based norm

|||v|||n =




N−1∑

j=1

hn
j (vj)2




1
2

. (3.3)

Now we present the stability result.

Theorem 3.1. When the scheme (2.11) is applied to solve problem (1.1)-(1.3), for sufficiently
small temporal mesh size, under assumption (A3), the following a priori bound holds

‖Un+1‖n+1 ≤ C‖U0‖0, (3.4)

where C is a generic positive constant.
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Proof. Multiplying Un+1
j on both sides of (2.11) and summing over all interior nodes (since

U0 = UN = 0), we obtain

N−1∑

j=1

(xh
ξ )n+1

j (Un+1
j )2 = I + II + III + IV + V, (3.5)

where

I =
N−1∑

j=1

(xh
ξ )n

j Un
j Un+1

j ,

II = ∆tn+1

N−1∑

j=1

(ẋh
ξ )n+1

j (Un+1
j )2,

III =
κ∆tn+1

∆ξ

N−1∑

j=1

[((D+ −D−)U)n+1
j ]Un+1

j ,

IV =
∆tn+1

∆ξ

N−1∑

j=1

[
((ẋh)n+1

j − a)((δU)n+1
j+1/2 − (δU)n+1

j−1/2)
]
Un+1

j ,

V = −∆tn+1

∆ξ

N−1∑

j=1

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)Ũ(x, s)ds

)
dxUn+1

j .

Applying the identity

ab =
1
2
a2 +

1
2
b2 − 1

2
(a− b)2

to product Un
j Un+1

j in term I, we establish

I =
1
2

N−1∑

j=1

(xh
ξ )n

j [(Un
j )2 + (Un+1

j )2 − (Un
j − Un+1

j )2]

=
1
2

N−1∑

j=1

(xh
ξ )n

j (Un
j )2 +

1
2

N−1∑

j=1

(xh
ξ )n

j (Un+1
j )2 − 1

2

N−1∑

j=1

(xh
ξ )n

j (Un
j − Un+1

j )2. (3.6)

The second term in (3.6) is estimated, with the use of (2.1), (2.7) and then the definition of the
mesh-dependent L2 norm, to be

1
2

N−1∑

j=1

(xh
ξ )n

j (Un+1
j )2

=
1
2

N−1∑

j=1

(xh
ξ )n+1

j (Un+1
j )2 − ∆tn+1

2∆ξ

N−1∑

j=1

(
(ẋh)n+1

j+1/2 − (ẋh)n+1
j−1/2

)
(Un+1

j )2

=
1

2∆ξ
||Un+1||2n+1 −

∆tn+1

2∆ξ

N−1∑

j=1

(
(ẋh)n+1

j+1/2 − (ẋh)n+1
j−1/2

)
(Un+1

j )2.

Replacing the second term of (3.6) with the above estimation, and with the assistance of (2.5),
we obtain that

I ≤ 1
2∆ξ

(‖Un‖2n + ‖Un+1‖2n+1 − ‖Un+1 − Un‖2n
)

+ C
∆tn+1

∆ξ
‖Un+1‖2n+1. (3.7)
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Using (2.1) and (2.5),

II =
∆tn+1

∆ξ

N−1∑

j=1

(
ẋn+1

j−1/2 − ẋn+1
j+1/2

)
(Un+1

j )2 ≤ C
∆tn+1

∆ξ
||Un+1||2n+1. (3.8)

Using the same arguments as [14, (3.12)], we have

III = −κ∆tn+1

∆ξ
|||D+Un+1|||2n+1. (3.9)

Since Un+1
0 = Un+1

N ≡ 0, we derive that

IV =
∆tn+1

2∆ξ

N−1∑

j=1

[
((ẋh)n+1

j − a)Un+1
j+1 Un+1

j − ((ẋh)n+1
j − a)Un+1

j Un+1
j−1

]

=
∆tn+1

2∆ξ




N−1∑

j=1

[
((ẋh)n+1

j − a)Un+1
j+1 Un+1

j

]−
N−2∑

j=1

[
((ẋh)n+1

j+1 − a)Un+1
j+1 Un+1

j

]



= −∆tn+1

2∆ξ

N−2∑

j=1

[
(ẋh)n+1

j+1 − (ẋh)n+1
j

]
Un+1

j+1 Un+1
j

≤ ∆tn+1

4∆ξ

N−2∑

j=1

∣∣(ẋh)n+1
j+1 − (ẋh)n+1

j

∣∣ ((Un+1
j+1 )2 + (Un+1

j )2)

≤ C
∆tn+1

∆ξ
‖Un+1‖2n+1, (3.10)

where the last inequality is obtained by (2.6). Now we estimate term V, mainly using the
geometric inequality, as follows:

V ≤∆tn+1

∆ξ

N−1∑

j=1

|Un+1
j |

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

|K(tn+1, s)| |Ũ(x, s)|ds

)
dx

=
∆tn+1

∆ξ

N−1∑

j=1

∫ tn+1

0

|K(tn+1, s)|
(∫ xn+1

j+1/2

xn+1
j−1/2

|Un+1
j | |Ũ(x, s)|dx

)
ds

≤∆tn+1

2∆ξ

N−1∑

j=1

∫ tn+1

0

|K(tn+1, s)|
(∫ xn+1

j+1/2

xn+1
j−1/2

(Un+1
j )2dx +

∫ xn+1
j+1/2

xn+1
j−1/2

(Ũ(x, s))2dx

)
ds

=
∆tn+1

2∆ξ

∫ tn+1

0

|K(tn+1, s)|



N−1∑

j=1

∫ xn+1
j+1/2

xn+1
j−1/2

(Un+1
j )2dx +

N−1∑

j=1

∫ xn+1
j+1/2

xn+1
j−1/2

(Ũ(x, s))2dx


 ds

≤∆tn+1

2∆ξ

∫ tn+1

0

|K(tn+1, s)| ‖Un+1‖2n+1ds

+
∆tn+1

2∆ξ

n∑

k=0

∫ tk+1

tk

|K(tn+1, s)|
(∫ xR

xL

(Ũ(x, s))2dx

)
ds. (3.11)
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Since φk
i φk

j = 0 for |i− j| ≥ 2, we derive that

(Ũ(x, s))2 =




N−1∑

j=1

Uk
j φk

j




2

=
N−1∑

j=1

(Uk
j φk

j )2 + 2
N−2∑

j=1

(Uk
j φk

j )(Uk
j+1φ

k
j+1)

≤ 3
N−1∑

j=1

(Uk
j φk

j )2 ≤ 3
N−1∑

j=1

(Uk
j )2|φk

j |.

Therefore,

V ≤∆tn+1

2∆ξ

∫ tn+1

0

|K(tn+1, s)|ds ‖Un+1‖2n+1

+
3∆tn+1

2∆ξ

n∑

k=0

∫ tk+1

tk

|K(tn+1, s)|



N−1∑

j=1

(Uk
j )2

∫ xR

xL

|φk
j |dx


 ds.

Finally by equality ∫ xR

xL

|φk
j | dx =

hk
j + hk

j+1

2
,

we obtain

V ≤∆tn+1

2∆ξ

∫ tn+1

0

|K(tn+1, s)|ds||Un+1||2n+1

+
3∆tn+1

2∆ξ

n∑

k=0

∫ tk+1

tk

|K(tn+1, s)|ds||Uk||2k. (3.12)

Combining the estimations for terms I, II, III, IV,V, i.e., (3.7), (3.8), (3.9), (3.10), (3.12) into
(3.5) gives that

‖Un+1‖2n+1 ≤
(‖Un‖2n − ‖Un+1 − Un‖2n

)− 2κ∆tn+1|||D+Un+1|||2n+1

+ C∆tn+1‖Un+1‖2n+1 + ∆tn+1

∫ tn+1

0

|K(tn+1, s)|ds‖Un+1‖2n+1

+ 3∆tn+1

n∑

k=0

∫ tk+1

tk

|K(tn+1, s)|ds‖Uk‖2k. (3.13)

Hence,

‖U `+1‖2`+1 ≤‖U `‖2` + C∆t`+1

[
1 +

∫ t`+1

0

|K(t`+1, s)|ds
]
‖U `+1‖2`+1

+ 3∆t`+1

∑̀

k=0

∫ tk+1

tk

|K(t`+1, s)|ds ‖Uk‖2k. (3.14)

Summing (3.14) for ` = 0, 1, . . . , n leads to

‖Un+1‖2n+1 ≤‖U0‖20 + C

n∑

`=0

∆t`+1

[
1 +

∫ t`+1

0

|K(t`+1, s)| ds

]
‖U `+1‖2`+1

+ 3
n∑

`=0

∆t`+1

∑̀

k=0

∫ tk+1

tk

|K(t`+1, s) ds ‖Uk‖2k.
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Then

‖Un+1‖2n+1 ≤
‖U0‖20

1− C∆tn+1
+

C

1− C∆tn+1

[ n∑

`=1

∆t`‖U `‖2`

+
n∑

`=0

∆t`+1

∑̀

k=0

∫ tk+1

tk

|K(t`+1, s)| ds‖Uk‖2k
]
.

Applying standard discrete Gronwall inequality (or the variant version [18, Lemma 6.4] for
weakly singular kernel K = t−α, 0 < α < 1), for sufficiently small temporal mesh size, we
obtain the desired result. ¤

Now we establish a convergence result for the fully discrete scheme.

Theorem 3.2. When the scheme (2.11) is applied to solve problem (1.1)-(1.3), under assump-
tions (A1), (A2) and (A3), the error has a bound

‖en‖n ≤ C max(τ, N−2), (3.15)

where τ ≡ max
(n)

∆tn.

Proof. Use x = xh(ξ, t) ((ξ, t) ∈ [ξj−1/2, ξj+1/2]× (tn, tn+1]) to recast the original equation
(1.1) into

˙(
xh

ξ u
)
− ẋh

ξ u− (ẋh − a)uξ −
(

κ
uξ

xh
ξ

)

ξ

+ xh
ξ

∫ t

0

k(xh, t, s)u(xh, s) ds = 0. (3.16)

Define truncation error Tn+1
j to satisfy

(xh
ξ u)n+1

j =(xh
ξ u)n

j + ∆tn+1(ẋh
ξ )n+1

j un+1
j

+
∆tn+1

∆ξ

(
(κ(D+ −D−)u)n+1

j + ((ẋh)n+1
j − a)

(
(δu)n+1

j+1/2 − (δu)n+1
j−1/2

))

− ∆tn+1

∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)ũ(x, s)ds

)
dx + ∆tn+1T

n+1
j , (3.17)

where un
j = u(xn

j , tn) and

ũ(x, t) ≡
N−1∑

j=0

uk
j φk

j , t ∈ [tk, tk+1), for all k ≤ n. (3.18)

Since (xh)n+1
j ≡ xh(ξj , tn+1) = x(ξj , tn+1) ≡ xn+1

j , we know that un
j = u(xn+1

j , tn+1) =
u((xh)n+1

j , tn+1). Hence we have that

Tn+1
j = (i) + (ii) + (iii) + (iv), (3.19)
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where

(i) =
(xh

ξ )n+1
j un+1

j − (xh
ξ )n

j un
j

∆tn+1
− ˙(xh

ξ u)
n+1

j
,

(ii) =

(
κ

uξ

xh
ξ

)

ξ

− κ
D+un+1

j −D−un+1
j

∆ξ
,

(iii) =
1

∆ξ

(
((ẋh)n+1

j − a)((δu)n+1
j+1/2 − (δu)n+1

j−1/2)
)
− ((ẋh − a)uξ),

(iv) =
1

∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)ũ(x, s)ds

)
dx

− (xh
ξ )n+1

j

∫ tn+1

0

k(xn+1
j , tn+1, s)u(xn+1

j , s)ds.

Here and in the following, all functions are evaluated at (xn+1
j , tn+1). We estimate (i)-(iv) term

by term. Let rj,n+1 = xn+1
j −xn

j . Then from (2.8), we have that rj,n+1 = (ẋh)n+1
j ∆tn+1. Using

Taylor theorem, we derive that

un
j =u(xn

j , tn) = u(xn+1
j , tn+1)− ux(xn+1

j , tn+1)(xn+1
j − xn

j )

− ut(xn+1
j , tn+1)(tn+1 − tn) +

1
2
uxx(xn+1

j , tn+1)(xn+1
j − xn

j )2

+ uxt(xn+1
j , tn+1)(xn+1

j − xn
j )(tn+1 − tn) +

1
2
utt(xn+1

j , tn+1)(tn+1 − tn)2

+ o
(
r2
j,n+1 + rj,n+1∆tn + (∆tn)2

)
.

Apply fundamental theorem of calculus to obtain

˙(xh
ξ u)|(xn+1

j ,tn+1)

=(ẋh
ξ )n+1

j u(xn+1
j , tn+1) + (xh

ξ )n+1
j ux(xn+1

j , tn+1)ẋh(ξj , tn+1) + (xh
ξ )n+1

j ut(xn+1
j , tn+1)

Inserting these estimates into the expression of (i) and using (2.7), we derive that

(i) =−
(

(xh
ξ )n+1

j − (xh
ξ )n

j

)
ux(xn+1

j , tn+1)
rj,n+1

∆tn+1
− (

(xh
ξ )n+1

j − (xh
ξ )n

j )
)
ut(xn+1

j , tn+1)

− (xh
ξ )n

j

2

(
uxx(xn+1

j , tn+1)
r2
j,n+1

∆tn+1
+ 2uxt(xn+1

j , tn+1)rj,n+1 + utt(xn+1
j , tn+1)∆tn+1

)

+
(xh

ξ )n
j

∆tn+1
o
(
r2
j,n+1 + rj,n+1∆tn + (∆tn)2

)

=− (hn+1
j+1 + hn+1

j )− (hn
j + hn

j+1)
2∆ξ

(
ux

rj,n+1

∆tn+1
+ ut

)

− hn
j+1 + hn

j

4∆ξ

(
uxx

r2
j,n+1

∆tn+1
+ 2uxtrj,n+1 + utt∆tn+1

)

− hn
j+1 + hn

j

2∆ξ

(
o(r2

j,n+1)
∆tn+1

+ o(rj,n+1) + o(∆tn+1)

)
. (3.20)
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It follows from Taylor theorem that

(ii) =
κ

6
uxxx

(hn+1
j+1 + hn+1

j )(hn+1
j+1 − hn+1

j )
∆ξ

+
O((hn+1

j+1 )3) +O((hn+1
j )3)

∆ξ
, (3.21)

and also from (2.8) that

(iii) =
hn+1

j+1 + hn+1
j

4∆ξ

(
uxx((ẋh)n+1

j − a)(hn+1
j+1 − hn+1

j )
)

+
O((hn+1

j+1 )3 + (hn+1
j )3)

∆ξ
. (3.22)

By (2.7), we have

(iv) =
hn+1

j+1 + hn+1
j

2∆ξ

∫ tn+1

0

k(xn+1
j , tn+1, s)

×
(

2
hn+1

j+1 + hn+1
j

∫ xn+1
j+1/2

xn+1
j−1/2

(ũ(x, s)− u(xn+1
j , s))dx

)
ds. (3.23)

Let en
j ≡ u(xn

j , tn)− Un
j , j = 1, . . . , N − 1; n = 0, 1, . . . , L. Then subtract (2.11) from (3.17)

to give

(xh
ξ )n+1

j en+1
j

=(xh
ξ )n

j en
j +

∆tn+1

∆ξ

(
(κ(D+ −D−)e)n+1

j + ((ẋh)n+1
j+1/2 − a)((δe)n+1

j+1/2 − (δe)n+1
j−1/2)

)

− ∆tn+1

∆ξ

∫ xn+1
j+1/2

xn+1
j−1/2

(∫ tn+1

0

k(xn+1
j , tn+1, s)E(x, s)ds

)
dx + ∆tn+1T

n+1
j , (3.24)

where

E(x, t) =
N−1∑

j=0

ek
j φk

j , t ∈ [tk, tk+1), k = 0, 1, . . . , n. (3.25)

Multiplying en+1
j on both sides of (3.24), summing over all interior nodes, and using the same

technique as in Theorem 3.1 and geometric inequality to treat the last term, we obtain

||en+1||2n+1 ≤||en||2n + ∆tn+1

∫ tn+1

0

|K(tn+1, s)|ds||en+1||2n+1

+ 3∆tn+1

n∑

k=0

∫ tk+1

tk

|K(tn+1, s)|ds||ek||2k + ∆tn+1||en+1||2n+1

+ ∆tn+1

N−1∑

j=1

(∆ξ)2

2(hn+1
j+1 + hn+1

j )

(
Tn+1

j

)2
. (3.26)

This estimation is similar to (3.13). Thus similarly using Gronwall inequality we arrive at

‖en+1‖2n+1 ≤ C


‖e0‖20 +

n∑

`=0

∆t`+1

N−1∑

j=1

(h`+1
j+1 + h`+1

j )

(
∆ξ

h`+1
j+1 + h`+1

j

T `+1
j

)2

 . (3.27)

Recall the equi-distribution principle, for j = 0, 1, . . . , N and n = 0, 1, . . . , L:
∫ xn

j+1

xn
j

M(x, t) dx =
1
N

∫ xR

xL

M(x, t) dx.
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Since monitor functions M > 1, for suitable smooth monitor function such that
∫ xR

xL

M(x, t) dx ≤ C,

we have

hn
j ≡ xn

j+1 − xn
j ≤

∫ xn
j+1

xn
j

M(x, t) dx

=
1
N

∫ xR

xL

M(x, t) dx ≤ CN−1. (3.28)

Using the estimations (3.20)-(3.23) in (3.27), and applying assumptions (A1)-(A3), and estima-
tion (3.28), we obtain that

n∑

`=0

∆t`+1

N−1∑

j=1

(h`+1
j+1 + h`+1

j )

(
∆ξ

h`+1
j+1 + h`+1

j

T `+1
j

)2

≤C(τ + N−2)2 ≤ C
[
max(τ, N−2)

]2
.

Incorporating this estimation into (3.27) and using the fact that the initial error can be made
as accurate as

‖e0‖20 ≤ C
[
max(τ, N−2)

]2
,

we complete the proof of this theorem. ¤

4. Numerical Experiments

We use the following example to test the analysis in the previous sections:

ut + aux − κuxx +
∫ t

0

k(x, t, s)u(x, s) ds = f(x, t), (x, t) ∈ [0, 1]× [0, 2], (4.1)

where a = 0.5, and

k(x, t, s) =t

[
1− tanh2(−x− 0.5s√

κ
)
]

,

f(x, t) =2
[
1− tanh2(−x− 0.5t√

κ
)
]

tanh(−x− 0.5t√
κ

)

+
√

κt tanh2(−x− 0.5t√
κ

)−√κt tanh2 x√
κ

,

with boundary conditions

u(0, t) =bL(t) = tanh
(

0.5t√
κ

)
,

u(1, t) =bR(t) = tanh
(−1 + 0.5t√

κ

)

and initial condition u(x, 0) = tanh(−x√
κ
). The exact solution is given by u = tanh(−x+0.5t√

κ
).
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Table 4.1: Rate for space using exact solution for adaptation of mesh

N L max
n
‖en‖∞ RS max

n
‖en‖n RS

5 10240 5.8337× 10−1 N/A 2.5875× 10−1 N/A

10 10240 1.7247× 10−1 1.76 6.6467× 10−2 1.96

20 10240 4.1414× 10−2 2.06 1.6400× 10−2 2.01

40 10240 1.0250× 10−2 2.01 4.0544× 10−3 2.01

80 10240 2.5546× 10−3 2.00 9.9464× 10−4 2.02

Table 4.2: Rate for time using exact solution for adaptation of mesh

N L max
n
‖en‖∞ RT max

n
‖en‖n RT

5 10 3.3067× 10−1 N/A 1.7117× 10−1 N/A

10 40 1.2805× 10−1 0.68 6.0434× 10−2 0.75

20 160 3.3246× 10−2 0.97 1.6131× 10−2 0.95

40 640 8.4293× 10−3 0.99 4.0684× 10−3 0.99

80 2560 2.1204× 10−3 1.00 1.0189× 10−3 0.99

We first consider κ = 0.01. The exact solution is used in the monitor function to adapt the
mesh. The temporal mesh is taken to be uniform. The spatial mesh at each time level tn is
obtained by equidistributing a smoothed monitor function M̃(x, tn) which is given by

M̃(x, tn) =0.1M(x− 0.1, tn) + 0.2M(x− 0.05, tn)

+ 0.4M(x, tn) + 0.2M(x + 0.05, tn) + 0.1M(x + 0.1, tn),

where M(x, tn) = 1 + |ux(x, tn)|.
Let N denote the number of the spacial mesh intervals and L the number of the temporal

mesh intervals. Define the rate for space by RS = log2 (Error(Nj)/Error(Nj−1))/log2 (Nj−1/Nj),
and the rate for time by RT = log2 (Error(Lj)/Error(Lj−1)) /log2 (Lj−1/Lj). The numerics in
Table 4.1 and Table 4.2 confirm that the convergence rate for space is O(N−2) and the rate for
time is O(τ) where τ = 1/L. Also the error versus time is plotted in Fig. 4.1.

Now we consider κ = 0.0005 and use computational solution to adapt the mesh. The node-
based smoothing technique, see e.g., [7], is adopted in the computation. The convergence rate
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Fig. 4.1. Error v.s. time with N = 40, L = 640
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Table 4.3: Rate for space using computational solution for adaptation of mesh

N L max
n
||en||∞ RS RT max

n
||en||n RS RT

15 200 1.9794× 10−1 N/A N/A 2.5781× 10−2 N/A N/A

30 800 3.6415× 10−2 2.44 1.22 8.6567× 10−3 1.57 0.79

60 3200 7.9080× 10−3 2.20 1.10 2.4782× 10−3 1.80 0.90

120 12800 1.9447× 10−3 2.02 1.01 6.4929× 10−4 1.93 0.97
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Fig. 4.2. Mesh trajectories: N = 15, L = 200 (left), N = 30, L = 800 (right)

for space as shown in Table 4.3 is pretty close to O(N−2), and the rate for time is close to
O(τ). The mesh trajectories are plotted in Fig. 4.2.

5. Concluding Remarks

In this paper, we construct a stable moving finite difference scheme for a class of linear partial
integro-differential equations. We prove that the convergence is first order in time and second
order in space. Although our proof is for linear equations, there is no essential difficulty to
extend the analysis to a more general case with smooth variable coefficients or nonlinear terms
with nonlinear function satisfying the Lipschitz conditions. Note that when k ≡ 0, the equation
(1.1) is reduced to a partial differential equation. Hence the result is also true for partial
differential equations. Mackenzie and Mekwi [14] use a piecewise linear approximation of the
time-dependent mapping x(ξ, t) for ξ in each time slice [tn, tn+1] and only get asymptotically
second-order convergence. While we use a piecewise quadratic approximation of the mapping
to obtain a second order convergence. An application of the moving mesh method proposed in
this paper to the simulation of blowup in reaction-diffusion equations with nonlocal terms is
given in [12].
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