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Abstract

We utilize Fourier methods to analyze the stability of the Yee difference schemes for

Bérenger PML (perfectly matched layer) as well as the UPML (uniaxial perfectly matched

layer) systems of two-dimensional Maxwell equations. Using a practical spectrum stability

concept, we find that the two schemes are spectrum stable under the same conditions for

mesh sizes. Besides, we prove that the UPML schemes with the same damping in both

directions are stable. Numerical examples are given to confirm the stability analysis for

the PML method.
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1. Introduction

A general approach in computational electromagnetic of finding infinite space solutions is
to introduce an absorbing boundary condition in the outer lattices boundary to simulate the
extension of the lattice to infinity. While an alternative approach is to terminate the outer
boundary of the space lattice in an absorbing material medium, the difficulty is that such an
absorbing layer is matched only to normally incident plane wave [1].

In 1994, Bérenger published a pioneer paper about the so-called perfectly matched layer
(PML) method. By splitting the field, plane waves of arbitrary incidence, polarization, and
frequency are matched at the boundary [2]. Since then, the PML has been very popular, and
many works from both engineering and mathematical points have been carried out in the fields.

According to Chew and Weedon’s observation, the system of the PML medium can be ob-
tained by a complex change of independent variables, which is the famous UPML [5]. Moreover,
Sack et al. imposed a physical model with perfectly matched medium on an anisotropic param-
eters without splitting the fields [6]. These two formulations are also mathematically identical,
and the fact was proved by Zhao and Cangellaris, provided that the electric and magnetic
fields presented in the Chew-Weedon stretched-coordinate formulation are properly defined [9].
Bramble and Pasciak have shown the existence and uniqueness of solutions to the truncated
time harmonic PML problem provided that the truncated domain is sufficiently large [10]. Bao
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and Wu have given the convergence analysis in spherical coordinates for a three-dimensional
electromagnetic scattering problem and established an explicit error estimate between the solu-
tion of the scattering problem and that of the truncated PML problem [11]. Chen and Liu have
developed an adaptive PML technique for solving the time harmonic scattering problems. Nu-
merical experiments are included to illustrate the competitive behavior of the proposed adaptive
method [12].

Although too many works have been reported about the PML and its successful applications,
still many questions are deserved to investigate. The stability of PML is one among them in
spite of some known results.

It is well known that the Maxwell’s equations are hyperbolic and symmetric; as a result, the
initial value problem is well-posed. On the other hand, the Bérenger’s PML is not symmetric
which may causes instability. However, the damping term is a “good” ingredient to improve
stability. The first analysis of the stability is due to the work of Abarbanel and Gottlieb [3].
They studied the split system of equations and proved that if damping parameter σ = 0 the
initial value problem of the system is weakly stable, namely, the L2-norm of the solutions
depend not only on the L2-norm of the initial data but also on the L2-norm of their derivatives.
They also studied the Yee’s scheme to this problem and showed that the numerical solutions
to the split TE model with σ = 0 grows linearly with the time step n, therefore the scheme
is unstable. It has been proved that the PML is weakly stable for σ > 0 as well, for example
see [13]. In order to overcome the weakly well-posedness, a lot of authors have designed new
modified PMLs, such as, Lions et al have imposed a new type of absorbing layer for Maxwell
equations and the linearized Euler equations, which is also valid for several classes of first order
hyperbolic system, and the associated Cauchy problems are proved well-posed [8]. Besides,
Zhao and Cangellaris in [9] proposed a modified PML by restoring the usual operator with
a new introduced unknown without splitting fields. Becache and Joly [7] made a thorough
investigation for the problem of stability. They proved the weak stability, and the equivalence
between the PML and the system in [9]. Moreover, they proved the stability of the initial value
problem of the system in [9] for all σ ≥ 0, and the stability of the Yee’s scheme to this problem
for all σ ≥ 0, too.

It looks like a contradiction that different works generate stable, unstable, or weakly stable
results to the same model. In fact, the properties of stability relate to different unknowns in
different formulations. For example, the Bérenger’s PML is a 4 × 4 system for the TE mode
with unknowns Ex, Ey,Hx and Hy, and the formulation by Zhao and Cangellaris is a 4 × 4
system with unknowns Ex, Ey, Ẽx and Hz. Consequently the L2-norm stability proved in [7]
does not apply to the Bérenger’s PML directly. Particularly if σ = 0, the Yee’s scheme to the
PML is unstable, while the scheme to the formulation by Zhao and Cangellaris is stable.

In this paper, we are interested in the stability property of the Yee’s scheme to the PMLs for
the case of σ ≥ 0. We will show that the damping parameter σ > 0 can improve the behavior
of stability. The scheme is no longer unstable but stable in a weaker sense which will be called
spectrum stability. For the UPML, it may be stable in some cases.

Regarding the stability analysis of PML methods, there are some other related works need
to be mentioned. Some more general formulations of PML have been derived by Appelo,
Hagstrom and Kreiss, and their stability is analyzed by using Schur criterion in the continuous
setting [15]. Ying has considered an exterior initial-boundary value problem of TM mode by
truncating the domain with the UPML, and obtained the existence and uniqueness of the weak
formulation [14]. Later on, Ying and Fang have analyzed the corresponding FDTD initial-
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boundary value problem on the truncated domain and proved the stability [16].
This following contents are organized as follows: Firstly in section 2, we recall the Bérenger

PML as well as the UPML for two-dimensional Maxwell equations and some energy norm
estimate results. Then in section 3, the Yee algorithms are applied to the PML system as
well as the UPML system. Via Fourier transform, we get the amplification matrices of the
difference equations. By analyzing the location of the latent roots of the amplification matrices,
we find that the two discrete systems are spectrum stable under the same mesh sizes conditions.
Moreover, we prove that the UPML scheme is stable with the same damping in both directions.
We at last in section 4 give some numerical examples, and the results show that the Yee
difference schemes are stable for the PML systems with proper initial boundary conditions.

2. PML and UPML Systems

In the following discussions, we will set the equations of a PML medium for the two-
dimensional TE (transverse electric) mode. The results for the TM (transverse magnetic)
mode are similar.

Consider a problem in Cartesian coordinates without variation along z, with the electric field
lying in the (x, y) plane. The electromagnetic field involves three components Ex,Ey,Hz, and
the simplified dimensionless Maxwell equations in a medium reduce to a set of three equations:

∂Ey

∂t
+ σ1Ey =

∂Hz

∂x
, (2.1)

∂Ex

∂t
+ σ2Ex =

∂Hz

∂y
, (2.2)

∂Hz

∂t
+ ρ∗Hz =

∂Ex

∂y
+

∂Ey

∂x
. (2.3)

Following Bérenger’s idea [2], the orthogonal magnetic field Hz is split into nonphysical com-
ponents Hx and Hy, i.e:, Hz = Hx + Hy. The system (2.1)-(2.3) becomes the following 4 × 4
PML system,

∂Ey

∂t
+ σ1Ey =

∂(Hx + Hy)
∂x

,
∂Ex

∂t
+ σ2Ex =

∂(Hx + Hy)
∂y

, (2.4)

∂Hx

∂t
+ σ1Hx =

∂Ey

∂x
,

∂Hy

∂t
+ σ2Hy =

∂Ex

∂y
. (2.5)

Let U = (Hz, Ey, Ex)T , and

E(t) =
∫

R2

(∣∣∣∣
∂U

∂t

∣∣∣∣
2

+
∣∣∣∣
∂U

∂x

∣∣∣∣
2

+
∣∣∣∣
∂U

∂y

∣∣∣∣
2
)

dxdy, ‖Hx(t)‖20 =
∫

R2
H2

x dxdy.

The following results have been proved in or extended from Chapter 5 of [13] by energy methods.

Theorem 2.1. If the solution (U,Hx) to the system (2.4)-(2.5) with σ1 = σ2 = 0 belongs to
the Sobolev space H1([0,∞); H1(R2)), then the following properties are valid:

E(t) = E(0), (2.6)

‖Hx(t)‖0 ≤ ‖Hx(0)‖0 +
∫ t

0

E(τ)
1
2 dτ. (2.7)
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Theorem 2.2. If the solution (U,Hx) to the system (2.4)-(2.5) belongs to the space H1([0,∞);
H1(R2)), then the following properties are valid:

E(t) ≤ C(σ1, σ2)eC (σ1+σ2)t
(
E(0) + ‖Hx(0)‖20 + ‖Hy(0)‖20

)
,

‖Hx(t)‖0 ≤ e−σ1t‖Hx(0)‖0 +
∫ t

0

E(τ)
1
2 dτ,

‖Hy(t)‖0 ≤ e−σ2t‖Hy(0)‖0 +
∫ t

0

E(τ)
1
2 dτ,

(2.8)

where C(σ1, σ2) depends on σ1 and σ2.

Remark 1. The estimates (2.7)-(2.8) are classified as a “weak stability”, since the L2-norms of
Hx and Hy are bounded not only by the L2-norms of the initial data, but also by the L2-norms
of the derivatives of the initial data. Similar results have also been obtained by using the energy
methods in [7]. This property may cause instabilities in numerical computations, see Example
1 in Section 4.

Bérenger’s PML method yields only a weakly stable system [3]. It is desirable to replace it
to a form without splitting the field, that is the uniaxial perfectly matched layer [5].

Consider, for example, a UPML in a square domain {a < |α| < a + d} which surrounds
the original Maxwell equations in {|α| < a}, where α can be either x or y. d is the thickness
of medium, and a is the length of truncated domain. Now we introduce a complex change of
independent variables which are continuous on the interface,

α =





α, |α| < a,

a + (1 + i σ
ω )(α− a), α > a,

−a + (1 + i σ
ω )(α + a), α < −a.

(2.9)

By use of Fourier transform, it is easy to get the UPML system in different domains [14]. For
σ2 = 0, the UPML system is

∂Hz

∂t
=

∂ey

∂x
+

∂Ex

∂y
,

∂Ey

∂t
=

∂hz

∂x
, (2.10a)

∂Ex

∂t
=

∂Hz

∂y
,

∂Hz

∂t
=

∂hz

∂t
+ σ1hz,

∂Ey

∂t
=

∂ey

∂t
+ σ1ey. (2.10b)

For σ1 = σ2 = σ, the UPML system is
∂Ex

∂t
=

∂hz

∂y
,

∂Ey

∂t
=

∂hz

∂x
,

∂Hz

∂t
=

∂ey

∂x
+

∂ex

∂y
, (2.11a)

∂Ex

∂t
=

∂ex

∂t
+ σex,

∂Ey

∂t
=

∂ey

∂t
+ σey,

∂Hz

∂t
=

∂hz

∂t
+ σhz. (2.11b)

The variables Ex, Ey, and Hz in (2.10) and (2.11) are the original ones in (2.2)-(2.3). They are
linked with ex, ey, hz by relationships

Ĥz =
(
1 + i

σ

ω

)
ĥz, Êy =

(
1 + i

σ

ω

)
êy, Êx =

(
1 + i

σ

ω

)
êx,

and symbol “ ˆ ” represents the corresponding Fourier transform about the time and the spatial
variables [14].

3. Fourier Analysis to the Yee Schemes

3.1. Yee Scheme to the PML System

A very practical difference scheme in computational electromagnetics is due to Yee. The
algorithm solves both electric and magnetic fields in time and space using the coupled Maxwell’s
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curl equations [1]. We now apply the Yee algorithm to the PML equations (2.4)-(2.5). In order
to represent different systems, we introduce a parameter θ (0 ≤ θ ≤ 1) for the damping terms,
then get the discrete system as (3.1)-(3.4). Since the Yee algorithm is a leapfrog scheme in time
and central-difference in space, the scheme is of second-order accurate if θ = 1

2 :

Ey|n+1
i,j+ 1

2
− Ey|ni,j+ 1

2

τ
+ σ1

(
θEy|ni,j+ 1

2
+ (1− θ)Ey|n+1

i,j+ 1
2

)
= δx

(
Hx|n+ 1

2
i,j+ 1

2
+ Hy|n+ 1

2
i,j+ 1

2

)
, (3.1)

Ex|n+1
i+ 1

2 ,j
− Ex|ni+ 1

2 ,j

τ
+ σ2

(
θEx|ni+ 1

2 ,j + (1− θ)Ex|n+1
i+ 1

2 ,j

)
= δy

(
Hx|n+ 1

2
i+ 1

2 ,j
+ Hy|n+ 1

2
i+ 1

2 ,j

)
, (3.2)

Hx|n+ 1
2

i+ 1
2 ,j+ 1

2
−Hx|n−

1
2

i+ 1
2 ,j+ 1

2

τ
+ σ1

(
θHx|n−

1
2

i+ 1
2 ,j+ 1

2
+ (1− θ)Hx|n+ 1

2
i+ 1

2 ,j+ 1
2

)
= δxEy|ni+ 1

2 ,j+ 1
2
, (3.3)

Hy|n+ 1
2

i+ 1
2 ,j+ 1

2
−Hy|n−

1
2

i+ 1
2 ,j+ 1

2

τ
+ σ2

(
θHy|n−

1
2

i+ 1
2 ,j+ 1

2
+ (1− θ)Hy|n+ 1

2
i+ 1

2 ,j+ 1
2

)
= δyEx|ni+ 1

2 ,j+ 1
2
, (3.4)

where
Eα|ni,j = Eα|t=nτ

x=ih1,y=jh2
, Hα|n+ 1

2
i,j = Hα|t=(n+ 1

2 )τ

x=ih1,y=jh2
,

τ is the time step length, h1, h2 are the mesh sizes, α represents x, y; δα is the finite difference
operator, e.g.,

δxHx|n+ 1
2

i,j+ 1
2

=
1
h1

(
Hx|n+ 1

2
i+ 1

2 ,j+ 1
2
−Hx|n+ 1

2
i− 1

2 ,j+ 1
2

)
,

(i, j) can be either the integer grids or the shifted grids. The Fourier symbols δx and δy are,
respectively

δx → 2i sin θ1

h1
= i

k1

τ
, δy → 2i sin θ2

h2
= i

k2

τ
,

where −π/2 ≤ θ1, θ2 ≤ π/2.
The system (3.1)-(3.4) expressed in matrix form is A Un+1 = BUn, where

A =




1 + σ1τ(1− θ) 0 −ik1 −ik1

0 1 + σ2τ(1− θ) −ik2 −ik2

0 0 1 + σ1τ(1− θ) 0
0 0 0 1 + σ2τ(1− θ)


 ,

Un+1 =
(

Ey|n+1
i,j+ 1

2
Ex|n+1

i+ 1
2 ,j

Hx|n+ 1
2

i+ 1
2 ,j

Hy|n+ 1
2

i+ 1
2 ,j

)T

,

B =




1− σ1τθ 0 0 0
0 1− σ2τθ 0 0

ik1 0 1− σ1τθ 0
0 ik2 0 1− σ2τθ


 ,

Un =
(

Ey|ni,j+ 1
2

Ex|ni+ 1
2 ,j

Hx|n−
1
2

i+ 1
2 ,j

Hy|n−
1
2

i+ 1
2 ,j

)T

.

A natural way to show the stability of the schemes is to judge the uniform bound of the
amplification matrices. Unfortunately, we have found that the Kreiss theorem, J-conditions [17]
and Buchanan theorem [18] are all too difficult to be applied here.

As is well-known, the Von Neumann condition that the spectrum radius is less than or equal
to 1 +O(τ) is only a necessary condition for the stability of a difference scheme

Un+1 = GUn, n = 0, 1, · · · . (3.5)
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The amplification matrix G can be decomposed as G = T−1JT , where J is the Jordan
Matrix of G, and T is the matrix which are made up of the eigenvectors as the corresponding
rows. Setting up Vn = TUn, the difference scheme (3.5) turns to

Vn+1 = JVn, n = 0, 1, · · · . (3.6)

If the maximum mode of the latent roots of G is less than 1, or equal to 1 with G having complete
eigenvectors, then Vn = JnV0 and ‖Vn‖l2 ≤ C, where C is independent of n. Consequently, we
can introduce a weak stability concept, namely spectrum stability.

Spectrum Stability: The difference scheme

Un+1 = GUn, n = 0, 1, · · ·
is spectrum stable if the maximum mode of the latent roots of G is less than 1, or equal to
1 with G having complete eigenvectors.

Using the spectrum stability concept, we consider some particular cases of system (3.1)-(3.4)
in this section, and numerical examples for more general cases will be shown in the next section.

First, let σ2 = 0 and θ = 1. That is a PML with explicit damping terms in one direction
case. The amplification matrix is

G = A−1B =




1− k1
2 − τ σ1 −k1k2 ik1 (1− τσ1) ik1

−k1k2 1− k2
2 ik2 (1− τσ1) ik2

ik1 0 1− τσ1 0
0 ik2 0 1


 . (3.7)

The characteristic polynomial of G is

φ(x) =x4 + x3
(−4 + k1

2 + k2
2 + 2 τ σ1

)

+ x2
(
6− 2 k1

2 − 2 k2
2 − 6 τ σ1 + 2 τ k2

2 σ1 + τ2 σ1
2
)

+ x
(−4 + k1

2 + k2
2 + 6 τ σ1 − 2 τ k2

2 σ1 − 2 τ2 σ1
2 + τ2 k2

2 σ1
2
)

+ 1− 2 τ σ1 + τ2 σ1
2. (3.8)

Since the latent roots can not be effectively expressed, we need the following criterion, which
will be useful for the location of roots of polynomials.

Miller-Schur Criterion (see [4], p.77) A k-th degree polynomial

φ(x) = ckxk + ck−1x
k−1 + · · ·+ c1x + c0

with complex coefficients cs, s = 0, 1, · · · , k, where ck 6= 0, c0 6= 0, is said to be a Schur
polynomial if its roots xs satisfy |xs| < 1. Define the polynomial

ϕ(x) = c∗0x
k + c∗1x

k−1 + · · ·+ c∗k−1x + c∗k, (3.9)

where c∗s is the complex conjugate of cs, and the polynomial

φ1(x) =
1
x

(
ϕ(0)φ(x)− φ(0)ϕ(x)

)
(3.10)

which has degree at most k−1. Then φ(x) is a Schur polynomial if and only if |ϕ(0)| > |φ(0)|
and that φ1(x) is a Schur polynomial.



Stability analysis of Yee schemes of PML and UPML 735

According to the Miller-Schur Criterion, we start with φ(x) and construct the polynomial
series φ1(x), φ2(x), φ3(x) and ϕ(x), ϕ1(x), ϕ2(x), ϕ3(x) step by step.

• First Step: From (3.8) and (3.9), we obtain

ϕ(x) =1 + x4(1− 2 τ σ1 + τ2 σ2
1)

+ x
(−4 + k2

1 + k2
2 + 2 τ σ1

)

+ x2
(
6− 2 k2

1 − 2 k2
2 − 6 τ σ1 + 2 τ k2

2 σ1 + τ2 σ2
1

)

+ x3
(−4 + k2

1 + k2
2 + 6 τ σ1 − 2 τ k2

2 σ1 − 2 τ2 σ2
1 + τ2 k2

2 σ2
1

)
, (3.11)

and the characteristic polynomial (3.8) is a Schur polynomial if and only if |ϕ(0)| > |φ(0)|, i.e:

1 > (1− τ σ1)
2
, (3.12)

and φ1(x) is a Schur polynomial. For φ1(x) we go to

• Second Step: From (3.8)-(3.11), we get

φ1(x) =− τ σ1 (−2 + τ σ1)
(−2 + k2

1 + 2 τ σ1

)

+ x3
(
4 τ σ1 − 6 τ2 σ2

1 + 4 τ3 σ3
1 − τ4 σ4

1

)

− x τ σ1 (−2 + τ σ1)
(
6− 2 k2

1 − 6 τ σ1 + τ2 σ2
1 + 2 k2

2 (−1 + τ σ1)
)

− x2 τ σ1 (−2 + τ σ1)
(− 6 + k2

1 + 6 τ σ1 − 2 τ2 σ2
1 + k2

2 (p(τ, σ1))
)
, (3.13)

ϕ1(x) =− x3 τ σ1 (−2 + τ σ1)
(−2 + k2

1 + 2 τ σ1

)

+ τ σ1

(
4− 6 τ σ1 + 4 τ2 σ2

1 − τ3 σ3
1

)

− x2 τ σ1 (−2 + τ σ1)
(
6− 2 k2

1 − 6 τ σ1 + τ2 σ2
1 + 2 k2

2 (−1 + τ σ1)
)

− x τ σ1 (−2 + τ σ1)
(−6 + k2

1 + 6 τ σ1 − 2 τ2 σ2
1 + k2

2 (p(τ, σ1))
)
, (3.14)

where
p(τ, σ1) = 2− 2τσ1 + τ2σ2

1 .

Moreover, φ1(x) is a Schur polynomial if and only if |ϕ1(0)| > |φ1(0)|, i.e:

|τ σ1 (−2 + τ σ1)
(
2− 2 τ σ1 + τ2 σ1

2
) |

>|τ σ1 (−2 + τ σ1)
(−2 + k1

2 + 2 τ σ1

) |, (3.15)

and φ2(x) is a Schur polynomial. For φ2(x) we go to

• Third Step: The process goes on. From (3.10), (3.9), (3.14) and (3.16)), we have

φ2(x) =x2 τ2 σ2
1 (−2 + τ σ1)

2
(
−k4

1 + k2
1 (4− 4 τ σ1) + τ2 σ2

1 (−2 + τ σ1)
2
)

+ x τ2 σ2
1 (−2 + τ σ1)

2 {
2 k4

1 + τ2
(−2 + k2

2

)
σ2

1 (−2 + τ σ1)
2

− 2 k2
1

(−4 + k2
2

)
(−1 + τ σ1)

}
+ q(τ, σ1, k1, k2), (3.16)

ϕ2(x) =τ2 σ2
1 (−2 + τ σ1)

2
(
−k4

1 + k2
1 (4− 4 τ σ1) + τ2 σ2

1 (−2 + τ σ1)
2
)

+ x τ2 σ2
1 (−2 + τ σ1)

2 {
2 k4

1 + τ2
(−2 + k2

2

)
σ2

1 (−2 + τ σ1)
2

− 2 k2
1

(−4 + k2
2

)
(−1 + τ σ1)

}
+ x2q(τ, σ1, k1, k2) (3.17)

where

q(τ, σ1, k1, k2) =− τ2 σ2
1 (−2 + τ σ1)

2 {
k4
1 − τ2 σ2

1 (−2 + τ σ1)
2

+ k2
1

(−4 + 4 τ σ1 + k2
2 (p(τ, σ1))

) }
,
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and φ2(x) is a Schur polynomial if and only if |ϕ2(0)| > |φ2(0)|, i.e:

|τ2 σ1
2 (−2 + τ σ1)

2 (−2− k1 + τ σ1) (−2 + k1 + τ σ1)
(
k1

2 + τ2 σ1
2
) |

>|q(τ, σ1, k1, k2)|, (3.18)

and φ3(x) is a Schur polynomial. For φ3(x), we need to go to

• Fourth Step: Now it turns to require the first-order polynomial φ3(x) be a Schur polynomial,
where

φ3(x) =τ4 k2
1 k2

2 σ4
1 (−2 + τ σ1)

4 (p(τ, σ1))

·
(
2 k4

1 + τ2
(−2 + k2

2

)
σ2

1 (−2 + τ σ1)
2 − 2 k2

1

(−4 + k2
2

)
(−1 + τ σ1)

)

+ x τ4 k2
1 k2

2 σ4
1 (−2 + τ σ1)

4 (p(τ, σ1))

·
(
−2 k4

1 + 2 τ2 σ2
1 (−2 + τ σ1)

2 − k2
1

(−8 + 8 τ σ1 + k2
2 (p(τ, σ1))

))
, (3.19)

whose root satisfies |x| < 1 which is equivalent to∣∣∣∣τ4 k2
1 k2

2 σ4
1 (−2 + τ σ1)

4 (p(τ, σ1))

·
(
−2 k4

1 + 2 τ2 σ2
1 (−2 + τ σ1)

2 − k2
1

(−8 + 8 τ σ1 + k2
2 (p(τ, σ1))

)) ∣∣∣∣

>

∣∣∣∣τ4 k2
1 k2

2 σ4
1 (−2 + τ σ1)

4 (p(τ, σ1))

(
2 k4

1 + τ2
(−2 + k2

2

)
σ2

1 (−2 + τ σ1)
2 − 2 k2

1

(−4 + k2
2

)
(−1 + τ σ1)

) ∣∣∣∣. (3.20)

To sum up, φ(x) is a Schur polynomial if and only if (3.12), (3.15), (3.18) and (3.20) are satisfied
at the same time. Recurring to the software Mathematica 5.0 , we solve these inequalities one
by one, and then find the intersection to get the inequality solution sets as follows,




0 < τ <
2
σ1

,

k1 ∈ (−2 + σ1τ, 0) ∪ (0, 2− σ1τ),

k2 ∈

−

2
√
−k1

2 + (2− τ σ1)
2

2− τ σ1
, 0


 ∪


0,

2
√
−k1

2 + (2− τ σ1)
2

2− τ σ1


 .

(3.21)

Notice that (3.21) excludes ki = 0, i = 1, 2. In this case, the latent roots of the amplification
matrix are |x| = 1. However, it does not mean the schemes are not spectrum stable.

In fact, for k1 = 0, the latent roots of the amplification matrix (3.7) are{
2− k2

2 − k2

√
−4 + k2

2

2
,
2− k2

2 + k2

√
−4 + k2

2

2
, 1− τ σ1, 1− τ σ1

}
, (3.22)

and the corresponding eigenvectors are{
0,

i

2

(
k2 +

√
−4 + k2

2

)
, 0, 1

}
,

{
0,

i

2

(
k2 −

√
−4 + k2

2

)
, 0, 1

}
,

{
0,

i τ σ1

k2
,−

(−k2
2 + τ k2

2 σ1 − τ2 σ1
2

k2
2 (−1 + τ σ1)

)
, 1

}
, {1, 0, 0, 0}, (3.23)

when 0 ≤ k2
2 < 4, the maximum mode of the latent roots (3.22) is 1 and the eigenvectors are

complete.
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For k2 = 0, the latent roots of (3.7) are{
1, 1,

2− k1
2 − 2 τ σ1 − k1

√
−4 + k1

2 + 4 τ σ1

2
,
2− k1

2 − 2 τ σ1 + k1

√
−4 + k1

2 + 4 τ σ1

2

}
,

(3.24)
and the corresponding eigenvectors are{

i τ k1 σ1

k1
2 + τ2 σ1

2
, 0,− k1

2

k1
2 + τ2 σ1

2
, 1

}
, {0, 1, 0, 0}, (3.25)

{
i

2

(
k1 +

√
−4 + k1

2 + 4 τ σ1

)
, 0, 1, 0

}
,

{
i

2

(
k1 −

√
−4 + k1

2 + 4 τ σ1

)
, 0, 1, 0

}
.

If σ1τ < 1 and 0 ≤ k2
1 < 4(1− σ1τ), the modes of the latent roots of (3.24) satisfy
|xs| ∈ {1, 1, 1− σ1τ, 1− σ1} ≤ 1, s = 1, 2, 3, 4,

and the eigenvectors are complete as well.

Theorem 3.1. The Yee’s scheme (3.1)-(3.4) with σ2 = 0, θ = 1 is spectrum stable under
conditions:

0 < σ1τ < 1, k2
1 < 4(1− σ1τ), k2

2 <
4((2− σ1τ)2 − k2

1)
(2− σ1τ)2

, (3.26)

or written in the form of

τ <
√

(1− σ1τ)h1, (2− σ1τ)2
(

τ

h2

)2

+ 4
(

τ

h1

)2

< (2− σ1τ)2. (3.27)

Then, let σ2 = 0 and θ = 0. That is a PML with implicit damping terms in one direc-
tion case. Following the idea above we get the characteristic polynomial of the corresponding
amplification matrix as

φim(x) =
1

(1 + τ σ1)
2

(
(−1 + x)2 x k1

2 + {(−1 + x)2 + x k2
2} (−1 + x + x τ σ1)

2

)
, (3.28)

which is a Schur polynomial if and only if



τ > 0, σ1 > 0,

k1 ∈ (−2− 2σ1τ, 0) ∪ (0, 2 + 2σ1τ),

k2 ∈ (−
2

√
−k1

2 + (2 + 2τ σ1)
2

2 + τ σ1
, 0) ∪ (0,

2
√
−k1

2 + (2 + τ σ1)
2

2 + τ σ1
).

(3.29)

For k1 = 0, the latent roots are

xs =

{
2− k2

2 − k2

√
−4 + k2

2

2
,
2− k2

2 + k2

√
−4 + k2

2

2
,

1
1 + τ σ1

,
1

1 + τ σ1

}
,

for s=1,2,3,4; correspondingly the eigenvectors are{
0,

i

2

(
k2 +

√
−4 + k2

2

)
, 0, 1

}
,

{
0,

i

2

(
k2 −

√
−4 + k2

2

)
, 0, 1

}
,

{
0,

i τ σ1

k2 (1 + τ σ1)
,−

(
k2

2 + τ k2
2 σ1 + τ2 σ1

2

k2
2 (1 + τ σ1)

)
, 1

}
, {1, 0, 0, 0}.

If k2
2 < 4, then max{|xs|} = 1, and then it has complete eigenvectors.
For k2 = 0, the latent roots are{

1, 1,
−2− k2

1 + 2 τ σ1

−
√

k2
1 (−4 + k2

1 − 4 τ σ1)2 (1 + τ σ1)
2
,

2− k2
1 + 2 τ σ1 +

√
k2
1 (−4 + k2

1 − 4 τ σ1)

2 (1 + τ σ1)
2

}
,
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correspondingly the eigenvectors are{
i τ k1 σ1

k1
2 + τ2 σ1

2
, 0,− k1

2

k1
2 + τ2 σ1

2
, 1

}
, {0, 1, 0, 0},

{
i

k1
(1 + τ σ1)

(
1

1 + τ σ1
− 2− k1

2 + 2 τ σ1 −
√
−4 k1

2 + k1
4 − 4 τ k1

2 σ1

2 (1 + τ σ1)
2

)
, 0, 1, 0

}
,

{
i

k1
(1 + τ σ1)

(
1

1 + τ σ1
− 2− k1

2 + 2 τ σ1 +
√
−4 k1

2 + k1
4 − 4 τ k1

2 σ1

2 (1 + τ σ1)
2

)
, 0, 1, 0

}
,

If k1
2 < 4 (1 + τ σ1), then max{|xs|} = 1, and then it has complete eigenvectors as well.

Theorem 3.2. The Yee’s scheme (3.1)-(3.4) with σ2 = 0, θ = 0 is spectrum stable under
conditions:

σ1 > 0, k2
1 < 4(1 + τσ1), k2

2 <
4{(2 + σ1τ)2 − k2

1}
(2 + σ1τ)2

, (3.30)

or written in the form of

τ <
√

1 + τσ1h1, (2 + σ1τ)2
(

τ

h2

)2

+ 4
(

τ

h1

)2

< (2 + σ1τ)2. (3.31)

We list below some more results with different parameters to the Yee schemes.

Theorem 3.3. For σ2 = 0 and θ = 1/2, the Yee’s scheme (3.1)-(3.4) is spectrum stable under
conditions:

σ1 > 0, τ > 0, k2
1 + k2

2 < 4, (3.32)

or written in an equivalent form of

σ1 > 0,
τ2

h2
1

+
τ2

h2
2

< 1. (3.33)

Theorem 3.4. Consider the case σ1 = σ2 = σ.

1. If θ = 1, the Yee’s scheme (3.1)-(3.4), which has characteristic polynomial

φ1(x) = (−1 + x + σ τ)2
(
1− 2 x + x2 − 2 σ τ + 2 x σ τ + σ2 τ2 + x k1

2 + x k2
2
)
, (3.34)

is spectrum stable under conditions:

0 < στ < 2, k2
1 + k2

2 < (2− στ)2, (3.35)

or written in an equivalent form of

σ > 0, τ <
2
σ

and

(
τ

h1

)2

+
(

τ

h2

)2

<
(2− στ)2

4
. (3.36)

2. If θ = 0, the Yee’s scheme (3.1)-(3.4), whose characteristic polynomial expresses as

φ2(x) =(1 + σ τ)−4(−1 + x + xσ τ)2

· (1− 2 x + x2 − 2 xσ τ + 2 x2 σ τ + x2 σ2 τ2 + x k1
2 + x k2

2
)
,

(3.37)

is spectrum stable under condition:

k2
1 + k2

2 < (2 + τσ)2, (3.38)

or written in an equivalent form of
(

τ

h1

)2

+
(

τ

h2

)2

<
(2 + στ)2

4
. (3.39)
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Remark 3. The stablility results from Theorem 3.1 to Theorem 3.4 all naturally exclude
the critical condition σ1 = σ2 = 0 which has been proved unstable in [3]. We observed that
the case σ1 = σ2 = 0 happens to correspond to multiple latent roots |x| = 1 but without
complete eigenvectors. If h1 = h2 = h in Theorem 3.3, the spectrum stable condition becomes√

2τ/h < 1, which is the same as the CFL condition proved stable in [7]. The difference is that,
the spectrum stability is shown for the original variables Ex, Ey,Hx,Hy, while the stability
in [7] is proved for the restored unsplit variables Ex, Ey, Ẽx,Hz. In fact, the spectrum stability
of the PML schemes can not be improved over the stability for the original variables, because
one can observe that for the amplification matrix, when τ = 0 it degenerates to the case as the
same as that of σ1 = σ2 = 0.

3.2. Yee Scheme to the UPML System

It comes to investigate the Yee difference scheme for the UPML system. First for system
(2.10), its Yee difference scheme written in matrix form is

CWn+1 = DWn, (3.40)

where

C =




1 0 0 0 0
0 1 0 0 −iτk1

−iτk2 0 1 0 0
1 0 0 0 −1− (1− θ)σ1τ

0 1 0 −1− (1− θ)σ1τ 0




,

Wn+1 =
(

Hz|n+ 1
2

i+ 1
2 ,j+ 1

2
, Ey|n+1

i,j+ 1
2
, Ex|n+1

i+ 1
2 ,j

, ey|n+1
i,j+ 1

2
, hz|n+ 1

2
i+ 1

2 ,j+ 1
2

)T

,

D =




1 0 ik2 ik1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 −1 + θσ1τ

0 1 0 −1 + θσ1τ 0




,

Wn =
(

Hz|n−
1
2

i+ 1
2 ,j+ 1

2
, Ey|ni,j+ 1

2
, Ex|ni+ 1

2 ,j
, ey|ni,j+ 1

2
, hz|n−

1
2

i+ 1
2 ,j+ 1

2

)T

.

For θ = 1, the characteristic polynomial of C−1D is simplified as

φ̃(x) =(x− 1)
{
x4 + x3

(−4 + k1
2 + k2

2 + 2 τ σ1

)

+ x2
(
6− 2 k1

2 − 2 k2
2 − 6 τ σ1 + 2 τ k2

2 σ1 + τ2 σ1
2
)

+ x
(−4 + k1

2 + k2
2 + 6 τ σ1 − 2 τ k2

2 σ1 − 2 τ2 σ1
2 + τ2 k2

2 σ1
2
)

+ 1− 2 τ σ1 + τ2 σ1
2
}

=(x− 1)φ(x), (3.41)

where φ(x) is defined in (3.8). The former Miller-Schur criterion process has given the spectrum
stability conditions (3.21). We verify critical cases: If k1 = 0, |x| = 1 has only a single latent
root, and the other latent roots all satisfy |x| < 1; if k2 = 0, |x| = 1 are three-multiple roots
with complete eigenvectors as (0, 0, 1, 0, 0)T , (0, 1, 0, 0, 0)T and (1, 0, 0, 0, 0)T .

Then for θ = 0, by calculation, we have φ̃(x) = (x − 1)φim(x), where φim(x) has been
defined in (3.28). Moreover, for the particular cases k1 = 0 or k2 = 0, we have checked that the
latent roots satisfy |x| = 1 associating with complete eigenvectors. Thus we have
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Theorem 3.5. Consider the Yee scheme (3.40) to the UPML system (2.10).

1. For θ = 1, the scheme is spectrum stable under the conditions

0 < σ1τ < 2, k2
1 < 4(1− σ1τ), k2

2 <
4((2− σ1τ)2 − k2

1)
(2− σ1τ)2

, (3.42)

or written in the equivalent form of

τ <
√

(1− σ1τ)h1, (2− σ1τ)2
(

τ

h2

)2

+ 4
(

τ

h1

)2

< (2− σ1τ)2. (3.43)

2. For θ = 0, the scheme is spectrum stable under the conditions

σ1 > 0, k2
1 < 4(1 + τσ1), k2

2 <
4{(2 + σ1τ)2 − k2

1}
(2 + σ1τ)2

, (3.44)

or written in the form of

τ <
√

1 + τσ1h1, (2 + σ1τ)2
(

τ

h2

)2

+ 4
(

τ

h1

)2

< (2 + σ1τ)2. (3.45)

Below we will demonstrate that the spectrum stability of (3.40) can not be improved to
strong stability.

Theorem 3.6. (Theorem 4.1 in [19]) If the amplification matrix G(ki, τ) is Lipschitz continu-
ous about τ near τ = 0, then the difference scheme is stable if and only if the matrix family

{G0 = Gn(ki, 0) : 0 < τ ≤ τ0, 0 < nτ ≤ T, i = 1, 2}
is uniformly bounded.

In fact, one can easily check that the amplification matrices of (3.40) are Lipschitz continuous
about τ near τ = 0. Hence Theorem 3.6 can be applied. When τ = 0,

G(ki, 0) =




1 0 ιk2 −ιk1 0
0 1 k1k2 −k1

2 −ιk1

ιk2 0 1− k2
2 k1k2 0

0 0 k1k2 1− k1
2 −ιk1

0 0 ιk2 −ιk1 1




,

whose eigenvalues are

Λ1 =



1, 1, 1,

2− k1
2 − k2

2 ±
√
−4 +

(−2 + k1
2 + k2

2
)2

2



 , {1, 1, 1, v, u},

which can not give complete eigenvectors. Consider the Jordan decomposition

G(ki, 0) = SJS−1 = S




1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 u 0
0 0 0 0 v




S−1,

where

S =




0 0 −k1
2

k2
2 1 1

0 −ιk1 0 −ιuk1
−1+u

−ιvk1
−1+v

k1
k2

−ιk1
2

k2
0 ιuk2

−1+u
ιvk2
−1+v

1 −ιk1 0 −ιuk1
−1+u

−ιvk1
−1+v

0 0 1 1 1




.
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Noticing

Gn(ki, 0) = SJnS−1 = S




1 0 0 0 0
0 1 n 0 0
0 0 1 0 0
0 0 0 u 0
0 0 0 0 v




S−1,

and using

‖Gn(ki, 0)‖ = max
∀α6=0

‖Gn(ki, 0)α‖
‖α‖ ,

we have

‖Gn(ki, 0)‖ ≥ ‖Gn(ki, 0)α0‖
‖α0‖ , ∀α0.

Especially, taking α0 = S(1, 0, 0, 0, 0)T = (0, 0, k1/k2, 1, 0), we get

‖Gn(ki, 0)‖ ≥ ‖Gn(ki, 0)α0‖
‖α0‖ ≥

√
k4
1/k2

2 + k6
1/k4

2 n√
1 + (k1/k2)2

, ∀ k1, k2.

Thus ‖Gn(ki, 0)‖ ∼ n, which is not uniformly bounded.

For the UPML system (2.11) with the same damping in two directions, the Yee difference
scheme is

ERn+1 = FRn, (3.46)

where

E =




1 0 0 0 0 −ik2

0 1 0 0 0 −ik1

0 0 1 0 0 0
1 0 0 −1− (1− θ)στ 0 0
0 1 0 0 −1− (1− θ)στ 0
0 0 1 0 0 −1− (1− θ)στ




,

Rn+1 =
(

Ex|n+1
i+ 1

2 ,j
, Ey|n+1

i,j+ 1
2
,Hz|n+ 1

2
i+ 1

2 ,j+ 1
2
, ex|n+1

i+ 1
2 ,j

, ey|n+1
i,j+ 1

2
, hz|n+ 1

2
i+ 1

2 ,j+ 1
2

)T

,

F =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 ik2 ik1 0
1 0 0 −1 + θστ 0 0
0 1 0 0 −1 + θστ 0
0 0 1 0 0 −1 + θστ




,

Rn =
(

Ex|ni+ 1
2 ,j

, Ey|ni,j+ 1
2
,Hz|n−

1
2

i+ 1
2 ,j+ 1

2
, ex|ni+ 1

2 ,j
, ey|ni,j+ 1

2
, hz|n−

1
2

i+ 1
2 ,j+ 1

2

)T

.

For θ = 1, the characteristic polynomial of the amplification matrix E−1F is

φ̃1(x) =(−1 + x)3 (−1 + x + σ τ)(
1− 2 x + x2 − 2 σ τ + 2 xσ τ + σ2 τ2 + x k1

2 + x k2
2
)
. (3.47)

While for θ = 0, the characteristic polynomial is

φ̃2(x) =(1 + σ τ)−3(−1 + x)3 (−1 + x + xσ τ)

· (1− 2 x + x2 − 2 xσ τ + 2 x2 σ τ + x2 σ2 τ2 + x k1
2 + x k2

2
)
. (3.48)
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And for θ = 1/2, the characteristic polynomial is

φ̃3(x) =(2 + σ τ)−3(−1 + x)3 (−2 + 2 x + σ τ + xσ τ)
(
4− 8 x + 4 x2 − 4 σ τ

+4 x2 σ τ + σ2 τ2 + 2 xσ2 τ2 + x2 σ2 τ2 + 4 x k1
2 + 4 x k2

2
)

(3.49)

It is noted that (3.47) has same factors as those of (3.34), and (3.48) has same factors as those
of (3.37). With the Miller-Schur criterion, we get the spectrum stablility conditions. For the
particular case k1k2 = 0, we have checked carefully and found that it has multiple latent roots
|x| = 1 with complete eigenvectors. Thus the spectrum stability conditions are the same as
those given in Theorem 3.4.

However, by Theorem 3.6, we shall get a stability result . One can check the amplification
matrix of (3.46) is Lipschitz continuous about τ near τ = 0. It is easy to compute that the
eigenvalues of G(ki, 0) are

Λ2 =
{

1, 1, 1, 1,
1
2
(2− k1

2 − k2
2 ±

√
−4 +

(−2 + k1
2 + k2

2
)2

)
}

,

which has complete eigenvectors. Thus the matrix can be diagonalized. When k1
2 + k2

2 ≤ 4,
all the mode of the eigenvalues are 1. Gn(ki, 0) are uniformly bounded about τ , and the scheme
(3.46) is stable.

Theorem 3.7. For all 0 ≤ θ ≤ 1 and a given T > 0, the scheme (3.46) is stable on [0, T ] if
and only if

σ > 0, τ > 0, k2
1 + k2

2 < 4, (3.50)

or written in the form

σ > 0, τ > 0,

(
τ

h1

)2

+
(

τ

h2

)2

< 1. (3.51)

In particular,
1. for θ = 1, the scheme (3.46) is spectrum stable on [0,∞) under the conditions:

0 < στ < 2, k2
1 + k2

2 < (2− στ)2, (3.52)

or written in the equivalent form of

σ > 0, τ <
2
σ

and

(
τ

h1

)2

+
(

τ

h2

)2

<
(2− στ)2

4
. (3.53)

2. for θ = 0, the scheme (3.46) is spectrum stable on [0,∞) under the conditions:

σ > 0, k2
1 + k2

2 < (2 + τσ)2, (3.54)

or written in the equivalent form of

σ > 0,

(
τ

h1

)2

+
(

τ

h2

)2

<
(2 + στ)2

4
. (3.55)

4. Numerical Examples

We carry out some numerical experiments for the problem of Eqs. (2.4) and (2.5) by
using the Yee difference scheme (3.1)-(3.4). The boundary conditions are set as total reflection
boundary conditions [13]

∂Hx

∂n

∣∣∣∣∂Ω = 0,
∂Hy

∂n

∣∣∣∣
∂Ω

= 0. (4.1)

and the initial conditions can be arbitrary functions which are consistent to (4.1).
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For simplicity, take a square domain Ω = [0, 1] × [0, 1], and let h1 = h2. All the numerical
results are illuminated in the figures, where the abscissa represents the time steps, and y-axis
represents the norms of the corresponding fields. The discrete norms ‖ · ‖l2 are defined as, take
Ex norm for example, ‖Ex‖l2 = (h1h2

∑
i,j

E2
x(ai,j))

1
2 , where ai,j are the nodes.

Example 1. Let σ1 = σ2 = 0, θ = 1, h1 = h2 = 0.1, τ = 0.01, steps = 106, terminal
time=10000. The initial values

E0
x = y(y − 1), E0

y = x(x− 1), H0
x = H0

y = exp(−x2(x− 1)2 − y2(y − 1)2).

The numerical results are shown in Fig. 4.1. The results indicate that the numerical method is
unstable as the norm of (Ex, Ey,Hx,Hy) is increasing with step number n. This is caused by

the norm of (Hx,Hy), i.e,
(
h1h2

∑
i,j

(H2
x +H2

y )(ai,j)
) 1

2 , which is increasing with the step number.

On the other hand, the components norm for Ex and Ey oscillate in a strip domain but do not

increase. So is the norm for Hz = Hx + Hy, i.e,
(
h1h2

∑
i,j

(Hx + Hy)2(ai,j)
) 1

2 , which oscillate

but does not increase with time. All these unstable phenomenons are in agreement with the
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Fig. 4.1. Example 1: σ1 = σ2 = 0, θ = 1,

h1 = h2 = 0.1, steps = 106, τ = 0.01. L2-

energy for (a) (Ex, Ey, Hx, Hy); (b) Ey; (c) Ex;

(d) Hz; (e) (Hx, Hy).
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theoretical results of [3] and our analysis.

Example 2. As pointed out in Remark 3 that σ1 = σ2 = 0 is just the critical values which
cause the scheme unstable. If there exists even a little damping, the schemes can be stable. We
test with a small positive σ1 = 0.001, and σ2 = 0, θ = 1, h1 = h2 = 0.1, τ = 0.01, the terminal
time is 2000, the initial values are the same as that of Example 1. The numerical results are
shown in Fig. 4.2, which indicates stability of the scheme. An interesting phenomenon is that
only the Ey norm (whose direction adds damping) decays to 0, whereas Ex without adding
damping does not decay to 0.

Example 3. Choosing proper parameters that (3.27) is not satisfied. Let σ1 = 10, σ2 = 0,

θ = 1, h1 = h2 = 0.01, τ = 0.01, and the initial values be the same as that of example 1. The
numerical results indicate that the norms blow up, and Fig. 4.3 shows the norms rising rapidly
in only a few steps.

Example 4. Set θ = 0, σ1 = 10, σ2 = 0, h1 = h2 = 0.1, τ = 0.01 satisfying (3.31). The initial
values are

E0
x = y(y − 1), E0

y = x(x− 1), H0
x = H0

y = exp

(
− x2(x− 1)2 − y2(y − 1)2

)
.

The numerical results show the stability in Fig. 4.4. The norms damp to 0 rapidly.

Example 5. Set σ1 = σ2 = 10, θ = 1, h1 = h2 = 0.1, τ = 0.01 satisfying (3.36). The norms
damp to 0 at finite steps. The initial values are chosen as

E0
x = sinπy, E0

y = sin πx, H0
x = H0

y = exp(−x2(x− 1)2 − y2(y − 1)2).
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Fig. 4.2. Example 2: σ1 = 0.001, σ2 = 0, θ = 1, h1 = h2 = 0.1, steps = 100000, τ = 0.01. L2-energy

for (a) (Ex, Ey, Hx, Hy); (b) Ey; (c) Ex; (d) (Hx, Hy).
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Fig. 4.3. Example 3: σ1 = 10, σ2 = 0, θ = 1, h1 = h2 = 0.01, τ = 0.01, steps=8, which do not satisfy

(3.27). All energy norms are blowed-up after a few steps.
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Fig. 4.4. Example 4: θ = 0, σ1 = 10, σ2 = 0, h1 = h2 = 0.1, τ = 0.01. The energy norms damp to 0

rapidly.

Example 6. For the explicit form θ = 1, we set different damping constants σ1 = 2, σ2 = 3,

h1 = h2 = 0.1, τ = 0.01, and change the initial values as

E0
x = sinπy, E0

y = x(x− 1), H0
x = H0

y = exp(−x2(x− 1)2 − y2(y − 1)2).

The numerical results are illuminated in Fig. 4.6. Similar as Example 5, the norms damp
to 0 quickly at finite steps, which shows the stability for more general PML dampings.
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Fig. 4.5. Example 5: Both directions have

damping, with parameters θ = 1, σ1 =

10, σ2 = 10. h1 = h2 = 0.1, τ = 0.01. All

energy norms decay to 0
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Fig. 4.6. Example 6: PML with two directions having different damping, σ1 = 2, σ2 = 3. θ = 1,

h1 = h2 = 0.1, τ = 0.01, All energy norms decay to 0

5. Conclusions

Different Yee schemes of PMLs can yield stability, instability, and weak stability. Abarbanel
and Gottlieb [3] give an unstable counterexample about PML for the case of σ = 0. Becache
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and Joly proved in [7] that the Yee schemes further Cauchy problem of PML are stable for
the restored unsplit variables Ex, Ey, Ẽx,Hz for σ ≥ 0 by using the energy methods. We make
clear that the Yee schemes of PML and UPML systems are spectrum stable under the same
mesh conditions, and UPML schemes having the same damping in both directions are stable.
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