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Abstract

Given a set of scattered data with derivative values. If the data is noisy or there is an

extremely large number of data, we use an extension of the penalized least squares method

of von Golitschek and Schumaker [Serdica, 18 (2002), pp.1001-1020] to fit the data. We

show that the extension of the penalized least squares method produces a unique spline

to fit the data. Also we give the error bound for the extension method. Some numerical

examples are presented to demonstrate the effectiveness of the proposed method.

Mathematics subject classification: 41A15, 65M60, 65N30.
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1. Introduction

Suppose V = {vi = (xi, yi)}N
i=1 is a set of points lying in a domain Ω ⊂ R2. Let {fν,µ

i , 0 ≤
ν + µ ≤ r, i = 1, · · · , N} be given real values. If the data is noisy or there is an extremely large
number of data, it may not be appropriate to interpolate the data. This problem arises in many
applications, including, e.g., surface design on airplane or car and meteorology which we will
explain in our numerical examples. We will construct a function s ∈ Cr+2(Ω) which minimizes

Pλ(s) :=
N∑

i=1

∑

0≤α+β≤r

|Dα
x Dβ

y s(vi)− fα,β
i |2 + λEr(s),

where λ > 0 is a constant and Er(s) is the energy functional defined by

Er(s) =
∫

Ω

[
r+2∑

k=0

(
r + 2

k

)[
Dk

xDr+2−k
y s

]2
]
dxdy. (1.1)

We call this the extension of the penalized least squares method. If W r+2
∞ (Ω) is the standard

Sobolev space and fν,µ
i = Dν

xDµ
y f(xi, yi) + εν,µ

i for f ∈ W r+2
∞ with noisy term εν,µ

i , we derive
the error bounds for the method

‖f − s‖∞,Ω ≤ C1|4|r+2|f |r+2,∞,Ω + C2λ‖f‖∞,Ω,

where |f |r+2,∞,Ω denotes the maximum norm of the (r + 2)nd derivative of f over Ω and
‖f‖∞,Ω is the standard infinite norm. Here |4| is the size of the triangulation 4 which will be
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defined latter. For r = 0, this approach reduces to a typical penalized least squares problem
(see, e.g., [5]). In [5], the error bound of the penalized least squares method is provided. We
will generalize that result to Hermite data setting. For r ≥ 1, the problem has received less
attention. It is easy to see that when λ À 1, the surface is close to the energy minimization
method and when λ ¿ 1, the surface is close to the discrete least squares fitting. Consequently,
we can choose an appropriate weight λ for our need (see, e.g., [12]).

The paper is organized as follows. In Sect. 2 we review some well-known Bernstein-Bézier
notation. The extension of the penalized least squares method is explained in Sect. 3 and
the existence and uniqueness are discussed there. In Sect. 4 we derive error bounds for the
extension of the penalized least squares method. Finally, in last section numerical examples are
presented to demonstrate the usefulness of our method.

2. Preliminaries

Given a triangulation 4 and integers 0 ≤ m < d, we write

Sm
d (4) :=

{
s ∈ Cm(Ω) : s|T ∈ Pd, for all T ∈ 4}

for the usual space of splines of degree d and smoothness m, where Pd is the
(
d+2
2

)
dimensional

space of bivariate polynomials of degree d. Throughout the paper we shall make extensive use
of the well-known Bernstein-Bézier representation of splines. For each triangle T = 〈v1, v2, v3〉 in
4 with vertices v1, v2, v3, the corresponding polynomial piece s|T is written in the form

s|T =
∑

i+j+k=d

cT
ijkBd

ijk,

where Bd
ijk are the Bernstein-Bézier polynomials of degree d associated with T . In particular, if

(λ1, λ2, λ3) is the barycentric coordinates of any point u ∈ R2 in terms of the triangle T , then

Bd
ijk(u) :=

d!
i!j!k!

λi
1λ

j
2λ

k
3 , i + j + k = d.

As usual, we associate the Bernstein-Bézier coefficients {cT
ijk}i+j+k=d with the domain points

{ξT
ijk := (iv1 + jv2 + kv3)/d}i+j+k=d and use cξ to denote the association.

Definition 1. Let β < ∞. A triangulation 4 is said to be β-quasi-uniform provided that

|4| ≤ βρ4,

where |4| is the maximum of the diameters of the triangles in 4, and ρ4 is the minimum of
the radii of the incircles of triangles of 4.

It is easy to see that if 4 is β-quasi-uniform, then the smallest angle in 4 is bounded below
by 2/β.

A determining set for a spline space S ⊆ S0
d(4) is a subset M of the set of domain points

such that if s ∈ S and cξ = 0 for all ξ ∈ M, then cξ = 0 for all domain points, i.e., s ≡ 0. The
set M is called a minimal determining set (MDS) for S if there is no smaller determining set.
It is known that M is a MDS for S if and only if every spline s ∈ S is uniquely determined by
its set of B-coefficients {cξ}ξ∈M.
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Lemma 2.1. (cf. [7]) The dual basis {Bξ}ξ∈M is a stable basis in the sense that there exist
constants K1,K2 depending only on the smallest angle in 4 such that for all choices of the
coefficient vector c = {cξ}ξ∈M,

K1‖c‖∞ ≤
∣∣∣∣∣∣
∑

ξ∈M
cξBξ

∣∣∣∣∣∣
∞

≤ K2‖c‖∞.

Recall from [1, 2] that for any given function f ∈ L1(Ω), there exists a quasi-interpolatory
operator Q mapping f ∈ L1(Ω) to Sr

d(4) with d ≥ 3r + 2, which achieves the optimal approx-
imation order of Sr

d(4). The results are summarized below.

Lemma 2.2. (cf. [2]) Let r ≥ 1 and d ≥ 3r + 2. Suppose f ∈ Cm(Ω) with m ≥ 2r. Then there
exists a spline function Qf ∈ Sr

d(4) satisfied

‖Dα
x Dβ

y (f −Qf )‖L∞(Ω) ≤ K|4|m−α−β |f |m,∞,Ω

for 0 ≤ α + β ≤ m, where |4| is the mesh size of 4, and |f |m,∞,Ω is the usual maximum norm
of the derivatives of order m of f over Ω.

When d < 3r + 2, similar approximation results are available for some special spline spaces,
see, e.g., [6, 8–11].

3. Existence and Uniqueness of Solutions to the Extension Method

Consider a spline space S = Sr+2
d (4) with d ≥ 3r+8. Note that using the locally supported

basis functions (cf. [3]), any spline function s in the space can be represented by s =
∑M

i=1 ciφi,
for some set of coefficients {ci}M

i=1.
The extension of penalized least squares method is to find sλ,f ∈ S such that

Pλ(sλ,f ) = min{Pλ(s) : s ∈ S}, (3.1)

where λ > 0 is a positive weight,

Pλ(s) :=
N∑

i=1

∑

0≤α+β≤r

|Dα
x Dβ

y s(vi)− fα,β
i |2 + λEr(s) (3.2)

and Er(s) denote the energy functional defined by (1.1).
This section is mainly concerned with the existence and uniqueness of solution sλ,f ∈ S

satisfying (3.1).

Theorem 3.1. Fix a λ > 0. Suppose that all vertices of 4 are the part of the data locations.
Then there exists a unique sλ,f ∈ S satisfying (3.1).

Proof. It is easy to show the existence of solution. For simplicity, we omit the details here,
and we just show the uniqueness of the minimizer sλ,f . Suppose that we have two solutions
sλ,f and ŝλ,f . Let c and ĉ be the two coefficients associated with sλ,f and ŝλ,f respectively.
Since Pλ is a convex functional, we have, for any z ∈ [0, 1],

Pλ(zsλ,f + (1− z)ŝλ,f )

≤zPλ(sλ,f ) + (1− z)Pλ(ŝλ,f ) = Pλ(sλ,f ). (3.3)
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That is, Pλ(zsλ,f + (1− z)ŝλ,f ) is a constant function for z ∈ [0, 1]. It follows that

∂

∂z
Pλ(zsλ,f + (1− z)ŝλ,f ) = 0 for all z ∈ [0, 1].

Consequently,

0 =
∂

∂z
Pλ(zsλ,f + (1− z)ŝλ,f )

= 2λz(c− ĉ)T K(c− ĉ) + 2z(c− ĉ)T B(c− ĉ)− 2bT (c− ĉ) (3.4)

for all z ∈ [0, 1]. Since both K and B are nonnegative definite, we have

(c− ĉ)T K(c− ĉ) = 0 and (c− ĉ)T B(c− ĉ) = 0. (3.5)

The first equation is equivalent to

E(sλ,f − ŝλ,f ) = 0

which implies that sλ,f − ŝλ,f is a polynomial of degree r + 1. The second equation in (3.5)
implies that

Dα
x Dβ

y (sλ,f − ŝλ,f ) = 0

at all vertices of 4 for any α + β ≤ r. Thus, it is easy to see that

sλ,f − ŝλ,f ≡ 0.

Hence, the minimizer is unique. ¤

4. Error Bounds for the Extension Method

In this section we derive error bounds for the extension of penalized least squares method.
Let X, Y and S be linear spaces of functions on R2 where S ⊆ Y ⊆ X. Suppose ‖·‖X : X → R
and ‖ · ‖Y : Y → R are semi-norms induced by semi-definite inner products 〈·, ·〉 on X and [·, ·]
on Y respectively, where

〈f, g〉 :=
N∑

i=1

∑

0≤α+β≤r

Dα
x Dβ

y f(vi)Dα
x Dβ

y g(vi),

[f, g] :=
∑

τ∈4

∫

τ

[
r+2∑

k=0

(
r + 2

k

)[
Dk

xDr+2−k
y fDk

xDr+2−k
y g

]]
dxdy.

Given f ∈ X and λ > 0, we need to find sλ,f ∈ S such that

Pλ(sλ,f ) = min
s∈S

Pλ(s) (4.1a)

where

Pλ(s) := ‖f − s‖2X + λ‖s‖2Y . (4.1b)

Let us introduce a discrete least square fitting: sf ∈ S is called a discrete least squares fit of f

if
‖f − sf‖2X = min

s∈S
‖f − s‖2X . (4.2)
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It is easy to see that the extension of the penalized least squares approximation sλ,f of f is
characterized by

〈f − sλ,f , u〉 = λ[sλ,f , u], ∀u ∈ S, (4.3)

while sf is characterized by
〈f − sf , u〉 = 0, ∀u ∈ S, (4.4)

It follows from (4.3)-(4.4) that

〈sf − sλ,f , u〉 = λ[sλ,f , u], ∀u ∈ S. (4.5)

Lemma 4.1. For each f ∈ X and λ > 0, we have

‖sλ,f‖Y ≤ ‖sf‖Y , (4.6)

and

‖sf − sλ,f‖X ≤
√

λ‖sf‖Y , (4.7)

where sλ,f and sf are defined by (4.3)-(4.4).

Proof. The proof is the same as that of Theorem 6.1 in [5]. For simplicity, we omit the
details here. ¤

Lemma 4.2. Suppose X ⊆ L∞(Ω), and let

KS := sup
{ ‖s‖Y

‖s‖X
: s ∈ S, s 6= 0

}
< ∞, (4.8a)

kS := sup
{‖s‖∞,Ω

‖s‖X
: s ∈ S, s 6= 0

}
< ∞. (4.8b)

Then
‖sf − sλ,f‖∞,Ω ≤ λkSKS‖sf‖Y (4.9)

Proof. It follows from (4.5) and the Cauchy-Schwarz inequality that

‖sf − sλ,f‖2X = λ[sλ,f , sf − sλ,f ] ≤ λ‖sλ,f‖Y ‖sf − sλ,f‖Y .

By the definition of KS and (4.6), we get

‖sf − sλ,f‖2X ≤ λ‖sf‖Y KS‖sf − sλ,f‖X .

Then using
‖sf − sλ,f‖∞,Ω ≤ kS‖sf − sλ,f‖X ,

gives (4.9). ¤

Below we present our main result in the paper.

Theorem 4.1. Suppose 4 is a β-quasi-uniform triangulation and assume that

L := sup
{ ‖s‖X

‖s‖∞,Ω
: s ∈ S, s 6= 0

}
< ∞. (4.10)
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Then there exist constants C1 and C2 depending on λ, d, M and β if Ω is convex, and also
on the Lipschitz constant L∂Ω of the boundary of Ω if Ω is non-convex. Let sλ,f be the spline
minimizer Pλ defined by (4.1). Then

‖f − sλ,f‖∞,Ω ≤ C1|4|r+2|f |r+2,∞,Ω + C2λ‖f‖∞,Ω (4.11)

for every function f ∈ W r+2
∞ (Ω).

Proof. It follows from Lemma 4.2 and the definition of KS that

‖sf − sλ,f‖∞,Ω ≤ λkSK2
S‖sf‖X .

Note that
‖sf‖∞,Ω ≤ ‖sf − f‖∞,Ω + ‖f‖∞,Ω.

Then by (4.10)

‖sf − sλ,f‖∞,Ω ≤ λLkSK2
S‖sf‖∞,Ω

≤ λLkSK2
S

(
‖sf − f‖∞,Ω + ‖f‖∞,Ω

)
. (4.12)

Next by the definition of Qf , we can see that

‖f −Qf‖2X = min
s∈S

‖f − s‖2X . (4.13)

Consequently, sf = Qf . Thus using Lemma 2.2 gives

‖f − sf‖∞,Ω ≤ K|4|r+2|f |r+2,∞,Ω.

Using the fact
‖f − sλ,f‖∞,Ω ≤ ‖sf − sλ,f‖∞,Ω + ‖f − sf‖∞,Ω

we obtain

‖f − sλ,f‖∞,Ω ≤
(

λLkSK2
S + 1

)
‖sf − f‖∞,Ω + λLkSK2

S‖f‖∞,Ω.

Consequently, we have (4.11) with C1 = K(λLkSK2
S + 1) and C2 = LkSK2

S . ¤

5. Numerical Experiments

In this section we present numerical experiments for our method.

Example 5.1 Consider 1000 random points {(xi, yi)} over [0, 1] × [0, 1] as shown in Fig. 5.1.
Let {(xi, yi, f(xi, yi) + εi), i = 1, . . . , 1000} be a scattered data set, where

f(x, y) =0.75 exp(−0.25(9x− 2)2 − 0.25(9y − 2)2)

+ 0.75 exp(−(9x + 1)2/49− (9y + 1)/10)

+ 0.5 exp(−0.25(9x− 7)2 − 0.25(9y − 3)2)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2),
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Fig. 5.1. The scattered data and the triangulation 4
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Fig. 5.2. The original Franke function

which is the well-known Franke function, (see Fig.5.2) and εi are noisy terms. We set εi to be a
random number between −0.01 to 0.01. The spline spaces S2

8(4) is employed to find the fitting
surfaces, where 4 is the triangulation given in Fig. 5.1. Furthermore, we choose different λ to
check the difference of the surface create by our method.

In Fig.(5), the surfaces created by using the extension method with λ = 0.01, 0.1 and 0.5
are presented. It is observed from the plots that the surface becomes less deflective when λ

becomes large. So we can adjust λ to create the surface as we need.
Below, we present an example to illustrate an application of our method.

Example 5.2 We consider the reconstruction of a wind potential function. We are given a set
of wind velocity measurements over 1500 places in China in one day and required to construct
the wind potential function W . Let {(xi, yi, W

1,0
i , W 0,1

i , i = 1, · · · , 1500} be the given wind
velocity values. In order to uniquely determine the wind potential, we assume that W 0,0

1 = 0.
Let λ = 0.01 and 4 be a triangulation of the part of data locations as shown in Fig. 5.4. We
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Fig. 5.3. Example 5.1: The surface created by the extension method with (a): λ = 0.01, (b): λ = 0.1

and (c): λ = 0.5
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Fig. 5.4. A triangulation 4 of the data locations over China
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Fig. 5.5. The wind potential function

use the spline space S2
8(4). We find the spline function sW ∈ S2

8(4) satisfying

Pλ(sW ) = min




1500∑

i=1

∑

α+β=1

∣∣∣Dα
x Dβ

y s(vi)−Wα,β
i

∣∣∣
2

+
∣∣∣s(v1)−W 0,0

1

∣∣∣
2

+ λE3(s)


 ,

where

E3(s) =
∫

4

[ 3∑

k=0

(
3
k

)[(
∂

∂x

)k (
∂

∂y

)3−k

s
]2

]
dxdy.

In fact, we can show that there exists a unique solution sW in any spline space Sr
d(4) of

smoothness r ≥ 2 and d ≥ 3r + 2. The proof is almost the same as Theorem 3.1. In Fig. 5.5,
the spline reconstruction of the wind potential function is presented. The wind velocity values
{(xi, yi,W

1,0
i ,W 0,1

i , i = 1, · · · , 1500} are shown in Fig. 5.6.
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Fig. 5.6. The wind velocity in (a) x-direction, and (b): y-direction
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