A NEW ALGORITHM FOR COMPUTING THE INVERSE AND GENERALIZED INVERSE OF THE SCALED FACTOR CIRCULANT MATRIX*

Zhaolin Jiang
School of Science, Xi'an Jiaotong University, Xi'an 710049, China, and Department of Mathematics, Linyi Teachers College, Linyi 276005, China
Email: jzh1208@sina.com
Zongben Xu
School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Email: zbxu@mail.xjtu.edu.cn

Abstract

A new algorithm for finding the inverse of a nonsingular scaled factor circulant matrix is presented by the Euclid's algorithm. Extension is made to compute the group inverse and the Moore-Penrose inverse of the singular scaled factor circulant matrix. Numerical examples are presented to demonstrate the implementation of the proposed algorithm. Mathematics subject classification: 15A21, 65F15. Key words: Scaled factor circulant matrix, Inverse, Group inverse, Moore-Penrose inverse.

1. Introduction

Circulant matrices, as an important class of special matrices, have a wide range of interesting applications [12-19]. They have in recent years been applied in many areas, see, e.g., $[2,3,6$, $10,11,15,17]$. Scaled circulant permutation matrices and the matrices that commute with them are natural extensions of this well-studied class, see, e.g., [1, 20-23]. In particular, it will be seen that r-circulant matrices $[10,11]$ are precisely those matrices commuting with the scaled circulant permutation matrix.

This paper presents an efficient algorithm to compute the inverse of a nonsingular scaled factor circulant matrix or to compute the group inverse and Moore-Penrose inverse of the circulant matrix when it is singular. The algorithm has small computational complexity. It is a notable character of the algorithm that the singularity of the scaled factor circulant matrix need not be priori known.

We define \mathcal{R} as the scaled circulant permutation matrix, that is,

$$
\mathcal{R}=\left(\begin{array}{cccccc}
0 & d_{1} & 0 & \ldots & 0 & 0 \tag{1.1}\\
0 & 0 & d_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
0 & 0 & 0 & \cdots & 0 & d_{n-1} \\
d_{n} & 0 & 0 & \cdots & 0 & 0
\end{array}\right)_{n \times n} .
$$

This paper deals with the case where \mathcal{R} is nonsingular ($d_{i} \neq 0$ and fixed).
It is easily verified that the polynomial $g(x)=x^{n}-d_{1} d_{2} \ldots d_{n}$ is both the minimal polynomial and the characteristic polynomial of the matrix \mathcal{R}. In addition, \mathcal{R} is nondergatory.

[^0]Moreover, \mathcal{R} is normal if and only if $\left|d_{1}\right|=\left|d_{2}\right|=\cdots=\left|d_{n}\right|$, where $\left|d_{i}\right|, i=1, \cdots, n$ denote the modulus of the complex number $d_{i}, i=1, \cdots, n$.

Definition 1.1. An $n \times n$ matrix A over \mathbb{C} is called a scaled factor circulant matrix if A commutes with \mathcal{R}, that is,

$$
\begin{equation*}
A \mathcal{R}=\mathcal{R} A \tag{1.2}
\end{equation*}
$$

where \mathcal{R} is given in (1.1).
Let $\mathcal{R S F C M} M_{n}$ be the set of all complex $n \times n$ matrices which commute with \mathcal{R}. In the following, with $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ we denote the scaled factor circulant matrix A whose first row is $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Remark that the first row of A completely defines the matrix. Indeed, since \mathcal{R} is nonderogatory, Eq. (1.2) is fulfilled if and only if $A=f(\mathcal{R})$ for some polynomial f. Furthermore, $\mathcal{R} S F C M_{n}$ is a vector space of dimension n, and there is a clear one-to-one correspondence between the polynomials of degree at most $n-1$ and the numbers a_{0}, \cdots, a_{n-1}.

For an $m \times n$ matrix A, any solution to the matrix equation $A X A=A$ is called a generalized inverse of A. In addition, if X satisfies $X=X A X$, then A and X are said to be semi-inverses, see, e.g., [2].

In this paper we only consider square matrices A. In $[8, \mathrm{p} .51]$ the smallest positive integer k for which $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$ holds is called the index of A. If A has index 1 , the generalized inverse X of A is called the group inverse $A^{\#}$ of A. Clearly, A and X are group inverses if and only if they are semi-inverses and $A X=X A$.

In [4, 5] a semi-inverse X of A was considered in which the nonzero eigenvalues of X are the reciprocals of the nonzero eigenvalue of A. These matrices were called spectral inverses. It was shown in [5] that a nonzero matrix A has a unique spectral inverse, A^{s}, if and only if A has index 1: when A^{s} is the group inverse $A^{\#}$ of A.

2. The Properties of the Scaled Factor Circulant Matrix

Lemma 2.1. ([1]) If \mathcal{R} is a scaled circulant permutation matrix, and if k is a positive integer, then $\mathcal{R}^{k}=D^{(k)} C^{k}$, where $D^{(k)}$ is the diagonal matrix whose (j, j) entry is $\prod_{t=j}^{j+k-1} d_{t}$ for $1 \leq j \leq n$ and $C=\operatorname{circ}(0,1,0, \cdots, 0)$ is the circulant permutation. Furthermore,

$$
\mathcal{R}^{n}=\left(\prod_{j=1}^{n} d_{j}\right) I_{n}, \quad \operatorname{det} \mathcal{R}=(-1)^{n-1} \prod_{j=1}^{n} d_{j}
$$

Let $\omega=\exp \left(\frac{2 \pi i}{n}\right)$ be a primitive nth root of unity. Then $\omega_{j}=d \omega^{j}, j=0,1, \cdots, n-1$ are the distinct roots of $g(x)$, where $g(x)=x^{n}-d_{1} d_{2} \cdots d_{n}$, and

$$
\begin{equation*}
d=\left(\prod_{t=1}^{n} d_{t}\right)^{\frac{1}{n}} \neq 0 \tag{2.1}
\end{equation*}
$$

Let F be the $n \times n$ unitary Fourier matrix such that

$$
\begin{equation*}
F_{i j}=\frac{1}{\sqrt{n}} \omega^{(i-1)(j-1)} \quad \text { for } 1 \leq i, j \leq n \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Delta=\operatorname{diag}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right) \tag{2.3}
\end{equation*}
$$

where the elements δ_{j} of Δ are computed by the recursion formula

$$
\delta_{j+1}=\frac{d}{d_{j}} \delta_{j}, \quad 1 \leq j \leq n, \quad \delta_{n+1}=\delta_{1}=1 .
$$

Lemma 2.2. ([1]) Let $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ be a scaled factor circulant matrix over the complex field \mathbb{C}. Then

$$
\begin{equation*}
\sigma(A)=\left\{\lambda_{j}\left|\lambda_{j}=f\left(d \omega^{j}\right)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1}\left(d \omega^{j}\right)^{i}\right| 0 \leq j \leq n-1\right\} \tag{2.4}
\end{equation*}
$$

is the spectrum of A and

$$
\begin{equation*}
A=f(\mathcal{R})=a_{0} I+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} \mathcal{R}^{i} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i} \tag{2.6}
\end{equation*}
$$

The polynomial (2.6) will be called the representor of the scaled factor circulant matrix A.
Lemma 2.3. ([1]) Let $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ be a scaled factor circulant matrix over the complex field \mathbb{C}. If F is the Fourier matrix, then

$$
\begin{equation*}
A=(\Delta F) \operatorname{diag}\left(\lambda_{0}, \cdots, \lambda_{i}, \cdots, \lambda_{n-1}\right)(\Delta F)^{-1} \tag{2.7}
\end{equation*}
$$

where Δ is given by (2.3) and $\lambda_{j}, j=0,1, \cdots, n-1$ are the eigenvalues of A given by (2.4).
Let D_{n} denote the multiplicative semigroup of all $n \times n$ diagonal complex matrices. By Lemma 1 in [2, p.27] the mapping

$$
A \rightarrow(\triangle F)^{-1} A(\triangle F)
$$

is a semigroup isomorphism of $\mathcal{R} S F C M_{n}$ onto D_{n}, where F and \triangle are defined by (2.2) and (2.3), respectively.

Let $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \in \mathcal{R} S F C M_{n}$ be a scaled factor circulant matrix. Then $\sigma(A)=\left\{\lambda_{i} \mid i=0,1, \cdots, n-1\right\}$ by (2.4). Let

$$
T_{i}=\left\{\begin{array}{cl}
0, & \text { if } \lambda_{i}=0 \\
1 / \lambda_{i}, & \text { if } \lambda_{i} \neq 0
\end{array}\right.
$$

for $i=0,1, \cdots, n-1$. If

$$
B=(\triangle F) \operatorname{diag}\left(T_{0}, \cdots, T_{i}, \cdots, T_{n-1}\right)(\triangle F)^{-1}
$$

then by Theorem 1 of $[2], B=A^{s}$, the spectral inverse of A.
Since each A in $\mathcal{R} S F C M_{n}$ has index $1, A^{s}$ is also the group inverse $A^{\#}$ of A. Moreover, if \mathcal{R} is normal, then by Theorem 1 of $[2], A^{s}=A^{+}$, where A^{+}denotes the Moore-Penrose inverse of A.

We summarize the above discussions in the following theorems.

Theorem 2.1. Let $A \in M_{n}$. Then $A \in \mathcal{R S F C M} M_{n}$ if and only if $(\triangle F)^{-1} A(\triangle F)$ is a diagonal matrix. Let $A \in \mathcal{R} S F C M_{n}$. If A is a singular matrix, then $A^{s}=A^{\#} \in \mathcal{R} S F C M_{n}$. If \mathcal{R} is normal, then $A^{+} \in \mathcal{R} S F C M_{n}$ and $A^{+}=A^{\#}$.

Theorem 2.2. If $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ is nonsingular, then $f\left(\omega_{j}\right) \neq 0$, where

$$
f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}, \quad \omega_{j}=d \omega^{j}, \quad j=0,1, \cdots, n-1
$$

are the distinct roots of $g(x)$. If A is singular and has k zero eigenvalues, then there are $\omega_{i_{0}}, \omega_{i_{1}}, \cdots, \omega_{i_{k-1}}$, such that $f\left(\omega_{i_{j}}\right)=0$, for $j=0,1, \cdots, k-1$. Conversely, if there exists ω_{k} satisfying $f\left(\omega_{k}\right)=0$, then the scaled factor circulant matrix A is singular.

Proof. According to Theorem 2.1, we know that $(\triangle F)^{-1} A(\triangle F)=D$, where

$$
D=\operatorname{diag}\left(f\left(\omega_{0}\right), f\left(\omega_{1}\right), \cdots, f\left(\omega_{n-1}\right)\right)
$$

and $\omega_{j}=d \omega^{j}, j=0,1, \cdots, n-1$ are the distinct roots of $g(x)$. Thus $A \triangle F=\triangle F D$. Since $\triangle F$ is a nonsingular matrix, then

$$
\operatorname{rank} A=\operatorname{rank} A \triangle F=\operatorname{rank} \triangle F D=\operatorname{rank} D
$$

If there exist $\omega_{i_{0}}, \omega_{i_{1}}, \cdots, \omega_{i_{k-1}}$ such that $f\left(\omega_{i_{j}}\right)=0$, for $j=0,1, \cdots, k-1$, then there are $\omega_{i_{k}}, \omega_{i_{k+1}}, \cdots, \omega_{i_{n-1}}$ such that $f\left(\omega_{i_{j}}\right) \neq 0$, for $j=k, k+1, \cdots, n-1$. Thus rank $A=n-k$.

Conversely, if $\operatorname{rank} A=n-k$, then there exist $\omega_{i_{k}}, \omega_{i_{k+1}}, \cdots, \omega_{i_{n-1}}$ such that $f\left(\omega_{i_{j}}\right) \neq 0$, for $j=k, k+1, \cdots, n-1$. Therefore, there are $\omega_{i_{0}}, \omega_{i_{1}}, \cdots, \omega_{i_{k-1}}$ such that $f\left(\omega_{i_{j}}\right)=0$, for $j=0,1, \cdots, k-1$.

In addition, let $A, B \in \mathcal{R} S F C M_{n}$. Then $A B=B A \in \mathcal{R} S F C M_{n}$. If A is a nonsingular matrix, then $A^{-1} \in \mathcal{R} S F C M_{n}$. Thus $\mathcal{R} S F C M_{n}$ is a ring.

Polynomial ring has an intimate relation to the scaled factor circulant matrix ring. Let $P(x)$ be the polynomial ring. For all $f(x)$ in $P(x)$, the degree of $f(x)$ is denoted by $\operatorname{deg}(f(x))$. Let $P_{n-1}(x)$ be the quotient ring $P(x) /\left\langle x^{n}-d_{1} d_{2} \cdots d_{n}\right\rangle$, where $\left\langle x^{n}-d_{1} d_{2} \cdots d_{n}\right\rangle$ is an ideal. Define φ as a function which maps scaled factor circulant matrix ring onto the polynomial ring by

$$
\varphi(A) \mapsto f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

where $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$.
Then, we can conclude that φ is a ring isomorphism. The scaled factor circulant matrix ring and the polynomial quotient ring $P_{n-1}(x)$ are isomorphic. So, if A is nonsingular, then φ maps the inverse of A onto the inverse of the representor $f(x)$ of A.

3. Main Results

Theorem 3.1. Let $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ be a scaled factor circulant matrix which is nonsingular, with the representor of A being

$$
f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

Then there exists a polynomial

$$
u(x)=b_{0}+\sum_{i=1}^{n-1} b_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

such that $u\left(\omega_{j}\right)=1 / f\left(\omega_{j}\right)$, where $\omega_{j}, j=0,1, \cdots, n-1$, are the roots of $g(x)=x^{n}-d_{1} d_{2} \cdots d_{n}$ and the inverse of A is given by

$$
B=\operatorname{scacirc}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)
$$

Proof. From Theorem 2.2, we know that $f(x)=f\left(\omega_{j}\right) \neq 0, j=0,1, \cdots, n-1$. Let

$$
g(x)=\prod_{j=0}^{n-1}\left(x-\omega_{j}\right)=x^{n}-d_{1} d_{2} \cdots d_{n}
$$

Then $f(x)$ and $g(x)$ are coprime. Hence there exist $u^{\prime}(x)$ and $v(x)$ satisfying

$$
f(x) u^{\prime}(x)+g(x) v(x)=1
$$

When $x=\omega_{j}, j=0,1, \cdots, n-1$, then $g(x)=0$. Consequently, $f\left(\omega_{j}\right) u^{\prime}\left(\omega_{j}\right)=1$. Let

$$
u(x)=u^{\prime}(x) \bmod \left(x^{n}-d_{1} d_{2} \cdots d_{n}\right)
$$

Then $\operatorname{deg}(u(x))<n$. Since $\omega_{j}^{n}-d_{1} d_{2} \cdots d_{n}=0$, and $u\left(\omega_{j}\right)=u^{\prime}\left(\omega_{j}\right), j=0,1, \cdots, n-1$, the existence of $u(x)$ in Theorem 3.1 is then proved.

For the scaled factor circulant matrix B we have

$$
\begin{aligned}
B & =\operatorname{scacirc}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right) \\
& =\triangle F \operatorname{diag}\left(u\left(\omega_{0}\right), u\left(\omega_{1}\right), \cdots, u\left(\omega_{n-1}\right)\right)(\triangle F)^{-1} \\
& =\triangle F \operatorname{diag}\left(1 / f\left(\omega_{0}\right), 1 / f\left(\omega_{1}\right), \cdots, 1 / f\left(\omega_{n-1}\right)\right)(\triangle F)^{-1} .
\end{aligned}
$$

Consequently, $B A=I$. Therefore, $u(x)$ is the inverse of $f(x)$ in the quotient ring $P_{n-1}(x)$. The polynomial $u^{\prime}(x)$ can be obtained by Euclid's Algorithm. This is the main idea of the algorithm for computing the inverse of the scaled factor circulant matrix.

To reduce the computation, suppose a is the leading coefficient of $f(x)$ and $a \neq 0$, let $f^{\prime}(x)=f(x) / a$. Then $f(x)=a f^{\prime}(x)$. The leading coefficient of $f^{\prime}(x)$ is 1 .

Theorem 3.2. Let $A=\operatorname{scacir}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ be a singular scaled factor circulant matrix with the representor

$$
f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

Suppose A has m nonzero eigenvalues. Without loss of generality, suppose $f\left(\omega_{j}\right)=0$, for $j=m, m+1, \cdots, n-1$, where $\omega_{j}, j=0,1, \cdots, n-1$, are roots of $g(x)=x^{n}-d_{1} d_{2} \cdots d_{n}$.

Let

$$
g_{1}(x)=\prod_{j=0}^{m-1}\left(x-\omega_{j}\right), \quad g_{2}(x)=\prod_{j=m}^{n-1}\left(x-\omega_{j}\right), \quad f_{1}(x)=f(x) g_{2}(x)
$$

Then there exists a polynomial

$$
u_{1}(x)=b_{0}^{\prime}+\sum_{i=1}^{n-1} b_{i}^{\prime}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

such that $u_{1}\left(\omega_{j}\right)=1 / f_{1}\left(\omega_{j}\right), j=0,1, \cdots, m-1$.
Let

$$
u(x)=u_{1}(x) g_{2}(x)=b_{0}+\sum_{i=1}^{n-1} b_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}
$$

Then $B=\operatorname{scacirc}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$ is the group inverse $A^{\#}$ of A. If \mathcal{R} is normal, then $B=$ $\operatorname{scacir}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$ is the Moore-Penrose inverse A^{+}of A.

Proof. Since

$$
x^{n}-d_{1} d_{2} \cdots d_{n}=\prod_{j=0}^{n-1}\left(x-\omega_{j}\right)
$$

it follows that $g_{1}(x)$ and $g_{2}(x)$ are coprime. From the condition of Theorem 3.2, we know that $g_{1}(x)$ and $f(x)$ are coprime. So $f_{1}(x)$ and $g_{1}(x)$ are coprime, and there exist $u_{2}(x)$ and $v(x)$ satisfying

$$
f_{1}(x) u_{2}(x)+g_{1}(x) v(x)=1
$$

When $x=\omega_{j}, j=0,1, \cdots, m-1, g_{1}(x)=0$, thus $f_{1}\left(\omega_{j}\right) u_{2}\left(\omega_{j}\right)=1$. Let $u_{1}(x)=u_{2}(x) \bmod \left(g_{1}(x)\right)$. Then the existence of the $u_{1}(x)$ in Theorem 3.2 has been proved.

Since $u(x)=u_{1}(x) g_{2}(x)$, when $j=m, m+1, \cdots, n-1, u\left(\omega_{j}\right)=0$, when $j=0,1, \cdots, m-1$,

$$
u\left(\omega_{j}\right)=u_{1}\left(\omega_{j}\right) g_{2}\left(\omega_{j}\right)=g_{2}\left(\omega_{j}\right) / f_{1}\left(\omega_{j}\right)=1 / f\left(\omega_{j}\right)
$$

The scaled factor circulant matrix B is given by

$$
\begin{aligned}
B & =\operatorname{scacirc}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right) \\
& =\triangle F \operatorname{diag}\left(u\left(\omega_{0}\right), u\left(\omega_{1}\right), \cdots, u\left(\omega_{n-1}\right)\right)(\triangle F)^{-1} \\
& =\triangle F \operatorname{diag}\left(1 / f\left(\omega_{0}\right), 1 / f\left(\omega_{1}\right), \cdots, 1 / f\left(\omega_{m-1}\right), 0, \cdots, 0\right)(\triangle F)^{-1}
\end{aligned}
$$

It follows from Theorem 2.1 that B is the group inverse $A^{\#}$ of A. If \mathcal{R} is normal, then B is the Moore-Penrose inverse A^{+}of A.

Theorem 3.2 implies that for computing the group inverse $A^{\#}$ and the Moore-Penrose inverse A^{+}of the singular scaled factor circulant matrix A, we only need to invert $f(x) g_{2}(x)$ in the quotient ring $P_{n-1}(x) /\left\langle g_{1}(x)\right\rangle$.

It can be verified that $g_{2}(x)$ is the largest common factor of $f(x)$ and $g(x)=x^{n}-d_{1} d_{2} \cdots d_{n}$. In our computations, if $\operatorname{deg}\left(f_{1}(x)\right)>\operatorname{deg}\left(g_{1}(x)\right)$, we can do polynomial division $f_{1}(x)=$ $g_{1}(x) s(x)+f_{12}(x)$. As $f_{12}\left(\omega_{j}\right)=f_{1}\left(\omega_{j}\right), j=0,1, \cdots, m-1, f_{1}(x)$ can be taken the place by $f_{12}(x)$.

A similar device was used in [24] for computing the inverses and the group inverses of FLS r-circulant matrices.

4. Inverting the Scaled Factor Circulant Matrix

The problem becomes how to evaluate $u(x), v(x)$ when $f(x), g(x)$ are known and satisfy $f(x) u(x)+g(x) v(x)=1$. Using Euclid's algorithm:

$$
\begin{aligned}
& g(x)=q_{0}(x) f(x)+r_{1}(x) \\
& f(x)=q_{1}(x) r_{1}(x)+r_{2}(x) \\
& r_{1}(x)=q_{2}(x) r_{2}(x)+r_{3}(x), \\
& \ldots \ldots \ldots \\
& r_{i-1}(x)=q_{i}(x) r_{i}(x)+r_{i+1}(x),
\end{aligned}
$$

Let $v_{1}(x)=1, u_{1}(x)=-q_{0}(x)$, then $r_{1}(x)=f(x) u_{1}(x)+g(x) v_{1}(x)$. It is obvious that

$$
\begin{aligned}
r_{2}(x) & =f(x)-q_{1}(x)\left[g(x)-q_{0}(x) f(x)\right] \\
& =\left[1+q_{0}(x) q_{1}(x)\right] f(x)-g(x) q_{1}(x) .
\end{aligned}
$$

Let $v_{2}(x)=-q_{1}(x), u_{2}(x)=1+q_{0}(x) q_{1}(x)$. We then have

$$
r_{2}(x)=f(x) u_{2}(x)+g(x) v_{2}(x)
$$

Suppose

$$
r_{j}(x)=f(x) u_{j}(x)+g(x) v_{j}(x)
$$

and that $v_{j}(x), u_{j}(x)$ have been computed when $j=0,1, \cdots, i$. Then

$$
\begin{aligned}
r_{i+1}(x) & =r_{i-1}(x)-q_{i}(x) r_{i}(x) \\
& =f(x) u_{i-1}(x)+g(x) v_{i-1}(x)-q_{i}(x)\left[f(x) u_{i}(x)+g(x) v_{i}(x)\right] \\
& =f(x)\left[u_{i-1}(x)-q_{i}(x) u_{i}(x)\right]+g(x)\left[v_{i-1}(x)-q_{i}(x) v_{i}(x)\right]
\end{aligned}
$$

Let $r_{i+1}(x)=f(x) u_{i+1}(x)+g(x) v_{i+1}(x)$. Then

$$
u_{i+1}(x)=u_{i-1}(x)-q_{i}(x) u_{i}(x)
$$

Now, we have obtained the recurrence formula for $u_{i}(x)$. So, computing $u(x)$ is equivalent to computing a sequence of polynomials

$$
q_{0}(x), r_{1}(x), u_{1}(x), \cdots, q_{i}(x), r_{i+1}(x), u_{i+1}(x), \cdots
$$

If $r_{j+1}=$ const, then $u(x)=\frac{u_{j+1}(x)}{r_{j+1}(x)}$. We can improve the method. If the division of polynomial becomes

$$
r_{i-1}(x)=q_{i}(x) r_{i}(x)+c_{i+1} r_{i+1}(x),
$$

where c_{i+1} is a nonzero number, then the recurrence formula becomes

$$
u_{i+1}(x)=\frac{u_{i-1}(x)-q_{i}(x) u_{i}(x)}{c_{i+1}}
$$

Thus, we can make the leading coefficient of $r_{i}(x)$ equal to 1 by suitably choosing c_{i}.

Algorithm 4.1. Given a scaled factor circulant matrix

$$
A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)
$$

the algorithm computes a scaled factor circulant matrix

$$
B=\operatorname{scacirc}_{\mathcal{R}}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)
$$

When A is nonsingular, B is the inverse of A. When A is singular, B is the group inverse of A. If \mathcal{R} is normal, then B is the Moore-Penrose inverse A^{+}of the scaled factor circulant matrix A. Let

$$
\begin{array}{ll}
f(x)=a_{0}+\sum_{i=1}^{n-1} a_{i}\left(\prod_{t=1}^{i} d_{t}\right)^{-1} x^{i}, & g(x)=x^{n}-d_{1} d_{2} \cdots d_{n} \\
r_{-1}(x)=g(x), \quad r_{0}(x)=f(x), & u_{-1}(x)=0, \quad u_{0}(x)=1
\end{array}
$$

Perform the polynomial division with remainder

$$
\text { do }\left\{\begin{array}{l}
r_{i-1}(x)=q_{i}(x) r_{i}(x)+r_{i+1}(x) \tag{4.1}\\
\text { (let } \left.c_{i+1} \text { be the leading coefficient of } r_{i+1}(x)\right), \\
r_{i+1}(x) \leftarrow r_{i+1}(x) / c_{i+1}, \\
u_{i+1}(x) \leftarrow\left[u_{i-1}(x)-q_{i}(x) u_{i}(x)\right] / c_{i+1}, i=0,1, \cdots
\end{array}\right.
$$

until $r_{m}(x)=1$ or $r_{m}(x)=0$.
If $r_{m}(x)=1$, then $u_{m}(x)$ is the representor of B. Then $B=u_{m}(\mathcal{R})$ is the inverse of A.
If $r_{m}(x)=0$, then $r_{m-1}(x)$ is the largest common factor of $f(x)$ and $g(x)$.
Let $r(x)=r_{m-1}(x), r_{-1}(x)=g(x) / r_{m-1}(x), r_{0}(x)=f(x) r_{m-1}(x) \bmod \left(r_{-1}(x)\right), u_{-1}(x)=$ $0, u_{0}(x)=1$, go to (4.1).
Now, if $r_{m^{\prime}}(x)=1$, then $u(x)=u_{m^{\prime}}(x) r(x) \bmod (g(x))$ is the representor of B. Thus $B=$ $u(\mathcal{R})$ is the group inverse $A^{\#}$ of A. Moreover, if \mathcal{R} is normal, then $B=u(\mathcal{R})$ is the Moore-
Penrose inverse A^{+}of A.

5. Computational Complexity

If the matrix is nonsingular, the computational complexity is divided into two parts. Suppose that the order of the scaled factor circulant matrix A is n, $\operatorname{deg}(f(x))=n-1$. First we discuss the computational complexity on the division of polynomials.

$$
r_{i-1}(x)=q_{i}(x) r_{i}(x)+r_{i+1}(x), r_{i+1}(x) \leftarrow r_{i+1}(x) / c_{i+1}, \quad \text { for } i=0,1,2, \cdots
$$

It is obvious that the division of polynomials will be done for less than $n-1$ times. If it is computed for $n-1$ times, then $\operatorname{deg}\left(q_{i}(x)\right)=1$, and the leading coefficient of $r_{i}(x), q_{i}(x)$ is 1 . So the division of polynomials involves $2 \sum_{i=1}^{n-1} i=n^{2}+\mathcal{O}(n)$ flops. If it has been computed for less than $n-1$ times, although $\operatorname{deg}\left(q_{i}(x)\right)>1$, the times of polynomial division need to be reduced. It can be deduced that this part involves less than n^{2} flops.

Second we discuss the computational complexity on the multiplication of polynomials.

$$
u_{i+1}(x) \leftarrow\left[u_{i-1}(x)-q_{i}(x) u_{i}(x)\right] / c_{i+1}, \quad i=0,1,2, \cdots
$$

From Algorithm 4.1, we know that the multiplication of polynomials will be done for less than $n-1$ times. If it has been done for $n-1$ times, since $\operatorname{deg}\left(q_{i}(x)\right)=1$, and the leading coefficient
of $r_{i}(x), q_{i}(x)$ is 1 , the multiplication of polynomials requires $2 \sum_{i=1}^{n-1} i=n^{2}+\mathcal{O}(n)$ flops. If it has been computed for less than $n-1$ times, the multiple of division involves less than n^{2} flops. So, all the amount of work is $2 n^{2}$ flops. Thus, when $\operatorname{deg}(f(x))=m$, the algorithm involves $3 n m$ flops. So when $m \ll n$, we only require $\mathcal{O}(n)$ flops, which indicates that the algorithm reduces the computational complexity greatly.

With the same reason, when the scaled factor circulant matrix is singular, the method requires $4 n^{2}+\mathcal{O}(n)$ flops to compute the group inverse or the Moore-Penrose inverse.

6. Numerical Examples

Example 6.1. Let

$$
A=\left(\begin{array}{cccc}
1 & 3 & 2 & 8 \\
16 & 1 & 6 & 8 \\
8 & 8 & 1 & 12 \\
6 & 2 & 4 & 1
\end{array}\right)
$$

Is the matrix A singular or nonsingular? If A is nonsingular, find the inverse of A.
Since $A=\operatorname{scacirc}_{\mathcal{R}}(1,3,2,8)=I+3 \mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}=f(\mathcal{R})$, where $f(x)=1+3 x+x^{2}+x^{3}$ is the representor of A, and

$$
\mathcal{R}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4 \\
2 & 0 & 0 & 0
\end{array}\right)
$$

it is known that A is a scaled factor circulant matrix. Let

$$
\begin{aligned}
& r_{-1}(x)=g(x)=x^{4}-16 \\
& r_{0}(x)=f(x)=1+3 x+x^{2}+x^{3} \\
& u_{-1}(x)=0, \quad u_{0}(x)=1
\end{aligned}
$$

Using Algorithm 4.1, we have

$$
\begin{aligned}
& q_{0}(x)=x-1, \quad r_{1}(x)=x^{2}-x+\frac{15}{2}, \quad c_{1}=-2, \quad u_{1}(x)=0.5 x-0.5 \\
& q_{1}(x)=x+2, \quad r_{2}(x)=x+\frac{28}{5}, \quad c_{2}=-2.5, \quad u_{2}(x)=0.2 x^{2}+0.2 x-0.8 \\
& q_{2}(x)=x-\frac{33}{5}, \quad r_{3}(x)=1, \quad c_{3}=\frac{2223}{50} \\
& u_{3}(x)=-\frac{289}{2223}+\frac{131}{2223} x+\frac{56}{2223} x^{2}-\frac{10}{2223} x^{3}
\end{aligned}
$$

Since $r_{3}(x)=1, A$ is a nonsingular matrix and $u_{3}(x)$ is the representor of A^{-1}. Then

$$
\begin{aligned}
A^{-1} & =\operatorname{scacirc}_{\mathcal{R}}\left(-\frac{289}{2223}, \frac{131}{2223}, \frac{112}{2223},-\frac{80}{2223}\right) \\
& =\frac{1}{2223}\left(\begin{array}{cccc}
-289 & 131 & 112 & -80 \\
-160 & -289 & 262 & 448 \\
448 & -80 & -289 & 524 \\
262 & 112 & -40 & -289
\end{array}\right)
\end{aligned}
$$

Example 6.2. Let

$$
A=\left(\begin{array}{ccc}
-4 & -3 & 2 \\
64 & -4 & -6 \\
-96 & 32 & -4
\end{array}\right)
$$

Is the matrix A singular or nonsingular? If A is singular, find the group inverse of A.
Since $A=\operatorname{scacirc}_{\mathcal{R}}(-4,-3,2)=-4 I-3 \mathcal{R}+\mathcal{R}^{2}=f(\mathcal{R})$, where $f(x)=-4-3 x+x^{2}$ is the representor of A, and

$$
\mathcal{R}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 2 \\
32 & 0 & 0
\end{array}\right)
$$

it is known that A is a scaled factor circulant matrix. Let $r_{-1}^{\prime}(x)=g(x)=x^{3}-64, r_{0}^{\prime}(x)=$ $f(x)=-4-3 x+x^{2}$. Using Algorithm 4.1, we have

$$
q_{0}^{\prime}(x)=x+3, \quad r_{1}^{\prime}(x)=x-4, \quad c_{1}^{\prime}=13, \quad q_{1}^{\prime}(x)=x+1, \quad r_{2}^{\prime}(x)=0
$$

Then the largest common factor of $f(x)$ and $g(x)$ is $r_{1}^{\prime}(x)=x-4$. Consequently, A is a singular matrix. Let

$$
\begin{aligned}
& r(x)=x-4, \quad r_{-1}(x)=\frac{g(x)}{x-4}=x^{2}+4 x+16 \\
& r_{0}(x)=f(x)(x-4) \bmod \left(x^{2}+4 x+16\right)=36 x+192, \quad u_{-1}(x)=0, \quad u_{0}(x)=1
\end{aligned}
$$

Using Algorithm 4.1, we have

$$
q_{0}(x)=\frac{1}{36} x-\frac{1}{27}, \quad r_{1}(x)=1, \quad c_{1}=\frac{208}{9}, \quad u_{1}(x)=-\frac{1}{832} x+\frac{1}{624} .
$$

Consequently,

$$
u_{1}(x) r(x)=-\frac{1}{156}+\frac{1}{156} x-\frac{1}{832} x^{2}
$$

is the representor of $A^{\#}$. Then

$$
A^{\#}=\operatorname{scacirc}_{\mathcal{R}}\left(-\frac{1}{156}, \frac{1}{156},-\frac{1}{416}\right)=\left(\begin{array}{ccc}
-\frac{1}{156} & \frac{1}{156} & -\frac{1}{416} \\
-\frac{1}{13} & -\frac{1}{156} & \frac{2}{156} \\
\frac{32}{156} & -\frac{1}{26} & -\frac{1}{156}
\end{array}\right)
$$

Acknowledgments. The project is supported by the Postdoctoral grants of the Science Foundation of China (Project No. 2004035684).

References

[1] J.L. Stuart and J.R. Weaver, Diagonally scaled permutations and circulant matrices, Linear Algebra Appl., 212/213 (1994), 397-411.
[2] R.E. Cline, R.J. Plemmons and G. Worm, Generalized inverses of certain Toeplitz matrices, Linear Algebra Appl., 8 (1974), 25-33.
[3] Z.L. Jiang and Z.X. Zhou, Circulant Matrices, Chengdu Technology University Publishing Company, Chengdu, 1999 (in Chinese).
[4] T.N.E. Greville, Some new generalized inverses with spectral properties, Proc. of the Conf. on Generalized Matrix Inverses, Texas Tech. Univ., March, 1968.
[5] J.E. Scroggs and P.L. Odell, An alternate definition of a pseudo-inverse of a matrix, J. Soc. Ind. Appl. Math., 14 (1966), 796-810.
[6] P. Davis, Circulant Matrices, Wiley, New York, 1979.
[7] I. Gohberg, T. Kailath, I. Koltracht and P. Lancaaster, Linear complexity parallel algorithms for linear systems of equations with recursive structure, Linear Algebra Appl., 88 (1987), 271-315.
[8] G.R. Wang, Y.M. Wei and S.Z. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.
[9] X.C. He and W.Y. Sun, Introduction to Generalized Inverses of Matrices, Jiangsu Technology Publishing Company, Nanjing, 1990 (in Chinese).
[10] L.Z. Cheng, The generalization of the fast algorithm inverting r-circulant matrices, Math. Numer. Sinica, 17:3 (1995), 290-297 (in Chinese).
[11] L.Z. Cheng, The fast algorithm for solving r-circulant linear systems of equations, Math. Numer. Sinica, 20:1 (1998), 45-55 (in Chinese).
[12] G.P. Liang and X.M. Shao, The circulant matrix and its applications in the computation of structures (II), Math. Numer. Sinica, 4:3 (1981), 255-261 (in Chinese).
[13] J.K. Wu and X.M. Shao, The circulant matrix and its applications in the computation of structures, Math. Numer. Sinica, 2:2 (1979), 144-153 (in Chinese).
[14] P. Dean, Atomic vibrations in solids, J. Inst. Math. Appl., 3 (1967), 98-165.
[15] J. Ruiz-Claeyssen, M. Davila and T. Tsukazan, Factor block circulant and periodic solutions of undamped matrix differential equations, Math. Appl. Comput., 3:1 (1983).
[16] F.J. Mac Williams and N. J. A. Sloane, The Theory Error-Correcting Codes, North-Holland, Amsterdam, 1981.
[17] J.C. Ruiz Claeyssen and L.A.D. dos Santos Leal, Diagonalization and spectral decomposition of factor block circulant matrices, Linear Algebra Appl., 99 (1988), 41-61.
[18] A. van Zelst and T.C.W. Schenk, Implementation of a MIMO OFDM-based wireless LAN system, IEEE T. Signal Process., 52:2 (2004), 483-494.
[19] N. Nguyen, P. Milanfar and G. Golub, A computationally efficient superresolution image reconstruction algorithm, IEEE T. Image Process., 10:4 (2001), 573-583.
[20] G. Berman, Families of generalized weighing matrices, Can. J. Math., 30 (1978), 1016-1028.
[21] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters two and three, IBM J. Res. Develop., 4 (1960), 497-504.
[22] G. Johnson, A generalization of N-matrices, Linear Algebra Appl., 48 (1982), 201-217.
[23] P.A. Leonard, Cyclic relative difference sets, Amer. Math. Monthly, 93 (1986), 106-111.
[24] Z.L. Jiang and Z.B. Xu, Efficient algorithm for finding the inverse and the group inverse of FLS r-circulant matrix, J. Appl. Math. Comput., 18:1-2 (2005), 45-57.

[^0]: ${ }^{*}$ Received August 10, 2006 / Revised version received April 23, 2007 / Accepted May 15, 2007 /

