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Abstract

A monotone compact implicit finite difference scheme with fourth-order accuracy in

space and second-order in time is proposed for solving nonlinear reaction-diffusion equa-

tions. An accelerated monotone iterative method for the resulting discrete problem is

presented. The sequence of iteration converges monotonically to the unique solution of

the discrete problem, and the convergence rate is either quadratic or nearly quadratic,

depending on the property of the nonlinear reaction. The numerical results illustrate the

high accuracy of the proposed scheme and the rapid convergence rate of the iteration.
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1. Introduction

Many phenomena in physics, chemistry, biology and engineering are described by nonlin-

ear reaction-diffusion equations. Much work has been done for the qualitative analysis of the

equations (see [19] and references therein), as well as their numerical simulations (see, e.g.,

[7,10,13,17,18,20,21,23,24,28]). In this paper, we provide a new numerical treatment for a class

of nonlinear reaction-diffusion equations. It includes the construction and analysis of a mono-

tone compact implicit finite difference scheme with high accuracy, and an accelerated monotone

iterative method with rapid convergence rate for solving the resulting discrete problem. The

equation under consideration is of the form:






∂u/∂t + Lu = f(x, t, u), 0 < x < 1, 0 < t ≤ T,

u(0, t) = g0(t), u(1, t) = g1(t), 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.1)

where g0(t), g1(t) and u0(x) are given continuous functions satisfying the compatibility condi-

tions u0(0) = g0(0) and u0(1) = g1(0). The operator Lu in (1.1) is given by

Lu = − ∂

∂x

(
k(x)

∂u

∂x

)
, (1.2)
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where the coefficient k(x) ∈ C1(0, 1) and for certain constants α0 and α1,

0 < α0 ≤ k(x) ≤ α1, x ∈ (0, 1). (1.3)

The function f(x, t, u) in (1.1) is continuous in its domain, and the function f(·, u), which is in

general nonlinear in u, is continuously differentiable in u.

Various numerical methods have been developed for solving problem (1.1). In the usual

finite difference methods, one approximates the term ∂u/∂t by Euler backward method and

the differential operator Lu by the central difference quotient (see, e.g., [7,10,13,17,18,20,21]).

In this case, the resulting discrete system is tridiagonal, and so it does not need any fictitious

points for implementing the scheme. However, such scheme has only the accuracy of O(τ + h2)

where τ and h are the mesh sizes in time and in space, respectively (e.g., [15,17,18,20,21]). In

other words, we must take small mesh sizes in order to obtain the desirable accuracy, and thus

much computational work is involved.

As is well known, by using the Crank-Nicolson technique or the three-level Lees technique

in the time discretization, the accuracy in time can be improved to second-order (see [4,15,25]).

But if Lees technique is used, one has to evaluate the solution at the first time level by other

method (see [4,15,25]). Another trick for improving accuracy in time is to use extrapolation

technique (see [25]). For improvement of the accuracy in space, a conventional approach is to

approximate Lu by using more points in the space discretization (see [4]). However, this not

only significantly increases the computational complexity but also causes difficulty in handling

boundary conditions since fictitious points near boundaries are needed (see [4]).

An alternative approach of improving the accuracy in space is the so-called compact implicit

method which has been developed and generalized by several investigators under the name

Operator Compact Implicit (OCI) method (see, in particular, [2–4]). This method achieves the

fourth-order accuracy while retaining the tridiagonal feature of a second-order method and not

requiring additional fictitious points at the boundary (see [2–4,14]). Assume that the function

u(x) is independent of t. The main idea of the OCI method is to look for an approximation

representation of Lu by establishing the following relationship between Lu and the function u

on the three adjacent points of a uniform mesh xi = ih (h = 1/L, i = 0, 1, · · · , L):

r−i ui−1 + rc
i ui + r+

i ui+1 = q−i (Lu)i−1 + qc
i (Lu)i + q+

i (Lu)i+1, 1 ≤ i ≤ L − 1, (1.4)

or

Riui = Qi(Lu)i, 1 ≤ i ≤ L − 1,

where ui and (Lu)i are the approximations to u and Lu at xi, respectively, and the operators

Ri and Qi are tridiagonal operators:

Riui = r−i ui−1 + rc
i ui + r+

i ui+1, Qiui = q−i ui−1 + qc
i ui + q+

i ui+1, 1 ≤ i ≤ L − 1. (1.5)

This approximation representation for Lu is explicit if q−i = q+
i = 0, and implicit otherwise.

Without loss of generality, throughout this paper, (1.4) is assumed normalized so that

lim
h→0

qc
i = a positive constant, 1 ≤ i ≤ L − 1. (1.6)

Following the terminology of [3,4], a scheme of the form (1.4) will be referred to as an Operator

Compact Implicit (OCI) scheme if it is a fourth-order accurate approximation to Lu, i.e., if

its truncation error is O(h4) after normalization. Note that the fourth-order accuracy is the

highest that can be obtained by a scheme of the form (1.4) (see, e.g., [3,14]).
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We now discretize (1.1). Let tn = nτ (τ = T/N, n = 0, 1, · · · , N) be the mesh size in

time. By combining the Crank-Nicolson discretization in time with the technique used in space

approximation as in scheme (1.4), we obtain the following difference equation for (1.1):
(
Qi +

τ

2
Ri

)
ui,n =

(
Qi −

τ

2
Ri

)
ui,n−1 +

τ

2
Qi

(
f(xi, tn, ui,n) + f(xi, tn−1, ui,n−1)

)
, (1.7)

where ui,n is the approximation to u(xi, tn). Define

Λ = {(i, n) : i = 1, · · · , L − 1; n = 1, · · · , N},
∂Λ = {(i, n) : i = 0, L; n = 0, 1, · · · , N} ∪ {(i, 0) : i = 0, 1, · · · , L},
Λ = Λ ∪ ∂Λ.

Since a fundamental property of the problem (1.1) is its maximum principle (see [19]), it is

reasonable to require that (1.7) also possesses an analogous discrete maximum principle as

follows:

Discrete maximum principle. The inequality
(
Qi +

τ

2
Ri

)
ui,n ≤

(
Qi −

τ

2
Ri

)
ui,n−1, (i, n) ∈ Λ (1.8)

implies

max
(i,n)∈Λ

ui,n ≤ max
(i,n)∈∂Λ

ui,n. (1.9)

The scheme satisfying the discrete maximum principle is often known as a monotone scheme.

For the monotonicity of (1.7) we have the following result.

Theorem 1.1. The scheme (1.7) is monotone if the following condition is satisfied:

(C)





q−i ≥ 0, qc

i > 0, q+
i ≥ 0, r−i + rc

i + r+
i = 0,

q−i +
τ

2
r−i < 0, qc

i −
τ

2
rc
i > 0, q+

i +
τ

2
r+
i < 0,

1 ≤ i ≤ L − 1.

Proof. It suffices to prove that the inequality (1.8) implies (1.9). Define a−,c,+
i (i.e.,

a−

i , ac
i , a

+
i ) and b−,c,+

i as follows:

a−,c,+
i = q−,c,+

i +
τ

2
r−,c,+
i , b−,c,+

i = q−,c,+
i − τ

2
r−,c,+
i .

Then by the condition (C), we have

ac
i > 0, −a−,+

i > 0, b−,c,+
i > 0, ac

i = −a−

i − a+
i + b−i + bc

i + b+
i . (1.10)

Moreover, by the definitions of Qi and Ri, the inequality (1.8) reads

a−

i ui−1,n + ac
iui,n + a+

i ui+1,n ≤ b−i ui−1,n−1 + bc
iui,n−1 + b+

i ui+1,n−1. (1.11)

Now, let

ui0,n0 = MΛ = max
(i,n)∈Λ

ui,n

for some (i0, n0) ∈ Λ. If (i0, n0) ∈ ∂Λ, then (1.9) follows immediately. Otherwise, we have from

(1.10) and (1.11) that

MΛ = ui0,n0 ≤ 1

ac
i0

(−a−

i0
ui0−1,n0 − a+

i0
ui0+1,n0 + b−i0ui0−1,n0−1

+bc
i0ui0,n0−1 + b+

i0
ui0+1,n0−1) ≤ MΛ. (1.12)
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Using (1.10) again, we assert that all the values ui,n involved in (1.12) are equal to MΛ. Hence

MΛ is attained also at all the points which are the connected neighbors of (i0, n0). The same

argument is valid at each of these points. Finally, all ui,n take the same value MΛ. Therefore,

(1.9) is valid.

Since it is not easy to check the monotonicity of (1.7) directly, we turn to pay attention to

the condition (C). A monotone scheme of the form (1.7) will be called a Monotone Compact

Implicit (MCI) scheme in this paper if the corresponding steady scheme (1.4) is an OCI scheme.

Motivated by Hermite’s generalization of the Taylor series, Collatz proposed an OCI scheme

in [5,6]. Independently, Swartz [26] also derived a similar OCI scheme from approximation the-

ory considerations. Later a broad family of OCI schemes was obtained in [4] using a straight-

forward Taylor expansion, which generalizes Swartz’s work. For an overview of OCI schemes,

see the monograph [14]. However, when the above technique is applied to the operator Lu

given by (1.2), the relationship (1.4) (or more precisely, the definitions of the operators Qi and

Ri) becomes complicated since it depends not only on the function k(x) itself but also on the

derivative of it. In addition, we require some severe conditions on k(x) as well as on k′(x) (for

example, k′(x) ≥ 0) (see [14]) for the monotone condition (C). This feature limits the applica-

tion of this method. In this paper, we propose a new approach for Lu in its original form to

obtain an OCI scheme and then establish a MCI scheme in the form (1.7) with the accuracy

of O(τ2 + h4). Such a scheme depends only on the function k(x) itself, and the monotone

condition (C) can also be easily verified with some conditions on the function k(x) only. It is

noted that our scheme was partially motivated by the work in [8] or [9] where a relationship

between Lu and u was established by using the local Green’s function.

Due to the nonlinearity of the problem (1.7), some kind of iteration process is required.

The frequently used iteration processes are either the Picard type or the Newton type [16–

18,21,22,30]. The Picard’s method yields a sequence converging to a unique solution monoton-

ically. However, the convergence rate is only linear. In the treatment of a chemical reactor

model in [17], for example, the convergence rate of the Picard iteration is very slow for certain

physical parameters. Although the Newton’s method is quadratically convergent, the corre-

sponding sequence of iteration does not possess, in general, any monotone property. Moreover,

the Newton’s method has a strict requirement on the initial data for its quadratic convergence

(see [16,30]). To increase the convergence rate while maintaining the monotone property of the

iteration, we propose an accelerated monotone iteration for the problem (1.7) by the method of

upper and lower solutions. It is shown, by using upper and lower solutions as a pair of coupled

initial iterations, that the iteration yields two monotone sequences which converge monotoni-

cally from above and below, respectively, to a unique solution. Its convergence rate is either

quadratic or nearly quadratic, with the usual differentiability requirement only on the function

f(·, u). On the other hand, since the initial iteration in the monotone iteration is either an

upper solution or a lower solution, which can be constructed directly from the problem (1.7)

without any knowledge of the solution, our method avoids the search for the initial iteration as

is often needed in the Newton’s method. Indeed, this is another advantage of our method.

This paper is organized as follows. In Section 2, we design a new OCI scheme of the

form (1.4) and then combine the Crank-Nicolson discretization in time with the OCI scheme

to propose a MCI scheme of the form (1.7). This MCI scheme is treated in Section 3 by the

method of upper and lower solutions. The existence and uniqueness of the solution is discussed.

In Section 4, we prove that the MCI scheme has the accuracy of O(τ2+h4). Section 5 is devoted

to an accelerated monotone iteration for resolving the resulting discrete system. This iteration
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is reduced to the Newton’s method if the reaction function f(·, u) possesses a concavity or

convexity property between upper and lower solutions. The quadratic convergence rate of the

iteration is analyzed. Some explicit estimates for the convergence rate are given. In Section

6, we give some numerical results which demonstrate the monotonicity of the iteration and

the high accuracy of the numerical solution. The comparison of the convergence rate of the

accelerated monotone iteration with that of the Picard iteration is also given. The final section

gives some concluding remarks.

2. The Derivation of the MCI Scheme

In this section we derive a MCI scheme and discuss its basic properties.

2.1. An OCI scheme

Consider a uniform mesh xi = ih (i = 0, 1, · · · , L) where h = 1/L is the mesh size. The

local Green’s function Gi(x, s) of the operator L given by (1.2) is defined by

{
LGi(x, s) = δ(x, s), (x, s) ∈ (xi−1, xi) × [xi−1, xi], 1 ≤ i ≤ L,

Gi(xi−1, s) = Gi(xi, s) = 0, s ∈ [xi−1, xi], 1 ≤ i ≤ L.

It can be verified that (see [8,9])

Gi(x, s) =

{
g1,i(s)g2,i(x)/Ji, x ≤ s,

g1,i(x)g2,i(s)/Ji, x > s,
(2.1a)

where

Ji =

(∫ xi

xi−1

1

k(s)
ds

)−1

, g1,i(x) = Ji

∫ xi

x

1

k(s)
ds, g2,i(x) = Ji

∫ x

xi−1

1

k(s)
ds. (2.1b)

By the above local Green’s function, we have the following relationship between Lu(x) and

u(x) (see [8,9]):

−Jiu(xi−1) + (Ji + Ji+1)u(xi) − Ji+1u(xi+1) = Ψi(Lu), (2.2)

where

Ψi(Lu) =

∫ xi+1

xi

Lu(x)g1,i+1(x) dx +

∫ xi

xi−1

Lu(x)g2,i(x) dx.

Define v(x) = Lu(x), and let Hi(x) be the Hermite interpolant of v(x) on [xi−1, xi+1] such that

H ′

i(xi) = v′(xi), Hi(xj) = v(xj), j = i − 1, i, i + 1.

Then by approximation theory we have

Hi(x) = φi,1(x)v(xi−1) + φi,2(x)v(xi) + φi,3(x)v(xi+1) + pi(x),

where

φi,1(x) = −x − xi

2h
+

(x − xi)
2

2h2
, φi,2(x) = 1 − (x − xi)

2

h2
, φi,3(x) =

x − xi

2h
+

(x − xi)
2

2h2
,
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and

pi(x) = − 1

h2
v′(xi)(x − xi−1)(x − xi)(x − xi+1)

+
1

2h3
(v(xi+1) − v(xi−1))(x − xi−1)(x − xi)(x − xi+1).

Moreover for all x ∈ [xi−1, xi+1],

v(x) = Hi(x) +
1

24

d4v

dx4
(ξi)(x − xi−1)(x − xi)

2(x − xi+1),

where ξi ∈ [xi−1, xi+1]. On the other hand,

v′(xi) =
1

2h
(v(xi+1) − v(xi−1)) −

h2

6

d3v

dx3
(ηi),

where ηi ∈ [xi−1, xi+1] and depends only on xj (j = i − 1, i, i + 1). Consequently, for all

x ∈ [xi−1, xi+1],

v(x) = φi,1(x)v(xi−1) + φi,2(x)v(xi) + φi,3(x)v(xi+1) + εi(x),

or equivalently

Lu(x) = φi,1(x)Lu(xi−1) + φi,2(x)Lu(xi) + φi,3(x)Lu(xi+1) + εi(x), (2.3)

where

εi(x) =
1

6

d3v

dx3
(ηi)(x − xi−1)(x − xi)(x − xi+1)

+
1

24

d4v

dx4
(ξi)(x − xi−1)(x − xi)

2(x − xi+1).

By substituting (2.3) into the expression of Ψi(Lu), we deduce from (2.2) that

−Jiu(xi−1) + (Ji + Ji+1)u(xi) − Ji+1u(xi+1)

= EiLu(xi−1) + FiLu(xi) + GiLu(xi+1) + ε̃i, (2.4)

where

Ei =

∫ xi+1

xi

φi,1(x)g1,i+1(x)dx +

∫ xi

xi−1

φi,1(x)g2,i(x)dx,

Fi =

∫ xi+1

xi

φi,2(x)g1,i+1(x)dx +

∫ xi

xi−1

φi,2(x)g2,i(x)dx,

Gi =

∫ xi+1

xi

φi,3(x)g1,i+1(x)dx +

∫ xi

xi−1

φi,3(x)g2,i(x)dx,

ε̃i =

∫ xi+1

xi

εi(x)g1,i+1(x)dx +

∫ xi

xi−1

εi(x)g2,i(x)dx.

Here, g1,i+1(x) and g2,i(x) are defined by (2.1b). Neglecting the term ε̃i in (2.4) we obtain the

following relationship between ui and (Lu)i:

−Jiui−1 + (Ji + Ji+1)ui − Ji+1ui+1

= Ei(Lu)i−1 + Fi(Lu)i + Gi(Lu)i+1, (2.5)
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where ui and (Lu)i are the approximations to u(xi) and Lu(xi), respectively. A similar scheme

is obtained in [12] for interface problems. Clearly, the relation (2.5) has the form (1.4) with the

coefficients

r−i = −Ji, rc
i = Ji + Ji+1, r+

i = −Ji+1,

q−i = Ei, qc
i = Fi, q+

i = Gi.
(2.6)

Theorem 2.1. The scheme (2.5) is an OCI scheme.

Proof. Since ηi in the expression of εi(x) depends only on xj (j = i− 1, i, i + 1) we have by

the Taylor expansion of σ(x) = 1/k(x) at xi that

ε̃i =
1

6

d3v

dx3
(ηi)

Ji+1Ji

k2(xi)
(ε̃i,1 + ε̃i,2)h + O(h5),

where

ε̃i,1 =

∫ xi+1

xi

∫ x

xi

(s − xi−1)(s − xi)(s − xi+1)dsdx,

ε̃i,2 =

∫ xi

xi−1

∫ xi

x

(s − xi−1)(s − xi)(s − xi+1)dsdx.

A direct calculation yields ε̃i,1 + ε̃i,2 = 0. This implies ε̃i = O(h5). It is easy to see from

condition (1.3) that Fi = O(h) and Fi > 0 for each i. These statements imply that the

truncation error of (2.5) is O(h4) after normalization according to (1.6), and thus (2.5) is an

OCI scheme. �

Remark 2.1. The OCI scheme (2.5) depends only on the function k(x). Although some inte-

grals are involved in this scheme, they can be easily calculated if k(x) is an elementary function.

It will be seen in the next subsection that for this scheme the monotone condition (C) can also

be easily checked with some conditions on k(x) and the mesh sizes.

2.2. A MCI scheme

Let the operators Ri and Qi be given in (1.5), where the coefficients r−,c,+
i (i.e., r−i , rc

i , r
+
i )

and q−,c,+
i are defined by (2.6). Combining the Crank-Nicolson time discretization with the

trick used in the OCI scheme (2.5) we obtain the following finite difference equation of the form

(1.7) for (1.1),





(
Qi +

τ

2
Ri

)
ui,n =

(
Qi −

τ

2
Ri

)
ui,n−1 +

τ

2
Qi (f(xi, tn, ui,n)

+f(xi, tn−1, ui,n−1)) , 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u0,n = g0(tn), uL,n = g1(tn), 1 ≤ n ≤ N,

ui,0 = u0(xi), 0 ≤ i ≤ L.

(2.7)

Obviously, the scheme (2.7) is a generalization of the Crandall scheme (see [11]) or the Douglas

scheme (see [25]) for the equation ut = uxx.

To check the monotone property of the scheme (2.7) we establish some lemmas.

Lemma 2.1. There exists a positive constant h∗ ≤ 1 such that for all h ≤ h∗,

Ei ≥ 0, Fi > 0, Gi ≥ 0, 1 ≤ i ≤ L − 1.
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Proof. By the condition (1.3), it is clear that Fi > 0 for all 1 ≤ i ≤ L − 1. Furthermore by

the Taylor expansion of σ(x) = 1/k(x) at xi, we have that for all 1 ≤ i ≤ L − 1,

Ei = JiJi+1

[(
σ(xi)h + O(h2)

)(
− 1

24
σ(xi)h

2 + O(h3)

)

+
(
σ(xi)h + O(h2)

)(1

8
σ(xi)h

2 + O(h3)

)]

= JiJi+1

(
1

12
σ2(xi)h

3 + O(h4)

)
.

Similarly,

Gi = JiJi+1

(
1

12
σ2(xi)h

3 + O(h4)

)
, 1 ≤ i ≤ L − 1.

Since Ji > 0 and Ji+1 > 0 for all h > 0, there exists a positive constant h∗ ≤ 1 such that for

all h ≤ h∗, both Ei and Gi are nonnegative. This completes the proof. �

Remark 2.2. In some specific problems, we may obtain the precise value of h∗ through a

direct calculation of Ei and Gi. For example, a simple calculation leads to that

Ei ≥
(

α0

8α1
− α1

24α0

)
h, Gi ≥

(
α0

8α1
− α1

24α0

)
h.

Thus if α1 ≤
√

3α0, then Ei ≥ 0 and Gi ≥ 0 for all h ≥ 0.

Lemma 2.2. ([27, Corollary 1, p.85]) If A = (ai,j) is a real, irreducibly diagonally dominant

n × n matrix with ai,j ≤ 0 for all i 6= j, and ai,i > 0 for all 1 ≤ i ≤ n, then A−1 exists and is

nonnegative.

Throughout the paper, R = (Ri,j) and Q = (Qi,j) denote the (L − 1) × (L − 1) tridiagonal

matrices with the respective elements

Ri,j = −δi,j+1Jj+1 + δi,j(Jj + Jj+1) − δi,j−1Jj ,

Qi,j = δi,j+1Ej+1 + δi,jFj + δi,j−1Gj−1,

where δi,j = 1 if i = j, and δi,j = 0 otherwise. We have the following result.

Lemma 2.3. Let Mi,n (i = 0, 1, · · · , L; n = 0, 1, · · · , N) be some given constants, and define

Dn = diag(M1,n, · · · , ML−1,n). Assume that 3α1 ≤ 10α0 and the mesh sizes h and τ satisfy

that 



h ≤ h∗, −2 < τMi,n <
20α0 − 6α1

10α0 + 3α1
,

2 + τMi,n

8α0
<

τ

h2
<

10 − 5τMi,n

12α1
,

0 ≤ i ≤ L; 0 ≤ n ≤ N, (2.8)

where h∗ is the constant in Lemma 2.1. Then for all 1 ≤ i ≤ L − 1 and 0 ≤ n ≤ N ,

(i) Ei ≥ 0, Fi > 0, and Gi ≥ 0;

(ii)
(
1 +

τ

2
Mi−1,n

)
Ei −

τ

2
Ji < 0 and

(
1 +

τ

2
Mi+1,n

)
Gi −

τ

2
Ji+1 < 0;

(iii)
(
1 − τ

2
Mi,n

)
Fi −

τ

2
(Ji + Ji+1) > 0;

(iv)
(
Q +

τ

2
QDn +

τ

2
R
)−1

≥ 0.
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Proof. (i) The result (i) follows from Lemma 2.1.

(ii) By the condition (1.3), we have

Ei ≤
h2

8α0
Ji, Gi ≤

h2

8α0
Ji+1, 1 ≤ i ≤ L − 1.

This relation and the condition (2.8) lead to the result (ii).

(iii) Due to the condition (1.3) we can easily verify that

Fi ≥
5

12α1
h2 (Ji + Ji+1) .

Then the result (iii) follows from the above estimate and the condition (2.8).

(iv) The results in (i) and (ii) imply that the tridiagonal matrix Q + τ
2QDn + τ

2 R satisfies

the conditions in Lemma 2.2, and thus its inverse exists and is nonnegative. The conclusion

(iv) is proved. �

By Lemma 2.3, we see immediately that the monotone condition (C) is valid for (2.7) if the

condition (2.8) holds with Mi,n ≡ 0. This leads to the following conclusion.

Theorem 2.2. Assume that 3α1 ≤ 10α0, and that the mesh sizes h and τ fulfill the condition

(2.8) with Mi,n ≡ 0. Then the scheme (2.7) is a MCI scheme.

More generally, we have the following positivity lemma.

Lemma 2.4. Let the conditions in Lemma 2.3 be satisfied. If ui,n is given by





(
Qi +

τ

2
Ri

)
ui,n +

τ

2
Qi (Mi,nui,n) ≥

(
Qi −

τ

2
Ri

)
ui,n−1 −

τ

2
Qi (Mi,n−1ui,n−1) ,

1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u0,n ≥ 0, uL,n ≥ 0, 1 ≤ n ≤ N,

ui,0 ≥ 0, 0 ≤ i ≤ L,

(2.9)

then ui,n ≥ 0 for all 0 ≤ i ≤ L and 0 ≤ n ≤ N .

Proof. By Lemma 2.3,

Q − τ

2
QDn − τ

2
R ≥ 0,

(
Q +

τ

2
QDn +

τ

2
R
)−1

≥ 0.

Writing (2.9) in the matrix form, we obtain the desired result by an induction on n. �

Remark 2.3. In the special case k(x) ≡ D, where D is a positive constant, the condition (2.8)

can be weakened as





−2 < τMi,n <
4

3
,

2 + τMi,n

12D
<

τ

h2
<

10 − 5τMi,n

12D
,

0 ≤ i ≤ L; 0 ≤ n ≤ N. (2.10)
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3. The Existence and Uniqueness of the Solution

To study the existence and uniqueness of solution of (2.7) we need a pair of ordered upper

and lower solutions defined as follows.

Definition 3.1. A function ui,n (i = 0, 1, · · · , L; n = 0, 1, · · · , N) is called an upper solution

of (2.7) if





(
Qi +

τ

2
Ri

)
ui,n ≥

(
Qi −

τ

2
Ri

)
ui,n−1 +

τ

2
Qi (f(xi, tn, ui,n)

+f(xi, tn−1, ui,n−1)) , 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u0,n ≥ g0(tn), uL,n ≥ g1(tn), 1 ≤ n ≤ N,

ui,0 ≥ u0(xi), 0 ≤ i ≤ L.

(3.1)

Similarly, ui,n is called a lower solution if it satisfies the above inequalities in reversed order.

The pair ui,n, ui,n are said to be ordered if ui,n ≥ ui,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N .

It is clear that every solution of (2.7) is an upper solution as well as a lower solution. For

any pair of ordered upper and lower solutions ui,n, ui,n we define the sector

〈ui,n, ui,n〉 = {ui,n ∈ R : ui,n ≤ ui,n ≤ ui,n}. (3.2)

Theorem 3.1. Let ui,n, ui,n be a pair of ordered upper and lower solutions of (2.7), and assume

that there exist constants M i,n such that

fu(xi, tn, ξi,n) ≥ −M i,n, ξi,n ∈ 〈ui,n, ui,n〉, 0 ≤ i ≤ L; 0 ≤ n ≤ N, (3.3)

where fu = ∂f/∂u. If 3α1 ≤ 10α0 and the condition (2.8) holds with Mi,n = M i,n, then (2.7)

has a maximal solution u∗

i,n and a minimal solution u∗

i,n in 〈ui,n, ui,n〉. Here, the maximal

property of u∗

i,n means that for any solution ui,n of (2.7) in 〈ui,n, ui,n〉, we have ui,n ≤ u∗

i,n for

all 0 ≤ i ≤ L and 0 ≤ n ≤ N . The minimal property of u∗

i,n is understood similarly.

Proof. The proof is constructive. Consider the following iteration:





(
Qi +

τ

2
Ri

)
u

(m)
i,n +

τ

2
Qi

(
M i,nu

(m)
i,n

)
=
(
Qi −

τ

2
Ri

)
u

(m)
i,n−1 +

τ

2
Qi

(
M i,nu

(m−1)
i,n

)

+
τ

2
Qi

(
f(xi, tn, u

(m−1)
i,n ) + f(xi, tn−1, u

(m)
i,n−1)

)
, 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u
(m)
0,n = g0(tn), u

(m)
L,n = g1(tn), 1 ≤ n ≤ N,

u
(m)
i,0 = u0(xi), 0 ≤ i ≤ L.

(3.4)

By Lemma 2.3, the above iteration is well defined under the condition (2.8) as long as the

initial iteration u
(0)
i,n is given. Denote the sequence by {u(m)

i,n } if u
(0)
i,n = ui,n, and by {u(m)

i,n } if

u
(0)
i,n = ui,n. We shall first prove that for all m ≥ 0,

u
(m)
i,n ≤ u

(m+1)
i,n ≤ u

(m+1)
i,n ≤ u

(m)
i,n , 0 ≤ i ≤ L; 0 ≤ n ≤ N. (3.5)

Let

w
(0)
i,n = u

(0)
i,n − u

(1)
i,n, w

(0)
i,n = u

(1)
i,n − u

(0)
i,n, w

(1)
i,n = u

(1)
i,n − u

(1)
i,n
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for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . Then by (3.1), (3.3) and (3.4),

(
Qi +

τ

2
Ri

)
w

(0)
i,n +

τ

2
Qi

(
M i,nw

(0)
i,n

)
≥
(
Qi −

τ

2
Ri

)
w

(0)
i,n−1 −

τ

2
Qi

(
M i,n−1w

(0)
i,n−1

)

+
τ

2
Qi

(
M i,n−1

(
u

(0)
i,n−1 − u

(1)
i,n−1

)
+ f(xi, tn−1, u

(0)
i,n−1) − f(xi, tn−1, u

(1)
i,n−1)

)
,

(
Qi +

τ

2
Ri

)
w

(0)
i,n +

τ

2
Qi

(
M i,nw

(0)
i,n

)
≥
(
Qi −

τ

2
Ri

)
w

(0)
i,n−1 −

τ

2
Qi

(
M i,n−1w

(0)
i,n−1

)

+
τ

2
Qi

(
M i,n−1

(
u

(1)
i,n−1 − u

(0)
i,n−1

)
+ f(xi, tn−1, u

(1)
i,n−1) − f(xi, tn−1, u

(0)
i,n−1)

)
,

(
Qi +

τ

2
Ri

)
w

(1)
i,n +

τ

2
Qi

(
M i,nw

(1)
i,n

)
≥
(
Qi −

τ

2
Ri

)
w

(1)
i,n−1 −

τ

2
Qi

(
M i,n−1w

(1)
i,n−1

)

+
τ

2
Qi

(
M i,n−1

(
u

(1)
i,n−1 − u

(1)
i,n−1

)
+ f(xi, tn−1, u

(1)
i,n−1) − f(xi, tn−1, u

(1)
i,n−1)

)
.

Since u
(0)
i,0 ≥ u

(1)
i,0 = u

(1)
i,0 ≥ u

(0)
i,0 , it follows from (3.3) and Lemma 2.3 that

w
(0)
i,1 ≥ 0, w

(0)
i,1 ≥ 0, w

(1)
i,1 ≥ 0, 0 ≤ i ≤ L.

Consequently,

u
(0)
i,1 ≤ u

(1)
i,1 ≤ u

(1)
i,1 ≤ u

(0)
i,1 , 0 ≤ i ≤ L.

By an induction on n, we know that (3.5) holds for m = 0. Finally, the desired result (3.5)

follows from an induction argument about m.

In view of (3.5), there exist the limits

lim
m→∞

u
(m)
i,n = u∗

i,n, lim
m→∞

u
(m)
i,n = u∗

i,n, 0 ≤ i ≤ L; 0 ≤ n ≤ N. (3.6)

Letting m → ∞ in (3.4), we assert that both u∗

i,n and u∗

i,n are solutions of (2.7).

Now, if ui,n is a solution of (2.7) in 〈ui,n, ui,n〉, then ui,n, ui,n is also a pair of ordered upper

and lower solutions of (2.7). The above arguments imply that u∗

i,n ≤ ui,n for all 0 ≤ i ≤ L and

0 ≤ n ≤ N . Similarly, we have ui,n ≤ u∗

i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . This implies that

u∗

i,n and u∗

i,n are the maximal and minimal solutions of (2.7) in 〈ui,n, ui,n〉, respectively. The

proof is complete. �

Theorem 3.2. Let the condition in Theorem 3.1 hold. Assume, in addition, that there exist

constants M i,n such that τM i,n < 2 and

fu(xi, tn, ξi,n) ≤ M i,n, ξi,n ∈ 〈ui,n, ui,n〉, 0 ≤ i ≤ L; 0 ≤ n ≤ N. (3.7)

Then (2.7) has a unique solution u∗

i,n in 〈ui,n, ui,n〉.

Proof. Let u∗

i,n and u∗

i,n be the limits in (3.6). It suffices to verify that u∗

i,n = u∗

i,n for all

0 ≤ i ≤ L and 0 ≤ n ≤ N . Let w∗

i,n = u∗

i,n − u∗

i,n. Then w∗

i,n ≥ 0 and

(
Qi +

τ

2
Ri

)
w∗

i,n =
(
Qi −

τ

2
Ri

)
w∗

i,n−1 +
τ

2
Qi

(
f(xi, tn, u∗

i,n) − f(xi, tn, u∗

i,n)
)

+
τ

2
Qi

(
f(xi, tn−1, u

∗

i,n−1) − f(xi, tn−1, u
∗

i,n−1)
)

≤
(
Qi −

τ

2
Ri

)
w∗

i,n−1 +
τ

2
Qi

(
M i,nw∗

i,n

)
+

τ

2
Qi

(
M i,n−1w

∗

i,n−1

)
,
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which gives

(
Qi +

τ

2
Ri

)
w∗

i,n − τ

2
Qi

(
M i,nw∗

i,n

)
≤
(
Qi −

τ

2
Ri

)
w∗

i,n−1 +
τ

2
Qi

(
M i,n−1w

∗

i,n−1

)
.

Since condition (2.8) holds with Mi,n = M i,n and M i,n ≥ −M i,n, it also holds with Mi,n =

−M i,n under the condition τM i,n < 2. By Lemma 2.4, w∗

i,n ≤ 0. Therefore, w∗

i,n = 0 which

implies u∗

i,n = u∗

i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . This completes the proof. �

Remark 3.1. It is seen from the proofs of Theorems 3.1 and 3.2 that the monotone iteration

(3.4) not only leads to the existence and uniqueness of solution of (2.7) but also provides an

algorithm for the numerical solution. However, its convergence rate is only linear because it is

of Picard type. An accelerated monotone iteration will be developed in Section 5.

4. The Convergence of the MCI Scheme (2.7)

In this section, we deal with the convergence of the MCI scheme (2.7). Specifically, we prove

that the solution of MCI scheme (2.7) converges to the solution of (1.1) with the accuracy of

O(τ2 + h4) as τ → 0 and h → 0. For this purpose we introduce the following lemma.

Lemma 4.1. Let {ζi} be a sequence of real numbers such that for certain 0 < γ < 1 and δ > 0,

|ζi| ≤ γ|ζi| + (1 + γ)|ζi−1| + δ, i = 1, 2, · · · . (4.1)

Then

|ζi| ≤ e
2iγ
1−γ |ζ0| +

δ

2γ

(
e

2iγ
1−γ − 1

)
, i = 0, 1, · · · . (4.2)

Proof. We prove the lemma by induction. Clearly, (4.2) holds for i = 0. Now, assume that

(4.2) is true for some i ≥ 0. Then

|ζi+1| ≤
1 + γ

1 − γ
|ζi| +

δ

1 − γ

≤
(

1 +
2γ

1 − γ

)
|ζi| +

δ

1 − γ

≤
(

1 +
2γ

1 − γ

)
e

2iγ
1−γ |ζ0| +

δ

2γ

(
1 +

2γ

1 − γ

)(
e

2iγ
1−γ − 1

)
+

δ

1 − γ
.

Since

1 +
2γ

1 − γ
≤ e

2γ
1−γ ,

we have

|ζi+1| ≤ e
2(i+1)γ

1−γ |ζ0| +
δ

2γ

(
e

2(i+1)γ
1−γ − 1

)
.

The induction is complete. �

In the rest part of this paper, the letter C with subscript denotes a generic positive constant

that is independent of τ and h and may not be the same at different occurrences.

The main result in this section is stated in the following theorem.
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Theorem 4.1. Let u(x, t) and ui,n be the solutions of (1.1) and (2.7), respectively. Assume

that

(i) there exists a positive constant M such that τM < 1 and for 1 ≤ i ≤ L−1 and 1 ≤ n ≤ N ,

|fu(xi, tn, ξi,n)| ≤ M, ξi,n ∈ 〈min{u(xi, tn), ui,n}, max{u(xi, tn), ui,n}〉; (4.3)

(ii) the functions uttt(x, t) and vxxxx(x, t) are all continuous for all x ∈ [0, 1] and t ∈ [0, T ],

where v(x, t) = Lu(x, t);

(iii) 3α1 ≤ 10α0 and the condition (2.8) holds with Mi,n ≡ 0.

Then

|u(xi, tn) − ui,n)| ≤ C1

(
τ2 + h4

)
, 0 ≤ i ≤ L; 0 ≤ n ≤ N. (4.4)

Proof. Combining the Crank-Nicolson time discretization with the relation (2.4) we have

that for all 1 ≤ i ≤ L − 1 and 1 ≤ n ≤ N ,
(
Qi +

τ

2
Ri

)
u(xi, tn) =

(
Qi −

τ

2
Ri

)
u(xi, tn−1)

+
τ

2
Qi

(
f(xi, tn, u(xi, tn)) + f(xi, tn−1, u(xi, tn−1))

)
+ ε̃i,n + ε̂i,n,(4.5)

where ε̂i,n is the truncation error due to the Crank-Nicolson time discretization, which satisfies

|ε̂i,n| ≤ C2τ
3h, 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N. (4.6)

On the other hand, we have from the proof of Theorem 2.1 that

|ε̃i,n| ≤ C3τh5, 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N. (4.7)

Let wi,n = u(xi, tn) − ui,n. Then by (4.5) and (2.7),






(
Qi +

τ

2
Ri

)
wi,n =

(
Qi −

τ

2
Ri

)
wi,n−1 +

τ

2
Qi

(
f(xi, tn, u(xi, tn)) − f(xi, tn, ui,n)

)

+
τ

2
Qi

(
f(xi, tn−1, u(xi, tn−1)) − f(xi, tn−1, ui,n−1)

)
+ ε̃i,n + ε̂i,n,

1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

w0,n = 0, wL,n = 0, 1 ≤ n ≤ N,

wi,0 = 0, 0 ≤ i ≤ L.

(4.8)

Now let the matrices Q and R be the same as before, and

Wn = (w1,n, · · · , wL−1,n)
T

, En = (ε̃1,n + ε̂1,n, · · · , ε̃L−1,n + ε̂L−1,n)
T

.

Then the first equality in (4.8) can be written as the following matrix form:

(
Q +

τ

2
R
)

Wn =
(
Q − τ

2
R
)

Wn−1 +
τ

2
Q (VnWn + Vn−1Wn−1) + En, (4.9)

where

Vn = diag (fu(x1, tn, θ1,n), · · · , fu(xL−1, tn, θL−1,n))

and θi,n lies between u(xi, tn) and ui,n. Since the condition (2.8) holds with Mi,n ≡ 0, we have

from Lemma 2.3 that (
Q +

τ

2
R
)−1

≥ 0,
(
Q − τ

2
R
)
≥ 0.
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Next, let Y = (1, 1, · · · , 1)T and define

S(1) =
(
Q +

τ

2
R
)

Y, S(2) =
(
Q +

τ

2
R
)−1 (

Q − τ

2
R
)

Y, S(3) =
(
Q +

τ

2
R
)−1

QY.

Denoting by S
(l)
i the i-th component of S(l), l = 1, 2, 3, we have

S
(1)
i ≥ α0h

α1
, 1 ≤ i ≤ L − 1,

which implies ∥∥∥∥
(
Q +

τ

2
R
)−1

∥∥∥∥
∞

≤ α1

α0h
.

Since (
Q +

τ

2
R
)

(S(2) − Y ) = −τRY ≤ 0,

we obtain from the nonnegativity of
(
Q + τ

2R
)−1

that S(2) ≤ Y . This leads to

∥∥∥∥
(
Q +

τ

2
R
)−1 (

Q − τ

2
R
)∥∥∥∥

∞

= max
i

S
(2)
i ≤ 1.

Similarly, ∥∥∥∥
(
Q +

τ

2
R
)−1

Q

∥∥∥∥
∞

≤ 1.

Also, it can be shown that

‖Vn‖∞ ≤ M, ‖Vn−1‖∞ ≤ M, ‖En‖∞ ≤ C4(τ
3h + τh5), 1 ≤ n ≤ N.

By the above estimates and (4.9), we arrive at

‖Wn‖∞ ≤ τ

2
M‖Wn‖∞ +

(
1 +

τ

2
M
)
‖Wn−1‖∞ +

α1C4

α0
τ(τ2 + h4).

Since ‖W0‖∞ = 0 and τM < 1, an application of Lemma 4.1 gives

‖Wn‖∞ ≤
(

e
TM

1−τM/2 − 1

)
α1C4

α0M

(
τ2 + h4

)

≤
(
e2TM − 1

) α1C4

α0M

(
τ2 + h4

)
.

Then the desired result (4.4) follows. �

5. An Accelerated Monotone Iterative Scheme

The Picard iteration (3.4) gives an algorithm for resolving the solution of (2.7). However,

its convergence rate is only of linear order as pointed out before. To raise the convergence

rate while maintaining the monotone property, we extend the accelerated monotone iteration

in [20] for (2.7). Its convergence rate is either quadratic or nearly quadratic with the usual

differentiability requirement only on the function f(·, u). If the reaction function possesses

a concavity or convexity property between upper and lower solutions, then this iteration is

reduced to the Newton’s method.
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5.1. Monotone iteration

Let ui,n and ui,n be a pair of ordered upper and lower solutions of (2.7). It follows from

Theorem 3.2 that (2.7) has a unique solution u∗

i,n in 〈ui,n, ui,n〉 under the conditions of the

theorem. To compute the solution u∗

i,n we use the following iteration:






(
Qi +

τ

2
Ri

)
u

(m)
i,n +

τ

2
Qi

(
M

(m−1)
i,n u

(m)
i,n

)
=
(
Qi −

τ

2
Ri

)
u∗

i,n−1

+
τ

2
Qi

(
M

(m−1)
i,n u

(m−1)
i,n

)
+

τ

2
Qi

(
f(xi, tn, u

(m−1)
i,n ) + f(xi, tn−1, u

∗

i,n−1)
)

,

1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u
(m)
0,n = g0(tn), u

(m)
L,n = g1(tn), 1 ≤ n ≤ N,

u
(m)
i,0 = u0(xi), 0 ≤ i ≤ L,

(5.1)

where u
(0)
i,n is either ui,n or ui,n, and

M
(m)
i,n = max

{
−fu(xi, tn, ξi,n) : ξi,n ∈ 〈u(m)

i,n , u
(m)
i,n 〉

}
. (5.2)

The functions u
(m)
i,n , u

(m)
i,n in the definition of M

(m)
i,n are obtained from (5.1) with u

(0)
i,n = ui,n and

u
(0)
i,n = ui,n, respectively. By the definition of M

(m)
i,n , it is clear that if f(·, u) is a C2-function

then

M
(m)
i,n =

{
−fu(xi, tn, u

(m)
i,n ), if fuu(xi, tn, ξi,n) ≥ 0, ∀ ξi,n ∈ 〈u(m)

i,n , u
(m)
i,n 〉,

−fu(xi, tn, u
(m)
i,n ), if fuu(xi, tn, ξi,n) ≤ 0, ∀ ξi,n ∈ 〈u(m)

i,n , u
(m)
i,n 〉.

(5.3)

Hence if fu(·, u) is either monotone nondecreasing or monotone nonincreasing in u then the

iteration (5.1) is reduced to the Newton’s iteration






(
Qi +

τ

2
Ri

)
u

(m)
i,n − τ

2
Qi

(
fu(xi, tn, u

(m−1)
i,n )u

(m)
i,n

)
=
(
Qi −

τ

2
Ri

)
u∗

i,n−1

− τ

2
Qi

(
fu(xi, tn, u

(m−1)
i,n )u

(m−1)
i,n

)
+

τ

2
Qi

(
f(xi, tn, u

(m−1)
i,n )

+f(xi, tn−1, u
∗

i,n−1)
)
, 1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

u
(m)
0,n = g0(tn), u

(m)
L,n = g1(tn), 1 ≤ n ≤ N,

u
(m)
i,0 = u0(xi), 0 ≤ i ≤ L.

(5.4)

To show that the sequence given by (5.1) is well-defined, it is crucial that the sequences

{u(m)
i,n } and {u(m)

i,n } possess the property u
(m)
i,n ≥ u

(m)
i,n for every m. This is given in the following

lemma.

Lemma 5.1. Let ui,n, ui,n be a pair of ordered upper and lower solutions of (2.7), and let M i,n

be some constants such that τM i,n < 2 and

fu(xi, tn, ξi,n) ≤ M i,n, ξi,n ∈ 〈ui,n, ui,n〉, 0 ≤ i ≤ L; 0 ≤ n ≤ N.

Assume that 3α1 ≤ 10α0 and the condition (2.8) holds with Mi,n = M
(0)
i,n , where M

(0)
i,n is defined

by (5.2) with u
(0)
i,n = ui,n and u

(0)
i,n = ui,n. Then the sequences {u(m)

i,n }, {u(m)
i,n } and {M (m)

i,n } given

by (5.1) and (5.2) are all well-defined and possess the monotone property

ui,n ≤ u
(m)
i,n ≤ u

(m+1)
i,n ≤ u

(m+1)
i,n ≤ u

(m)
i,n ≤ ui,n, 0 ≤ i ≤ L; 0 ≤ n ≤ N ; m ≥ 0. (5.5)
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Proof. Since the condition (2.8) holds with Mi,n = M
(0)
i,n , we have from Lemma 2.3 that u

(1)
i,n

and u
(1)
i,n exist and satisfy

(
Qi +

τ

2
Ri

)(
u

(1)
i,n − u

(1)
i,n

)
+

τ

2
Qi

(
M

(0)
i,n

(
u

(1)
i,n − u

(1)
i,n

))
≥ 0.

Writing the above relation in the matrix form and using Lemma 2.3, we obtain u
(1)
i,n ≥ u

(1)
i,n for

all 0 ≤ i ≤ L and 0 ≤ n ≤ N . Therefore, M
(1)
i,n is well-defined. Also we have

(
Qi +

τ

2
Ri

)(
ui,n − u

(1)
i,n

)
+

τ

2
Qi

(
M

(0)
i,n

(
ui,n − u

(1)
i,n

))

≥
(
Qi −

τ

2
Ri

) (
ui,n−1 − u∗

i,n−1

)
− τ

2
Qi

(
M

(0)
i,n−1

(
ui,n−1 − u∗

i,n−1

))
.

Again by Lemma 2.3, ui,n ≥ u
(1)
i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . Similarly, ui,n ≤ u

(1)
i,n for all

0 ≤ i ≤ L and 0 ≤ n ≤ N . The above results imply that (5.5) holds for m = 0. Now, assume

that for some m ≥ 1 and all 1 ≤ k ≤ m, u
(k)
i,n , u

(k)
i,n and M

(k)
i,n are all well-defined and

u
(k−1)
i,n ≤ u

(k)
i,n ≤ u

(k)
i,n ≤ u

(k−1)
i,n , 0 ≤ i ≤ L; 0 ≤ n ≤ N ; 1 ≤ k ≤ m. (5.6)

Clearly, by the definition of M
(m)
i,n and (5.6),

−M i,n ≤ M
(m)
i,n ≤ M

(0)
i,n .

This implies that the condition (2.8) holds for Mi,n = M
(m)
i,n . Therefore by Lemma 2.3, u

(m+1)
i,n

and u
(m+1)
i,n are well-defined and

(
Qi +

τ

2
Ri

)(
u

(m+1)
i,n − u

(m+1)
i,n

)
+

τ

2
Qi

(
M

(m)
i,n

(
u

(m+1)
i,n − u

(m+1)
i,n

))
≥ 0.

It follows from Lemma 2.3 that u
(m+1)
i,n ≥ u

(m+1)
i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . This ensures

also that M
(m+1)
i,n is well-defined. By the iteration (5.1),

(
Qi +

τ

2
Ri

)(
u

(m)
i,n − u

(m+1)
i,n

)
+

τ

2
Qi

(
M

(m)
i,n

(
u

(m)
i,n − u

(m+1)
i,n

))

=
τ

2
Qi

(
M

(m−1)
i,n

(
u

(m−1)
i,n − u

(m)
i,n

)
+ f(xi, tn, u

(m−1)
i,n ) − f(xi, tn, u

(m)
i,n )

)
.

Thanks to (5.6) and the definition of M
(m−1)
i,n ,

(
Qi +

τ

2
Ri

)(
u

(m)
i,n − u

(m+1)
i,n

)
+

τ

2
Qi

(
M

(m)
i,n

(
u

(m)
i,n − u

(m+1)
i,n

))
≥ 0.

By Lemma 2.3, u
(m)
i,n ≥ u

(m+1)
i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . Similarly, u

(m+1)
i,n ≥ u

(m)
i,n for

all 0 ≤ i ≤ L and 0 ≤ n ≤ N . So the conclusion of the lemma follows from the induction. �

In view of the monotone property (5.5), there exist limits

lim
m→∞

u
(m)
i,n = u∗

i,n, lim
m→∞

u
(m)
i,n = u∗

i,n. (5.7)

By the monotone property of M
(m)
i,n and

−M i,n ≤ M
(m)
i,n ≤ M

(0)
i,n ,
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the sequences {M (m)
i,n } is also convergent as m → ∞. Letting m → ∞ in (5.1), we deduce that






(
Qi +

τ

2
Ri

)
v∗i,n =

(
Qi −

τ

2
Ri

)
u∗

i,n−1 +
τ

2
Qi

(
f(xi, tn, v∗i,n) + f(xi, tn−1, u

∗

i,n−1

)
,

1 ≤ i ≤ L − 1; 1 ≤ n ≤ N,

v∗0,n = g0(tn), v∗L,n = g1(tn), 1 ≤ n ≤ N,

v∗i,0 = u0(xi), 0 ≤ i ≤ L,

(5.8)

where v∗i,n = u∗

i,n or u∗

i,n. This leads to the following conclusion.

Theorem 5.1. Let the conditions in Lemma 5.1 hold. Then the sequences {u(m)
i,n } and {u(m)

i,n }
given by (5.1) with u

(0)
i,n = ui,n and u

(0)
i,n = ui,n, converge monotonically from above and below,

respectively, to the unique solution u∗

i,n of (2.7) in 〈ui,n, ui,n〉, and

ui,n ≤ u
(m)
i,n ≤ u

(m+1)
i,n ≤ u∗

i,n ≤ u
(m+1)
i,n ≤ u

(m)
i,n ≤ ui,n,

0 ≤ i ≤ L; 0 ≤ n ≤ N ; m ≥ 0. (5.9)

Proof. Let u∗

i,n and u∗

i,n be the limits in (5.7). To complete the proof of the theorem we

only need to show u∗

i,n = u∗

i,n = u∗

i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . Let w∗

i,n = v∗i,n − u∗

i,n

where v∗i,n is either u∗

i,n or u∗

i,n. Subtracting (2.7) from (5.8) and using the mean-value theorem

lead to (
Qi +

τ

2
Ri

)
w∗

i,n − τ

2
Qi

(
fu(xi, tn, ξ∗i,n)w∗

i,n

)
= 0,

where ξ∗i,n is an intermediate value between v∗i,n and u∗

i,n. Since

−M i,n ≤ −fu(xi, tn, ξ∗i,n) ≤ M
(0)
i,n ,

the condition (2.8) holds for Mi,n = −fu(xi, tn, ξ∗i,n). Hence by Lemma 2.3, w∗

i,n = 0 which

implies u∗

i,n = u∗

i,n = u∗

i,n for all 0 ≤ i ≤ L and 0 ≤ n ≤ N . �

When fu(·, u) is monotone nondecreasing or monotone nonincreasing in u the iteration

(5.1) is reduced to the Newton’s iteration (5.4). As a consequences of Theorem 5.1 we have the

following result.

Corollary 5.1. Let the conditions in Lemma 5.1 hold, and assume that f(·, u) is a C2-function

of u. Then the sequence {u(m)
i,n } given by (5.4) with u

(0)
i,n = ui,n converges monotonically

from above to the unique solution u∗

i,n of (2.7) in 〈ui,n, ui,n〉 if fuu(xi, tn, ξi,n) ≤ 0 for all

ξi,n ∈ 〈ui,n, ui,n〉. Similarly, the sequence {u(m)
i,n } given by (5.4) with u

(0)
i,n = ui,n converges

monotonically from below to u∗

i,n if fuu(xi, tn, ξi,n) ≥ 0 for all ξi,n ∈ 〈ui,n, ui,n〉.

Remark 5.1. The procedure of creating the sequence {u(m)
i,n } by the iteration (5.1) is described

as follows: Starting from u
(0)
i,1 , which is either ui,1 or ui,1, we compute u

(1)
i,1 from (5.1) where

u∗

i,0 = u0(xi) and M
(0)
i,1 is given by (5.2). Repeating this process leads to the sequence {u(m)

i,1 }.
Using u∗

i,1 = v∗i,1 where v∗i,1 is the limit of the sequence {u(m)
i,1 } (this is ensured by Theorem

5.1), the same process gives the sequence {u(m)
i,2 }. Continuing this process yields the sequence

{u(m)
i,n } for all 0 ≤ i ≤ L, 0 ≤ n ≤ N and m ≥ 1.
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5.2. Convergence rate

In this subsection we show that the sequences given by (5.1) and (5.4) possess either a

quadratic or a nearly quadratic convergence rate.

Theorem 5.2. Let the conditions in Lemma 5.1 hold, and let {u(m)
i,n } and {u(m)

i,n } be the se-

quences given by (5.1) with u
(0)
i,n = ui,n and u

(0)
i,n = ui,n. Let also u∗

i,n be the unique solution of

(2.7) in 〈ui,n, ui,n〉. Then there exists a positive constant ρn, independent of m, such that for

all 0 ≤ i ≤ L, 0 ≤ n ≤ N and m ≥ 2,

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣ ≤ ρn max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣ · max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣ ,

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣ ≤ ρn max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣ · max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣ ,
(5.10)

and

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣+ max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣

≤ ρn

(
max

i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣+ max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣
)2

. (5.11)

Proof. Consider the sequence {u(m)
i,n } and let w

(m)
i,n = u

(m)
i,n − u∗

i,n. We have w
(m)
i,n ≥ 0 for all

0 ≤ i ≤ L, 0 ≤ n ≤ N and m ≥ 1. Subtracting (2.7) from (5.1) gives

(
Qi +

τ

2
Ri

)
w

(m)
i,n +

τ

2
Qi

(
M

(m−1)
i,n w

(m)
i,n

)

=
τ

2
Qi

(
M

(m−1)
i,n w

(m−1)
i,n

)
+

τ

2
Qi

(
f(xi, tn, u

(m−1)
i,n ) − f(xi, tn, u∗

i,n)
)

. (5.12)

By the mean-value theorem, there exist ξ
(m−1)
i,n in 〈u(m−1)

i,n , u
(m−1)
i,n 〉 and η

(m−1)
i,n in 〈u∗

i,n, u
(m−1)
i,n 〉

such that

M
(m−1)
i,n = −fu(xi, tn, ξ

(m−1)
i,n ),

f(xi, tn, u
(m−1)
i,n ) − f(xi, tn, u∗

i,n) = fu(xi, tn, η
(m−1)
i,n )w

(m−1)
i,n .

Again by the mean-value theorem, there exists an intermediate value θ
(m−1)
i,n between η

(m−1)
i,n

and ξ
(m−1)
i,n such that

fu(xi, tn, η
(m−1)
i,n ) − fu(xi, tn, ξ

(m−1)
i,n ) = fuu(xi, tn, θ

(m−1)
i,n )(η

(m−1)
i,n − ξ

(m−1)
i,n ).

Using the above relations we obtain from (5.12) that

(
Qi +

τ

2
Ri

)
w

(m)
i,n +

τ

2
Qi

(
M

(m−1)
i,n w

(m)
i,n

)

=
τ

2
Qi

(
fuu(xi, tn, θ

(m−1)
i,n )(η

(m−1)
i,n − ξ

(m−1)
i,n )w

(m−1)
i,n

)
. (5.13)

Let Mn = max
i

{|fuu(xi, tn, ξi,n)| : ξi,n ∈ 〈ui,n, ui,n〉}. Then

∣∣∣fuu(xi, tn, θ
(m−1)
i,n )(η

(m−1)
i,n − ξ

(m−1)
i,n )

∣∣∣ ≤ Mn max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣ .
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It follows from (5.13) that
(
Qi +

τ

2
Ri

)
w

(m)
i,n +

τ

2
Qi

(
M

(m−1)
i,n w

(m)
i,n

)

≤ τ

2
Mn max

i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣Qi

(
w

(m−1)
i,n

)
. (5.14)

Let the matrices Q and R be the same as before, and let W
(m)

n = (w
(m)
1,n , · · · , w

(m)
L−1,n)T . Then

for m ≥ 2, (5.14) can be written in the matrix form
(
Q +

τ

2
QD(m−1)

n +
τ

2
R
)

W
(m)

n ≤ τ

2
Mn max

i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣QW
(m−1)

n , (5.15)

where

D(m−1)
n = diag

(
M

(m−1)
1,n , · · · , M

(m−1)
L−1,n

)
.

Since M
(m−1)
i,n ≥ −M i,n, we have

Q +
τ

2
QD(m−1)

n +
τ

2
R ≥ Q +

τ

2
QDn +

τ

2
R,

where

Dn = diag(−M1,n, · · · ,−ML−1,n).

Therefore,
(
Q +

τ

2
QDn +

τ

2
R
)

W
(m)

n ≤ τ

2
Mn max

i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣QW
(m−1)

n . (5.16)

Since −M i,n ≤ M
(0)
i,n , the condition (2.8) holds with Mi,n = −M i,n and so by Lemma 2.3,

(
Q +

τ

2
QDn +

τ

2
R
)−1

≥ 0.

This implies that
∥∥∥W (m)

n

∥∥∥
∞

≤ ρn max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣
∥∥∥W (m−1)

n

∥∥∥
∞

,

where

ρn =
τ

2
Mn

∥∥∥∥
(
Q +

τ

2
QDn +

τ

2
R
)−1

∥∥∥∥
∞

‖Q‖∞.

Then the first relation in (5.10) is proved. The second relation in (5.10) can be proved similarly.

Putting two results in (5.10) together, we deduce that

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣+ max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣

≤ ρn max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣
(
max

i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣+ max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣
)

. (5.17)

Obviously,

max
i

∣∣∣u(m−1)
i,n − u

(m−1)
i,n

∣∣∣ ≤ max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣+ max
i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣ . (5.18)

Finally, the relation (5.11) follows from (5.17) and (5.18).

Theorem 5.2 gives a nearly quadratic convergence for the sequences {u(m)
i,n } and {u(m)

i,n }, and

a quadratic convergence for the sum of these two sequences. Moreover, when f(·, u) possesses a

concavity or convexity property in 〈ui,n, ui,n〉, then one of the two sequences has the quadratic

convergence. This is shown in the following theorem.
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Theorem 5.3. Let the conditions in Theorem 5.2 hold. Then there exists a positive constant

ρn, independent of m, such that for all 0 ≤ i ≤ L, 0 ≤ n ≤ N and m ≥ 2,

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣ ≤ ρn

(
max

i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣
)2

, (5.19)

if fuu(xi, tn, ξi,n) ≤ 0 for ξi,n ∈ 〈ui,n, ui,n〉, and

max
i

∣∣∣u(m)
i,n − u∗

i,n

∣∣∣ ≤ ρn

(
max

i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣
)2

, (5.20)

if fuu(xi, tn, ξi,n) ≥ 0 for ξi,n ∈ 〈ui,n, ui,n〉.

Proof. Consider the case fuu(xi, tn, ξi,n) ≤ 0. By (5.3),

M
(m−1)
i,n = −fu(xi, tn, u

(m−1)
i,n ).

This implies that ξ
(m−1)
i,n appearing in (5.13) is given by ξ

(m−1)
i,n = u

(m−1)
i,n . Since η

(m−1)
i,n in

(5.13) is in 〈u∗

i.n, u
(m−1)
i,n 〉 we have that

|η(m−1)
i,n − ξ

(m−1)
i,n | ≤ |u(m−1)

i,n − u∗

i,n|.

In this case, the relation (5.14) becomes
(
Qi +

τ

2
Ri

)
w

(m)
i,n +

τ

2
Qi

(
M

(m−1)
i,n w

(m)
i,n

)

≤ τ

2
Mn max

i

∣∣∣u(m−1)
i,n − u∗

i,n

∣∣∣Qi

(
w

(m−1)
i,n

)
.

By the above and an argument as in the proof of Theorem 5.2, we arrive at (5.19). The proof

of (5.20) is similar. �

Remark 5.2. Since the initial iteration in the accelerated monotone iteration (5.1) is either

an upper or a lower solution, which can be constructed directly from the equation without any

knowledge of the solution, this method avoids the search for the initial iteration as is often

needed in the Newton’s method. This feature is one of the great advantages of this approach.

Remark 5.3. Following the same line as in the derivation of (5.10) and (5.11), we can also

prove the quadratic convergence of the sequence for the corresponding steady-state problems

(cf. [29]).

6. Numerical Results

In this section, we present some numerical results. They demonstrate the monotonicity

of the sequences given by (5.1) and the rapid convergence rate. They also indicate the high

accuracy of the scheme (2.7).

Example 1: The chemical reactor model. We first consider a chemical reactor model from

chemical engineering (see [1,19]). This model is given by





∂u

∂t
− ∂

∂x

(
ex ∂u

∂x

)
= σ(1 − u)e−γ/(1+u), 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(6.1)
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where σ and γ are given positive constants. For this example, the values Ji, Ei, Gi and Fi in

the scheme (2.7) are, for 1 ≤ i ≤ L − 1,

Ji =
eih

eh − 1
, Ei =

1

h
+

1

eh − 1

(
h

12
+

5h

12
eh − eh

)
,

Fi = − 2

h
+

2h

3
+

eh + 1

eh − 1
, Gi =

1

h
− 1

eh − 1

(
1 +

5h

12
+

h

12
eh

)
.

It is easy to see that ui,n = 2 and ui,n = 0 are a pair of ordered upper and lower solutions of

(2.7) whenever 0 ≤ u0(x) ≤ 2 for all 0 ≤ x ≤ 1. Let the initial function u0(x) = sin(πx), and

take the mesh sizes h = τ = 0.01 and the physical parameters σ = 5, γ = 1. Using u
(0)
i,n = 2 and

u
(0)
i,n = 0 in the iteration (5.1) we compute the corresponding sequences {u(m)

i,n } and {u(m)
i,n }. In

numerical computations, the basic feature of the monotone convergence of the sequences {u(m)
i,n }

and {u(m)
i,n } were observed for all i and n, see Fig. 6.1, in which we plot the numerical results

of these sequences for n = 50 and all i.
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Fig. 6.1. The monotone properties of {u
(m)
i,50} (top) and {u

(m)
i,50} (bottom).

To demonstrate the monotone convergence of the sequences, the numerical results of these

sequences at (i, n) = (50, 50) are sketched in Fig. 6.2, in which the solid line and dash-dot line

represent the sequences {u(m)
50,50} and {u(m)

50,50}, respectively. They coincide with the monotone

convergence as described in Theorem 5.1.

We next compare the convergence rate of the accelerated iteration (5.1) with that of the

Picard iteration (3.4) in terms of the number of iterations. To compute the number of iterations
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Fig. 6.2. The monotone convergence of {u
(m)
50,50} and {u

(m)
50,50}.

we take the tolerance in the iterations as

max
i

|u(m)
i,n − u

(m)
i,n | ≤ 10−10. (6.2)

It is known from the chemical engineering literature that the value of σ ranges from 1 up to

107 (cf. [1]). With the initial function and the mesh sizes as before we compute the number

of iterations for γ = 4 and various values of σ. In the iteration (3.4) we take M i,n = σ. Our

numerical computations show that the number of iterations of the Picard iteration (3.4) is

much larger than that of the accelerated iteration (5.1), especially for large σ. The number of

iterations for the cases σ = 102, 103 and 104 are listed in Table 6.1.

Table 6.1: The number of iterations for various values of σ.

σ = 102 σ = 103 σ = 104

n Acceler. Picard Acceler. Picard Acceler. Picard

1 4 24 6 99 8 165
2 4 24 6 97 9 254
3 4 25 6 97 8 176
4 4 25 6 97 9 218
5 4 26 6 97 8 183
6 4 26 6 96 8 204
7 4 26 6 97 8 187
8 4 27 6 97 8 198
9 4 27 6 96 8 190
10 4 26 6 97 8 195
11 4 27 6 97 8 191
12 4 27 6 96 8 193
13 4 27 6 97 8 191
14 4 27 6 97 8 192
15 4 27 6 96 8 191

≥ 16 4 27 or 28 6 97 or 96 8 192

Example 2: The logistic equation. To show the high accuracy of numerical solution we

consider the following logistic equation (see [18]):




∂u

∂t
− D

∂2u

∂x2
= σu(1 − u) + q(x, t), 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(6.3)
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where D and σ are positive constants, and q(x, t) is a given function. The introduction of a

source term q in (6.3) is to construct an analytical solution which is used to compare with

numerical solution. For this example, the values Ji, Ei, Gi and Fi in the scheme (2.7) are given

by

Ji =
D

h
, Ei =

h

12
, Fi =

5h

6
, Gi =

h

12
, 1 ≤ i ≤ L − 1.

Take the physical parameters D = 5 and σ = 1. Let the initial function be u0(x) = 0. It is

easy to check that when

q(x, t) = (5π2 − 2)w(x, t) + w2(x, t) + sin(πx), w(x, t) = (1 − e−t) sin(πx),

the solution of (6.3) is given by u(x, t) = w(x, t). Since 0 ≤ q(x, t) ≤ 5π2, the pair ui,n = 8 and

ui,n = 0 form a pair of ordered upper and lower solutions of (2.7). Taking u
(0)
i,n = 8 and u

(0)
i,n = 0

in the iteration (5.1) we compute the corresponding sequences {u(m)
i,n } and {u(m)

i,n }. Numerical

experiments show that these sequences possess the same monotone convergence as described

in Theorem 5.1. To demonstrate the accuracy of scheme (2.7), we calculate the maximum

numerical error errorh(tn) and the convergence order orderh(tn) of the computed solution ui,n,

which are defined by

errorh(tn) = max
i

|u(xi, tn) − ui,n|, orderh(tn) = log2

(
errorh(tn)

errorh/2(tn)

)
, (6.4)

where u(xi, tn) denotes the value of the analytical solution at (xi, tn). In Tables 6.2 and 6.3,

we list errorh(tn) and orderh(tn) for tn = 0.125 and tn = 0.25 respectively, where the computed

solution ui,n is given by the iteration (5.1) with the tolerance ε = 10−12 and the calculation

is carried out with τ = h2. We see that the computed solution has the fourth-order accuracy.

This is in good agreement with the theoretical prediction.

Table 6.2: The comparison between the schemes (2.7) and (6.5) at tn = 0.125.

Scheme (2.7) Scheme (6.5)

h errorh(0.125) orderh(0.125) CPU time (s) errorh(0.125) orderh(0.125) CPU time (s)

1/8 1.041e-05 4.0062 0.1400 1.155e-03 2.0063 0.0320

1/16 6.479e-07 4.0016 0.2970 2.875e-04 2.0012 0.1720

1/32 4.045e-08 4.0004 1.8590 7.182e-05 2.0003 1.2660

1/64 2.527e-09 4.0001 18.0780 1.795e-05 2.0000 12.4690

1/128 1.579e-10 4.0000 263.1100 4.488e-06 2.0000 161.8130

1/256 9.871e-12 5965.9060 1.122e-06 2965.7970

Table 6.3: The comparison between the schemes (2.7) and (6.5) at tn = 0.25.

Scheme (2.7) Scheme (6.5)

h errorh(0.25) orderh(0.25) CPU time (s) errorh(0.25) orderh(0.25) CPU time (s)

1/8 2.103e-05 4.0065 0.1720 2.554e-03 2.0059 0.0790

1/16 1.308e-06 4.0016 0.6880 6.359e-04 2.0015 0.4210

1/32 8.167e-08 4.0004 4.5630 1.588e-04 2.0004 2.7500

1/64 5.103e-09 4.0001 49.6410 3.969e-05 2.0001 24.6410

1/128 3.189e-10 4.0000 740.9540 9.922e-06 2.0000 364.6090

1/256 1.993e-11 19172.8430 2.480e-06 7107.2030
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For comparison, we also use the following standard finite difference scheme to solve (6.3)

(see [17,18,20,21]):




−λDui−1,n + (1 + 2λD)ui,n − λDui+1,n

= ui,n−1 + τ (σui,n(1 − ui,n) + q(xi, tn)) , 1 ≤ i ≤ L − 1, 1 ≤ n ≤ N,

u0,n = u1,n = 0, 1 ≤ n ≤ N,

ui,0 = u0(xi), 0 ≤ i ≤ L,

(6.5)

where λ = τ/h2. Let all the parameters be the same as before, and the solution ui,n of (6.5) is

computed by a similar iteration as that in (5.1). The corresponding maximum numerical error

errorh(tn), the convergence order orderh(tn) and CPU times for tn = 0.125 and tn = 0.25 are

given in Tables 6.2 and 6.3, respectively. We see that the standard method possesses only the

second-order accuracy.

To compare time consumption, CPU times for scheme (2.7) and (6.5) at tn = 0.125 and

tn = 0.25 are also listed in Tables 6.2 and 6.3. We see that with the same mesh size, scheme (2.7)

costs more computational time than scheme (6.5). This is reasonable, since more arithmetic

operations are involved in scheme (2.7). However, we see from Table 6.2 that for obtaining

numerical solution of scheme (6.5) at tn = 0.125, with the maximum numerical error around

1.122 × 10−6, we need to take h = 1/256, which costs 2965.7970 CPU seconds. On the other

hand, a more accurate numerical solution is provided by scheme (2.7) with h = 1/16. In this

case, the maximum numerical error is 6.479× 10−7. But the corresponding cost is only 0.2970

CPU seconds. Similar comparison results at tn = 0.25 are also observed from Table 6.3.

The above comparisons clearly indicate that the present scheme (2.7) is much more efficient

than the standard finite difference method.

7. Concluding Remarks

In this paper, a monotone compact implicit (MCI) finite difference scheme is introduced

for a class of nonlinear reaction-diffusion equations, and an accelerated monotone iteration is

proposed for solving the resulting discrete problem. This new approach has superiority over

the usual approaches. This is demonstrated by the numerical evidence. For simplicity, the

coefficient k(x) in (1.2) is independent of time t in our discussions. In the general case, the

coefficient k may depend on both x and t. Accordingly, the operators Ri and Qi in (2.7)

becomes
Ri,nui,n = −Ji,nui−1,n + (Ji,n + Ji+1,n)ui,n − Ji+1,nui+1,n,

Qi,nui,n = Ei,nui−1,n + Fi,nui,n + Gi,nui+1,n,

where

Ei,n = Ji+1,n

∫ xi+1

xi

φi,1(x)Ψi+1,n(x)dx − Ji,n

∫ xi

xi−1

φi,1(x)Ψi−1,n(x)dx,

Ji,n =

(∫ xi

xi−1

1

k(s, tn)
ds

)−1

, Ψi,n(x) =

∫ xi

x

1

k(s, tn)
ds,

and Fi,n and Gi,n can be evaluated in the same manner. The analysis is similar to that in this

paper.
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