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Abstract

In this paper, a full discrete two-level scheme for the unsteady Navier-Stokes equations

based on a time dependent projection approach is proposed. In the sense of the new

projection and its related space splitting, non-linearity is treated only on the coarse level

subspace at each time step by solving exactly the standard Galerkin equation while a

linear equation has to be solved on the fine level subspace to get the final approximation

at this time step. Thus, it is a two-level based correction scheme for the standard Galerkin

approximation. Stability and error estimate for this scheme are investigated in the paper.
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1. Introduction

We consider the two-dimensional Navier-Stokes equations

du

dt
+ νAu + B(u, u) = f, u(0) = u0, (1.1)

in certain divergence-free Hilbert space H , where u0 is the initial velocity field, A the Stokes

operator, B the projection of the non-linearity on H , ν > 0 the kinetic viscosity and f the

external force.

To get efficient numerical schemes, the two-level (two-grid) strategy has been widely studied.

In particular, a class of two-level method in connection with the approximate inertial manifolds

(AIMs) initialized by Foias, Manley and Temam [5] has been extensively studied in the past

decades, which is usually called the nonlinear Galerkin method (NLG). Let φi be the ith

eigenvector of the Stokes operator A corresponding to the associated eigenvalue λi. For given

m, M ∈ N (m < M), let Pm (PM ) denote the spectral projection from H onto the space

spanned by the first m (M) eigenvectors. And we also set

Qm = I − Pm (QM = I − PM ).

The semi-discrete NLG reads: solve (1.1) up to a given time t0 by a standard Galerkin method

(SGM) in the fine-level subspace, and for t > t0 find vm ∈ PmH and ŵm ∈ (PM − Pm)H such

that

dvm

dt
+ νAvm + PmB(vm + ŵm, vm + ŵm) = Pmf, (1.2)

ŵm = Φ(vm). (1.3)
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Here Φ is the so-called AIM, a smooth mapping from PmH onto (PM − Pm)H reflecting the

approximate interactive relation between the lower and higher frequency components. For

different choice of Φ we can get different NLG. For example, a frequently discussed AIM is

expressed via the following generalized steady Stokes problem:

νAŵm + (PM − Pm)B(vm, vm) = (PM − Pm)f. (1.4)

This scheme is more efficient than SGM in PMH . The convergence and error estimates for such

NLG are obtained in the works of Marion and Temam [14, 15], Ammi and Marion [1], Marion

and Xu [16] and Devulder et al. [4] in either finite element or spectral case. For example, in [4]

they show that for t > t0

|u(t) − (vm(t) + ŵm(t))|L2 ≤ c(t)(L3
mλ

− 3
2

m+1 + LMλ−1
M+1),

|u(t) − (vm(t) + ŵm(t))|H1 ≤ c(t)(L2
mλ−1

m+1 + LMλ
− 1

2

M+1),
(1.5)

where Lm = (1 + ln λm

λ1
)

1
2 . Lately, Garcia-Achilla et al. [6, 7] proposed a post-processing

Galerkin scheme (PPG) based on the AIM defined by (1.4)

dvm

dt
+ νAvm + PmB(vm, vm) = Pmf ∀t ∈ [t0, T ], (1.6)

ŵm(T ) = Φ(vm(T )), (1.7)

and obtained the similar error estimates. Since ŵm is computed only once at t = T and the

lower and higher frequency components are fully dissociated, this is a very efficient scheme.

On the other hand, since the interaction of the lower and higher frequency components is

reflected by a steady generalized Stokes equation, such schemes are only valid for t > t0 when

the time derivative of u possesses enough regularity. This is only acceptable for solutions slowly

changed in higher frequency field. In fact, there have been few numerical experiments reported

for such NLG and PPG to our knowledge, especially for highly oscillated solution in time field.

Thus, to get reliable scheme for general cases, we should not neglect the self evolution of the

higher frequency components. Another factor which affects the efficiency of the NLG or other

two-level scheme is that they generally are coupled systems. When computing vm we have

to use ŵm and vice versa. Such coupled systems are unavoidable if the space splitting are

based on Pm and Qm because such projections have nothing to do with the nonlinear system

and the interaction of the different components has to be reflected by the coupled system they

satisfied. Of course, PPG is an exception, in which the contribution of the higher frequency

components ŵm to itself and the lower frequency components vm is neglected. This should be

valid only for not very small viscosity case. Awaring of the reason of the generation of the

coupled system, we alternate the way of thinking. If the decomposition of the lower and higher

frequency components of the solution can reflect their interaction to some extent (for example,

similar idea for steady state problems and certain scalar semi-linear evolutionary equations can

be found in [11–13, 20]), it is reasonable to expect a two-level scheme in simpler form, at least

in weakly coupled form, such that it is more efficient than usual two-level methods and can still

preserve the order of convergence. These are the main motivation of this paper.

Based on the above considerations, we propose a full discrete two-level scheme for the Navier-

Stokes equations: for given time step length k > 0, un
M ∈ PMH and un+1

m ∈ PmH , find un+1
M in

PMH such that

(un+1
M , v) + kν(A

1
2 un+1

M , A
1
2 v) + k(B(un+1

m , un+1
M ), v) = (un

M , v) + k(fn+1, v), (1.8)
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where un+1
m is a rough approximation of un+1

M in PmH . We will show in Section 3 that

un+1
m = Pn+1

m un+1
M , Pn+1

m H = PmH

for properly constructed system dependent projection Pn+1
m , where the supper-script n + 1

means the projection is constructed according to the nonlinear system at current time step.

Indeed, we can dissociate the equation of un+1
m from (1.8) by restricting (1.8) in PmH (see

Section 3):

(un+1
m , v) + kν(A

1
2 un+1

m , A
1
2 v) + k(B(un+1

m , un+1
m ), v) = (un

M , v) + k(fn+1, v). (1.9)

This is the SGM equation in PmH except for a successively updating of the approximation in

the previous time step, that is

un
M = un

m + ŵn
m = Pn

mun
M + (I − Pn

m)un
M .

And the fine-level equation (1.8) is actually used to get the correction

ŵn+1
m = un+1

M − un+1
m

of un+1
m in the incremental subspace. Therefore we call this scheme the two-level correction

scheme (TLC) in this paper. Formally, the computation of un+1
m does not depend on ŵn+1

m and

this will save a lot of “works” in computation. It seems that the contribution of the higher

frequency components ŵn+1
m to the lower frequency one un+1

m is neglected as PPG does. This

is actually not true because such contribution is already reflected by the projection Pn+1
m .

Since the convection terms in both (1.9) and (1.8) preserve the antisymmetric property of

the original convection term in (1.1), it should be a stable scheme. And we show later that

there exists k0 > 0 such that the scheme is unconditional numerical stable as long as k > k0

and it shares the same error estimates (1.5) of the NLG.

We also point out that the above TLC scheme can be regarded as a full discrete version of

the two-level scheme given by Girault and Lions [8], which is discussed in finite element case for

3-D Navier-Stokes equations. In [8], the authors obtained an error estimates for the velocity,

but the error order is a half order lower than the estimates in this paper. We found the reason

is the usage of the projection operator Pη they proposed in finite element case, which leads to

the appearance of an interpolation term of the first order space derivative in the error equation.

This will not be a problem in the spectral case because the usual L2 orthogonal projection Pm

is also an H1 orthogonal projection. And in our way, we find some interesting property, for

example un+1
m = Pn+1

m un+1
M and

|(I − Pn+1
m )v|L2 ≤ cλ

− 1
2

m+1|v|H1 ∀v ∈ H ∩ H1(Ω).

This will makes the analysis simple. Another reason is the usage of classical energy method

for error analysis. To get more rigorous error estimates, we will use the discrete semi-group

method for the error analysis.

Although we only consider the 2-D spectral TLC in this paper, all the analysis can be

extended to the 3-D case by demanding more regularity of the solution. Furthermore, we

believe the idea of the construction of the system dependent projection can be applied to finite

element case and this might be able to improve the error estimates in [8] in finite element case.

And we will discuss this question elsewhere.
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2. Functional Settings

Let Ω ∈ R2 is a bounded domain with smooth boundary ∂Ω. We consider the following

incompressible Navier-Stokes equations

{

ut − ν∆u + (u · ∇)u + ∇p = f in Ω × R+,

∇ · u = 0 in Ω × R+,

with homogeneous Dirichlet or periodic boundary condition and initial velocity u(x, t) = u0(x).

We introduce

H = {v ∈ L2(Ω)2 : ∇ · v = 0, (v · n)|∂Ω = 0} Dirichlet boundary condition case,

H = {v ∈ L2(Ω)2 : ∇ · v = 0,

∫

Ω

vdx = 0} periodic boundary condition case,

and the classical divergence-free projection P from L2(Ω)2 onto H . For convenience, we intro-

duce the Stokes operator A = −P∆ and a bi-linear operator B(u, v) = P [(u · ∇)v]. Then we

can get the functional Navier-Stokes equations (1.1).

It is classical (see [19]) that A is a self-adjoint, unbounded linear operator in H with compact

inverse whose domain D(A) is dense in H . Thus A has discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · →
+∞ and its associated eigenvectors {φj}∞i=1 form an orthonormal basis of H .

As usual, we define the powers As of A for s ∈ R; As maps D(As) into H . And D(As) is a

Hilbert space when equipped with the scalar product (As·, As·). In the rest, we set V = D(A
1
2 )

and denote by ‖ · ‖ = |A 1
2 · |, the norm on V .

For convenience, we denote the following continuous bi-linear form on V × V

a(u, v) = (A
1
2 u, A

1
2 v), ∀u, v ∈ V,

which is obvious V −coercive, and the following continuous trilinear form on V × V × V

b(u, v, w) =< B(u, v), w >V ′ ∀u, v, w ∈ V.

Thanks to [19], we have

b(u, v, v) = 0, ∀u, v ∈ V, (2.1)

and

|b(u, v, w)| ≤ c|As1u| |A 1
2
+s2v| |As3w|, ∀u ∈ D(As1), v ∈ D(A

1
2
+s2), w ∈ D(As3 ), (2.2)

|b(u, v, w)|, |b(w, v, u)| ≤ c|u|L∞ |A 1
2 v| |w|, ∀u ∈ L∞(Ω)2, v ∈ V, w ∈ H, (2.3)

where si ≥ 0, i = 1, 2, 3 satisfying

2(s1 + s2 + s3) ≥ 1, 2(s1, s2, s3) 6= (1, 0, 0), (0, 1, 0), (0, 0, 1).

For given M ∈ N, let us recall the definition of the orthogonal spectral projector PM , QM

and the following classical properties (see [3]):

|As1PMv| ≤ λs1−s2

M |As2v|, |As2QMv| ≤ λs2−s1

M+1 |As1v|, ∀v ∈ D(As1 ), s1 ≥ s2. (2.4)

Furthermore, if we denote

LM = (1 + ln
λM

λ1
)

1
2 ,
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we have the following Brezis-Gallouet inequality (see [2]) in finite dimensional case

|uM |L∞ ≤ cLM‖uM‖ ∀uM ∈ HM , (2.5)

where

HM = PMH = span{φ1, φ2, · · · , φM}.

Here and hereafter we always denote by c a generic positive constant independent of the data

of (1.1) and time.

Furthermore, thanks to [6] we have: for any w ∈ HM and suitable v, u

|b(w, u, v)|, |b(v, u, w)| ≤ cLM‖w‖ ‖u‖ |v|, (2.6)

|b(u, v, A−1w)|, |b(v, u, A−1w)| ≤ cLM‖v‖ |A− 1
2 u| |w|. (2.7)

Now let us recall some classical properties of the solution u(t) of (1.1). For u(0) = u0 ∈ V ,

the Navier-Stokes equations have a unique solution u = u(t) defined for all t > 0 such that

|u(t)| ≤ M0, ‖u(t)‖ ≤ M1, ∀t ≥ 0, (2.8)

where M0 and M1 are two positive constants independent of t. By using the similar methods

in [5, 7, 10], one can easily verify that there exist positive constants T0, K and κ such that

|QMu(t)| ≤ K
LM

λM+1
, ‖QMu(t)‖ ≤ K

LM
√

λM+1

, |utt(t)| ≤ κ, ∀t ≥ T0. (2.9)

At last, for given time step length k > 0 we give a full discrete SGM to conclude this section.

For U0
M = PMu0, find Un+1

M ∈ HM such that

(Un+1
M , v) + kνa(Un+1

M , v) + kb(Un+1
M , Un+1

M , v) = (Un
M , v) + k(fn+1, v), ∀v ∈ HM , (2.10)

where fn+1 = f(tn+1), tn+1 = (n + 1)k.

3. New Projection and its Related Two-Level Scheme

For given two positive integers M > m, we will propose a new projection from HM (or V )

onto Hm and give their corresponding two-level algorithm in this section.

First of all, we assume that un+1
m ∈ Hm is a certain approximation of the true solution

u(tn+1) ∈ V and the SGM approximation Un+1
M ∈ HM within Hm.

To construct the new projection, we introduce the following bi-linear form: ∀w, v ∈ V

Ln+1
m (w, v) = (w, v) + kνa(w, v) + kb(un+1

m , w, v). (3.1)

By Lax-Milgram theorem and (2.1) we can easily verify that the following linear problem

Ln+1
m (w, v) =< g, v >V ′ , ∀v ∈ V,

is well-posed in V for any given g ∈ V ′. Then we can define a projection Pn+1
m from V (or HM )

onto Hm: for any given w ∈ V , find Pn+1
m w ∈ Hm such that

Ln+1
m (w − Pn+1

m w, v) = 0, ∀v ∈ Hm. (3.2)
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The superscript n + 1 means that the new projection Pn+1
m is time dependent. Obviously,

Hm = PmHM = Pn+1
m HM .

Denoting Qn+1
m = I − Pn+1

m , we split HM and V as

HM = Hm + Ĥn+1
mM , V = Hm + V̂ n+1

m , (3.3)

where Ĥn+1
mM = Qn+1

m HM and V̂ n+1
m = Qn+1

m V . In the rest of this paper, we always denote for

any wM ∈ HM and w ∈ V that

wM = wm + ŵn+1
mM , w = wm + ŵn+1

m ,

where wm ∈ Hm, ŵn+1
mM ∈ Ĥn+1

mM and ŵn+1
m ∈ V̂ n+1

m . In addition, the following lemma tells us

that the space V̂ n+1
m (of course Ĥn+1

mM ) corresponds to the small scale components subspace,

which only carries a little part of the entire energy.

Lemma 3.1. For any given w ∈ V and ŵn+1
m = Qn+1

m w ∈ V̂ n+1
m , we have

|PmA− 1
2 ŵn+1

m | ≤ |QmA− 1
2 ŵn+1

m |,

providing
ckL2

m‖un+1
m ‖2

ν
≤ 1

2
.

Proof. Taking v = PmA−1ŵn+1
m in (3.2), we have

|PmA− 1
2 ŵn+1

m |2 + kν|Pmŵn+1
m |2 ≤ k|b(un+1

m , ŵn+1
m , PmA−1ŵn+1

m )|.

Thanks to (2.1) and (2.7), we have

k|b(un+1
m , ŵn+1

m , PmA−1ŵn+1
m )| ≤ ckLm‖un+1

m ‖ |Pmŵn+1
m | |A− 1

2 ŵn+1
m |

≤ ckLm‖un+1
m ‖ |Pmŵn+1

m |(|PmA− 1
2 ŵn+1

m | + |QmA− 1
2 ŵn+1

m |)

≤ kν|Pmŵn+1
m |2 +

ckL2
m‖un+1

m ‖2

ν
{|PmA− 1

2 ŵn+1
m |2 + |QmA− 1

2 ŵn+1
m |2}.

This completes the proof of this lemma.

Corollary 3.1. Under the condition of Lemma 3.1, for any w ∈ V and ŵn+1
m = Qn+1

m w ∈
V̂ n+1

m , we have

|Pmŵn+1
m | ≤ |Qmŵn+1

m |, ‖Pmŵn+1
m ‖ ≤ ‖Qmŵn+1

m ‖.

Furthermore, the projection Pn+1
m is bounded in V and

‖Pn+1
m w‖ ≤ 3‖w‖.

Proof. By using the inequality (2.4) and Lemma 3.1, we can easily obtain the first two

inequalities. The last inequality is obvious if one notices Qmŵn+1
m = Qmw.

For any given functions u2, u1 and v in V , let us denote

g(u2, u1, v) = < G(u2, u1), v >V ′

= (u2, v) + kνa(u2, v) + kb(u2, u2, v) − k(f, v) − (u1, v). (3.4)
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The SGM equation (2.10) is equivalent to

g(Un+1
M , Un

M , v) = 0 ∀v ∈ HM . (3.5)

Now, we present the following two-level scheme for (2.10) (of course for (1.1)) corresponding

to the projection Pn+1
m : for u0

m = Pmu0, ŵ0
mM = (PM − Pm)u0







g(un+1
m , un

M , v) = 0 ∀v ∈ Hm,

Ln+1
m (ŵn+1

mM , v) = −g(un+1
m , un

M , v) ∀v ∈ Ĥn+1
mM ,

un+1
M = un+1

m + ŵn+1
mM .

(3.6)

The solvability of the first equation in scheme (3.6) is obvious since it is nothing but a SGM

equation except for a successively updating of the approximation in the previous time step. For

the solvability of the second equation, let us consider the bi-linear form Ln+1
m on Ĥn+1

mM × Ĥn+1
mM .

Thanks to (2.1) it is easy to verify that Ln+1
m is Ĥn+1

mM -elliptic. Noting the first equation, we

know that G(un+1
m , un

M ) ∈ H◦
m, the polar set of Hm. Then the mapping ŵn+1

mM → G(un+1
m , un

M )

defined by this equation is an isomorphism from Ĥn+1
mM onto H◦

m (see Lemma 4.1 in [9]). This

shows the solvability of the second equation.

Let us give a brief interpretation of the scheme (3.6) to complete this section. The first

equation gives a relative rough prediction of the solution in a small subspace Hm. And the

second equation corrects this prediction in an incremental subspace Ĥn+1
mM by solving a linearized

residual equation. In fact, the bi-linear form Ln+1
m is an approximation of the Frechet derivative

of the time discrete Navier-Stokes operator on time step n + 1 by omitting b(ŵn+1
mM , un+1

m , v)

which does not obey the antisymmetric property. That is the second step in (3.6) correct the

prediction un+1
m in certain direction around the tangent space at un+1

m rather than the system

independent higher frequency subspace QmH in usual NLG and PPG.

Concerning about the numerical implementation, we have to avoid operations in the incre-

mental subspace Ĥn+1
mM since it is almost impossible to do computation in such a time dependent

subspace whose construction is very complex from the point view of realistic computation. If

we notice

B(un+1
m , un+1

m ) + B(un+1
m , ŵn+1

mM ) = B(un+1
m , un+1

M ),

and the definition of Pn+1
m , we can rewrite the scheme (3.6) in the following equivalent form.

For u0
M = PMu0 and u0

m = Pmu0
M , solve the following equation in Hm and HM sequentially:

(un+1
M , v) + kνa(un+1

M , v) + kb(un+1
m , un+1

M , v) = k(f, v) + (un
M , v), (3.7)

which is equivalent to (1.9) and (1.8).

4. Error Analysis

In this section, we will establish the uniform numerical stability theorems for the TLC

scheme (3.7) in L∞(R+; H) and L∞(R+; V ) and give the error estimates of it in H and V ,

respectively. For convenience, here and hereafter, we use the same symbols M0 and M1 appeared

in (2.8) to denote the H and V bounds for the TLC approximation un
M . For simplicity, we will

use |A− 1
2 f | and |f | to denote sup

t≥0
|A− 1

2 f(t)| and sup
t≥0

|f(t)| in the rest.
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4.1. Numerical Stability

Noticing the antisymmetric property of the trilinear form in (3.7), the L∞(R+, H) stability

of the scheme is straightforward, which we state directly in the following theorem.

Theorem 4.1. There exists a positive constant

M2
0 = |u0|2 +

c|A− 1
2 f |2

ν2λ1

such that

|un
M |2 ≤ M2

0 , ∀n ≥ 0.

Furthermore, for any given positive constant r and N ∈ N satisfying kN ≤ r, we have

kν

N+n0
∑

i=n0

‖ui
M‖2 ≤ M2

0 +
cr|A− 1

2 f |2
ν

, ∀n0 ≥ 1. (4.1)

For L∞(R+; V ) stability, if we have ‖un+1
m ‖ ≤ c‖un+1

M ‖, the uniform stability can be obtained

by usual method. But un+1
m = Pn+1

m un+1
M in our case instead of un+1

m = Pmun+1
M , we have to

show ‖un+1
m ‖ ≤ c‖un+1

M ‖ first. This depends on the following bounded result of ‖un+1
m ‖.

Lemma 4.1. For given positive integer n, suppose that there exists a constant M1 > 0 inde-

pendent of n, k, m and M such that

‖ui
M‖ ≤ M1, ∀i ≤ n.

Then

‖un+1
m ‖ ≤

√
2M1 +

ck
1
2

ν
1
2

|f |,

providing that

k ≤ 1

cνL2
mM2

1

.

Proof. Taking v = 2δ = 2Pm(un+1
m − un

M ) in (3.7) and using (2.1), we have

2|δ|2 + kν‖un+1
m ‖2 + kν‖δ‖2 = kν‖Pmun

M‖2 − 2kb(un+1
m , un+1

m , δ) + 2k(fn+1, δ)

≤ kν‖un
M‖2 + 2k|b(un+1

m , Pmun
M , δ)| + 2k|(fn+1, δ)|.

Thanks to (2.6), un+1
m = Pn+1

m un+1
M , corollary 3.1 and the assumption of this lemma, we have

2k|b(un+1
m , Pmun

M , δ)| ≤ ckLmM1‖un+1
m ‖ |δ| ≤ |δ|2 + ck2L2

mM2
1 ‖un+1

m ‖2,

2k|(fn+1, δ)| ≤ 2k|fn+1| |δ| ≤ |δ|2 + ck2|f |2.

If k is small enough such that ckL2
mM2

1 ≤ ν
2 , the combination of the above three inequalities

leads to the result of this lemma.

Thanks to Corollary 3.1, we can claim ‖ui
m‖ ≤ c‖ui

M‖ for all i ≤ n + 1. Then a discrete

mimic of the procedure in [10] and the usage of some discrete Gronwall inequality (see, e.g.,

[18]) will lead to ‖ui
M‖ ≤ M̃1 for any i ≤ n + 1, where M̃1 is independent of M1. Since this is

a standard procedure, we omit it.
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Theorem 4.2. There exists a positive constant M1 independent of m, M , n and k such that

‖un
M‖ ≤ M1 ∀n ≥ 0,

providing that k and m satisfy the condition

k ≤ 1

cνL2
mM2

1

.

Proof. Taking M1 = max{M̃1, ‖u0‖}, we can get the result by mathematical induction.

4.2. Error Estimates

In this subsection, we will give the L2 and H1 error estimates for the scheme (3.7). To get

better estimates, we will use the discrete semigroup method for the analysis rather than the

classical energy method. First of all, let us introduce some useful lemmas and we refer readers

to the appendix for their proofs.

Lemma 4.2. For any r ∈ (0, 1) and n ∈ N, we have

|Ar(I + kνA)−n|L(H) ≤ rr(kν)−r(n − r)−r .

Here and hereafter L(H) stands for the linear normed space of linear bounded operators on H

and | · |L(H) denote the associated operator norm.

Lemma 4.3. For n, m ∈ N,

n
∑

i=1

|A(I + kνA)−iPm|L(H) ≤
2Lm

kν
.

Moreover, for r ∈ (0, 1), n ∈ N and m ∈ N ∪ {0}, we have

n
∑

i=1

|Ar(I + kνA)−iQm|L(H) ≤
1

1 − r
(kν)−1λr−1

m+1.

Furthermore, we need the following discrete Gronwall type inequality, which is an analogue

of the continuous one proved by Okamoto [17].

Lemma 4.4. For n ∈ N, {dn} is a positive sequence and r, α, β > 0 are three positive constants

with r ∈ (0, 1). If it holds following inequality

dn ≤ α + β

n−1
∑

i=0

(n − i + 1)−rdi, for n = 1, 2, · · · , (4.2)

there exists a constant c′ = c′(r) > 0 such that

dn ≤ c′α exp{c′β 1
1−r n}.

From now on, we assume that (2.8)-(2.9) hold for T0 = 0. First of all, for any given non-

negative integer n, time step length k > 0 and m, M ∈ N satisfying m < M , we denote

tn = nk, un = u(tn), Un
m = Pn

mun ∈ Hm, Ŵn
m = Qn

mun ∈ V̂ n
m,

pn = Un
m + PMŴn

m, qn = QMŴn
m.
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And we apply PM to (1.1) and rewrite it at t = tn+1:

(I + kνA)pn+1 + kPMB(Un+1
m , Un+1

m ) + kPMB(Un+1
m , Ŵn+1

m )

+kPMB(Ŵn+1
m , Un+1

m ) + kPMB(Ŵn+1
m , Ŵn+1

m ) = pn + kPMfn+1 + khn+1, (4.3)

where

hn+1 =
1

k

∫ tn+1

tn

PM (ut(s) − ut(tn+1))ds.

Thanks to (2.9), we have

|hj | ≤ κk, ∀j ≥ 1. (4.4)

Let us recall that un+1
M = un+1

m + ŵn+1
mM and rewrite the scheme (3.7) in the following functional

form:

(I + kνA)un+1
M + kPMB(un+1

m , un+1
m ) + kPMB(un+1

m , ŵn+1
mM ) = un

M + kPMfn+1, (4.5)

If we denote

en
M = pn − un

M , en
m = Un

m − un
m, ên

mM = PMŴn
m − ŵn

mM ,

we have

en
M = en

m + ên
mM .

Theorem 4.3. Assume that u0 ∈ V and (2.8)-(2.9) are valid for T0 = 0. If we suppose that

the conditions of Theorem 4.2 are valid, in particular k ≤ 1
cνL2

m
M2

1

, we have for s = 0 and s = 1
2

|As(un − un
M )| ≤ C(n)(k + LMλs−1

M+1 + L3
mλ

s− 3
2

m+1),

where

C(n) = cDs exp(cM
1

1−σ

1 ν
σ

1−σ nk),

Ds is a constant independent of n, k, m, M and σ is any constant in (1
2 , 1).

Proof. Subtracting (4.5) from (4.3) gives us

en+1
M = (I + kνA)−1en

M − k(I + kνA)−1PM [En+1 + Qn+1 + Wn+1 − hn+1], (4.6)

where

En+1 = B(en+1
m , un+1) + B(un+1

m , en+1
M ),

Qn+1 = B(un+1
m , qn+1), Wn+1 = B(Ŵn+1

m , un+1).

Noticing e0
M = 0, we can derive from (4.6) that

en+1
M = −k

n+1
∑

j=1

(I + kνA)−(n+2−j)PM [Ej + Qj + W j − hj ]. (4.7)

For given s (s = 0 or 1
2 ) and any σ ∈ (1

2 , 1), we have

|Asen+1
M | ≤ In

1 (E) + Ĩn+1
1 (Q) + In+1

2 (W ) + In+1
3 (W ) + In+1

4 (h)

+k|As(I + kνA)−1PMEn+1|, (4.8)
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where

In
1 (E) = k

n
∑

j=1

|Aσ(I + kνA)−(n+2−j)PM |L(H)|As−σEj |,

Ĩn+1
1 (Q) = k

n+1
∑

j=1

|Aσ(I + kνA)−(n+2−j)PM |L(H)|As−σQj |,

In+1
2 (W ) = k

n+1
∑

j=1

|A(I + kνA)−(n+2−j)Pm|L(H)|PmAs−1W j |,

In+1
3 (W ) = k

n+1
∑

j=1

|A s+1

2 (I + kνA)−(n+2−j)Qm|L(H)|QmPMA
s−1

2 W j |,

In+1
4 (h) = k

n+1
∑

j=1

|As(I + kνA)−(n+2−j)PM |L(H)|hj |.

(4.9)

For the last term on the right-hand side of (4.8), we have

k|As(I + kνA)−1PMEn+1| ≤ k|A 1
2 (I + kνA)−1|L(H)|As− 1

2 PMEn+1|.

For any v ∈ H , using (2.1), (2.2), (2.4), (2.6) and Corollary 3.1 gives

|b(en+1
m , un+1, As− 1

2 v)|

≤
{

|b(en+1
m , A0− 1

2 v, Pmun+1)| + |b(en+1
m , A0− 1

2 v, Qmun+1)|
|b(en+1

m , un+1, A
1
2
− 1

2 v)|

≤
{

c|en+1
m | |v| |Pmun+1|L∞ + c|A 1

4 en+1
m | |v| |A 1

4 Qmun+1|
c|en+1

m |L∞‖un+1‖ |v|
≤ cLm|Asen+1

m | ‖un+1‖ |v| ≤ cM1Lm|Asen+1
M | |v|,

and similarly

|b(un+1
m , en+1

M , As− 1
2 v)| ≤ cLm‖un+1

m ‖ |Asen+1
M | |v| ≤ cM1Lm|Asen+1

M | |v|.

Then we obtain

|As− 1
2 PMEn+1| ≤ cM1Lm|Asen+1

M |.
Using Lemma 4.2 gives

k|A 1
2 (I + kνA)−1|L(H) ≤

k
1
2

ν
1
2

.

Then we finally get

k|As(I + kνA)−1PMEn+1| ≤ 1

2
|Asen+1

M |, (4.10)

provided k and m satisfy the condition in Theorem 4.2, that is ckM2
1 L2

m ≤ ν.

Now, let us estimate |As−σEj |, |As−σQj|, |PmAs−1W j | and |QmPMA
s−1

2 W j | one by one.

It follows from (2.1), (2.3), σ ∈ (1
2 , 1) and Corollary 3.1 that

b(ej
m, uj , As−σv) =

{

−b(ej
m, A0−σv, uj)

b(ej
m, uj , A

1
2
−σv)

}

≤ c|Asej
m| ‖uj‖ |v| ≤ cM1|Ase

j
M | |v|,

b(uj
m, e

j
M , As−σv) =

{

−b(uj
m, A0−σv, e

j
M )

b(uj
m, e

j
M , A

1
2
−σv)

}

≤ c‖uj
m‖ |Ase

j
M | |v| ≤ cM1|Ase

j
M | |v|.



220 Y.R. HOU AND L.Q. MEI

Similarly, using (2.9) gives

b(uj
m, qj , As−σv) ≤ cM1|Asqj | |v| ≤ cKM1

LM

λ1−s
M+1

|v|.

Then we can get

|As−σEj | ≤ cM1|Ase
j
M |, |As−σQj | ≤ cKM1

LM

λ1−s
M+1

. (4.11)

For the term |PmAs−1W j |, thanks to (2.7), (2.9) and Lemma 3.1, we have for s = 0

|(PmA−1W j , v)| = |b(Ŵ j
m, uj, PmA−1v)|

≤ cLm|A− 1
2 Ŵ j

m| ‖uj‖ |v| ≤ cKM1
L2

m

λ
3
2

m+1

|v|.

Moreover, for s = 1
2 , by using (2.6) and (2.9) we have

|(PmA− 1
2 W j , v)| = |b(Ŵ j

m, uj, PmA− 1
2 v)|

≤ cLm|Ŵ j
m| ‖uj‖ |v| ≤ cKM1

L2
m

λm+1
|v|,

which gives

|PmAs−1W j | ≤ cKM1
L2

m

λ
3
2
−s

m+1

. (4.12)

For the term |QmPMA
s−1

2 W j |, by using (2.2), (2.4), (2.9) and Lemma 3.1 we obtain

b(Ŵ j
m, uj , A

s−1

2 PMQmv) ≤ cM1|A
1
4 Ŵ j

m| |A 1
4 A

s−1

2 Qmv| ≤ cKM1
Lm

λ
1− s

2

m+1

|v|.

Therefore,

|QmPMA
s−1

2 W j
m| ≤ cKM1

Lm

λ
1− s

2

m+1

. (4.13)

Thanks to Lemma 4.2 and (4.11), we have

In
1 (E) ≤ cM1

kσ−1νσ

n
∑

j=1

(n + 2 − j)−σ|Ase
j
M |.

The usage of Lemma 4.3 and (4.11) yields

Ĩn+1
1 (Q) ≤ cKM1

ν(1 − σ)λ1−σ
1

LMλs−1
M+1.

The usage of Lemma 4.3, (4.12) and (4.13) admits

In+1
2 (W ) ≤ cKM1

ν
L3

mλ
s− 3

2

m+1, In+1
3 (W ) ≤ cKM1

ν(1 − s)
Lmλ

s− 3
2

m+1.

Moreover, using Lemma 4.3 and (4.4) leads to

In+1
4 (h) ≤ κk

νλ1−s
1

.
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Combining the above five estimates and (4.10) with (4.8) gives us

|Asen+1
M | ≤ Ds(k + LMλs−1

M+1 + L3
mλ

s− 3
2

m+1) +
cM1

kσ−1νσ

n
∑

j=1

(n + 2 − j)−σ|Ase
j
M |,

where

Ds = Ds(nk, M1, K, κ, ν, σ) = c max{ KM1

ν(1 − σ)λ1−σ
1

,
KM1

ν
,

KM1

ν(1 − s)
,

κ

νλ1−s
1

}.

Finally, the usage of Lemma 4.4 leads to the result of this theorem.

From the proof of this theorem, we know that LM and most power of Lm in the result come

from the assumption u0 ∈ V . If we further assume that u0 ∈ D(A), LM and most power of Lm

can be removed from the result. The only one which can not be removed is the one comes from

the usage of Lemma 4.3. We summarize this fact in the following corollary.

Corollary 4.1. Assume that u0 ∈ D(A) and there exists a time independent positive constant

M2 > 0 such that |Au(t)| ≤ M2 for all t > 0. Then we have, for s = 0 and s = 1
2

|As(un − un
M )| ≤ C(n)(k + λs−1

M+1 + Lmλ
s− 3

2

m+1),

where C(n) = C(nk, M1, M2, ν, σ).

Remark 4.1. Thanks to the results of Theorem 4.3 and Corollary 4.1, to get an approximation

of the same accuracy of the SGM in HM , we only have to solve a SGM equation of fully nonlinear

type within a relative small subspace Hm and then solve a linear equation to get the correction

in the HM . Thus TLC may save a lot of CPU time compared with SGM. For example, noticing

the asymptotic property of the eigenvalues of the Stokes operator and assuming u0 ∈ D(A),

Corollary 4.1 indicates that we should choose m such that mL
1
3
m ∼ M

2
3 or mL

1
2
m ∼ M

1
2 to reach

the same L2− or H1−accuracy of the SGM approximation in HM , respectively.

5. Numerical Example

In this section, we present some numerical results to support our previous analysis. We take

example of 2-D Navier-Stokes equations confined in a rectangular domain Ω = [0, 2π]2 with

periodic boundary conditions.

We chose an exact solution u(x, t) and then computed the “highly oscillatory” time depen-

dent forcing term from the solution. In this way we can check errors without computing a large

scale Galerkin approximation as an “exact” solution. We choose u(x, t) = u1(x, t) + u1(x, t),

where

u1(x, t) =
∑

|k|>0,k1>0;k2>0,k1=0

αk(t)

(

k2

−k1

)

e−i(k1x1+k2x2),

αk(t) =
1

10|k|4 sin(
|k1|

|k2| + 1
t + ω),

x = (x1, x2) ∈ Ω, k = (k1, k2) ∈ Z2, |k| =
√

k2
1 + k2

2 , i =
√
−1 and ω ∈ R is a constant. It is

easy to verify that ∇ · u = 0. Such configuration almost ensures that u ∈ D(A) and the result
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of Corollary 4.1 applies. For given m, M ∈ N (m < M), we look for approximate solution in

the following form,

un+1
M =

∑

−M

2
≤k1,k2≤

M

2

βn+1
k e−i(k1x1+k2x2), βn+1

k ∈ C2.

In the following we will compare the error of the SGM and TLC approximations at t = 2.

For TLC, we fix M = 51 and let m change between 3 ∼ 51. And for SGM, we change M between

3 ∼ 51. All the implicit time stepping, both in the TLC (coarse-level computation) and SGM

schemes, are achieved by the standard Newton iterative method with the same tolerance 10−9.

And all the algebraic equations arising in both schemes are solved by Gauss-Seidel iterative

method with tolerance 10−9. Since we care more about the impact of the spatial discretization

to the entire error (especially the impact of different m in TLC), we choose the time step length

small enough such that the entire error will not improve a lot when k becomes more smaller.

Here we choose k = 0.0001 in the following two simulations.

In Figs. 5.1 and 5.2, we compare the total L2− and H1−relative errors of the TLC and SGM
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approximations in the case of ν = 0.01 at t = 2. We find that the TLC approximation can

reach almost the same L2− and H1−accuracy as that of the SGM approximation with M = 51

when m = 17 and m = 13, respectively.

The results presented in Figs. 5.3 and 5.4 are related to the relative error comparison of the

TLC and SGM approximations at t = 2 when ν = 0.001. We also find that when m = 19 and

m = 15 the TLC approximation can reach almost the same L2− and H1−accuracy as that of

the SGM approximation with M = 51. These numerical results show a good agreement with

our error analysis results and Remark 4.1 in Section 4.2.

To show the effectiveness of the TLC scheme, we compare the CPU time used by the TLC

and SGM for obtaining approximate solutions with similar accuracy in Table 5.1. In this table,

all the errors are relative errors, m is the coarse-level scale in the TLC and ‘CPU’ means

CPU time used by TLC with such m

CPU time used by SGM
.
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Table 5.1: CPU time comparison.

ν = 0.01
SGM (L2−error) .3122E-03 TLC(L2−error) .3357E-03 m 17 CPU 28.7%

SGM (H1−error) .7311E-02 TLC(H1−error) .7685E-02 m 13 CPU 20.9%
ν = 0.001

SGM (L2−error) .3124E-03 TLC(L2−error) .3552E-03 m 19 CPU 32.4%

SGM (H1−error) .7311E-02 TLC(H1−error) .7775E-02 m 15 CPU 23.1%

6. Appendix

In this appendix we give the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2

Proof. It can be verified that

Ar(I + kνA)−nφi = λr
i (1 + kνλi)

−nφi,

where λi is the eigenvalue of A and φi is its associated eigenfunction. It is also known that

|Ar(I + kνA)−n|L(H) = max
i≥1

λr
i (1 + kνλi)

−n ≤ sup
λ≥λ1

λr(1 + kνλ)−n.

Denote y(λ) = λr(1 + kνλ)−n. Then

y′(λ) = λr(1 + kνλ)−n−1[rλ−1 − (n − r)kν].

From y′(λ0) = 0, we can get

λ0 =
r

(n − r)kν
, y′′(λ0) < 0.

Consequently,

|Ar(I + kνA)−n|L(H)

≤ y(λ0) = rr(
n

n − r
)r−n(kν)−rn−r ≤ rr(kν)−r(n − r)r .

Since r − n < 0, we have

|Ar(I + kνA)−n|L(H) ≤ rr(kν)−r(n − r)−r .

To prove Lemma 4.3, we need the following lemma.

Lemma 6.1. For n, m ∈ N, we have

|A(I + kνA)−nPm|L(H) ≤











λm(1 + kνλm)−n, for n − 1 ≤ 1
kνλm

,
1

kν(n−1) , for 1
kνλm

≤ n − 1 ≤ 1
kνλ1

,

λ1(1 + kνλ1)
−n, for n − 1 ≥ 1

kνλ1
.

And for r ∈ (0, 1), n ∈ N and m ∈ N ∪ {0} it yields

|Ar(I + kνA)−nQm|L(H) ≤
{

rr(n − r)−r(kν)−r, for (n − r)k ≤ r
νλm+1

,

λr
m+1(1 + kνλm+1)

−n, for (n − r)k ≥ r
νλm+1

.
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Proof. First, let us prove the first inequality. Similar to the proof of Lemma 4.2, we know

that

|A(I + kνA)−nPm|L(H) = max
1≤i≤m

λi(1 + kνλi)
−n ≤ sup

λ1≤λ≤λm

λ(1 + kνλ)−n.

Denote y(λ) = λ(1 + kνλ)−n. Then

y′(λ) = (1 + kνλ)−n−1[1 − (n − 1)kνλ].

Set y′(λ0) = 0, we can get

λ0 =
1

(n − 1)kν
, y′′(λ0) < 0

when n > 1. That is y(λ) obtains its maximum value when λ = λ0. So for n > 1

|A(I + kνA)−nPm|L(H) ≤











λm(1 + kνλm)−n, for n − 1 ≤ 1
kνλm

,
1

kν(n−1) , for 1
kνλm

≤ n − 1 ≤ 1
kνλ1

,

λ1(1 + kνλ1)
−n, for n − 1 ≥ 1

kνλ1
.

When n = 1, we easily know that y(λ) is an increasing function of λ ∈ R+, so the above result

is still valid. This proves the first inequality in the lemma.

The proof of the second inequality is completely the same as that of Lemma 4.2 and we

leave its proof to readers.

Proof of Lemma 4.3

Proof. The first inequality can be obtained from the first inequality in Lemma 6.1. In fact,

if we take i1 = [ 1
kνλm

+ 1], i2 = [ 1
kνλ1

+ 1], we have

n
∑

i=1

|A(I + kνA)−iPm|L(H)

≤
i1

∑

i=1

λm(1 + kνλm)−i +

i2
∑

i=i1+1

1

kν(i − 1)
+

n
∑

i=i2+1

λ1(1 + kνλ1)
−i

≤ 1

kν
+

1

kν
ln

λm

λ1
+

1

kν
≤ 2Lm

kν
.

To prove the second inequality, we have to use the second inequality in Lemma 6.1. By

taking i1 = [ r
kνλm+1

+ r], we can obtain

n
∑

i=1

|Ar(I + kνA)−iQm|L(H)

≤
i1

∑

i=1

rr(kν)−ri−r +
n

∑

i=i1+1

λr
m+1(1 + kνλm+1)

−i

≤ r(1 − r)−1(kν)−1λr−1
m+1 + (kν)−1λr−1

m+1 ≤ 1

1 − r
(kν)−1λr−1

m+1.
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