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Abstract

We discuss semiconvergence of the extrapolated iterative methods for solving singular

linear systems. We obtain the upper bounds and the optimum convergence factor of the ex-

trapolation method as well as its associated optimum extrapolation parameter. Numerical

examples are given to illustrate the theoretical results.
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1. Introduction

Consider a system of linear equations

Ax = b, (1.1)

where A ∈ Cn×n is singular, b, x ∈ Cn with b known and x unknown. We assume that the linear

system (1.1) is solvable, i.e., it has at least one solution. In order to solve the linear system

(1.1) with iterative methods, the coefficient matrix A is split into

A = M −N, (1.2)

where M is nonsingular. Then a linear stationary iterative method for solving (1.1) can be

described as follows.

xk+1 = Txk +M−1b, k = 0, 1, 2, · · · , (1.3)

where T = M−1N is the iteration matrix.

The iterative method (1.3) is called semiconvergent if for every x0 the sequence defined

by (1.3) converges to a solution of (1.1). It is well known that the iterative method (1.3) is

semiconvergent if and only if the pseudo-spectral radius

ϑ(T ) ≡ max{|µ|, µ ∈ σ(T )\{1}}

is less than 1 and the elementary divisors associated with µ = 1 ∈ σ(T ) are linear, i.e.,

index(I − T ) = 1,

where σ(T ) denotes the spectrum of T and index(B) denotes the index of the matrix B, i.e., the

smallest nonnegative integer k such that rank(Bk+1) = rank(Bk) (rank(B) means the rank of
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B). In this case, the splitting (1.2) is also called semiconvergent and T is called a semiconvergent

matrix. The associated convergence factor of T and the iterative method (1.3) is ϑ(T ).

The semiconvergence of splitting (1.2) has been investigated by many papers (cf. [4, 11] and

the references therein).

Moreover, some new results have been obtained by using matrix splittings and iterative

methods to solve the linear complementarity problem (cf. [1, 2, 3, 17]).

For ω ∈ C the extrapolation method of (1.3) can be defined by

xk+1 = Tωx
k + ωM−1b, k = 0, 1, 2, · · · , (1.4)

where

Tω = (1 − ω)I + ωT

is the iteration matrix and ω is called the extrapolation parameter (cf. [8]). Clearly, if ω = 0

then T0 = I, which leads to a trivial case. Thus, we assume that ω 6= 0.

Now, we assume that

A = D −Q, (1.5)

where D = diag(a11, · · · , ann) is nonsingular. Associated with the splitting (1.5), the Jacobi

iteration matrix J can be expressed as

J = D−1Q.

The extrapolated Jacobi method is also called JOR method (cf. [16]) with the iteration matrix

Jω, namely,

Jω = (1 − ω)I + ωJ.

The method (1.4) is consistent with (1.1) and is used to accelerate the convergence of the

method (1.3). The extrapolation method for solving the singular systems has been discussed

in many papers (cf. [7, 10, 12]).

Now, an interesting, important and also complicated problem is the determination of the

optimum value ωopt for ω, which minimizes ϑ(Tω). This problem has been discussed extensively

by some researchers. It was treated by the geometrical method in [7].

In this paper, the determination of the sharp analytical upper bounds for minω ϑ(Tω) is

achieved by an algebraic approach, which generalize the results in [15] to the singular case. On

the other hand, these bounds are obtained for the good analytical values for the extrapolation

parameter which coincide with the optimum ones under some additional conditions. In the

theory presented no knowledge of the eigenvalues of T is required. Finally, some applications and

numerical examples are given which support the theory developed. The paper is organized as

follows. After establishing the bounds for minω ϑ(Tω) in Section 2, we extend the extrapolation

theorem given in [6, 15] to the singular system and improve the corresponding results in [10, 12].

In Section 3, an application and the numerical results are given to illustrate the results presented

in Sections 2.

2. Determination of Upper Bounds and Optimum Values

Lemma 2.1. ([10]) For the singular linear system (1.1) the following results hold:
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(i) for λ ∈ σ(Tω) and µ ∈ σ(T ), it holds that

λ = 1 − ω + ωµ; (2.1)

(ii) 1 ∈ σ(T ), 1 ∈ σ(Tω) and

index(I − Tω) = index(I − T );

(iii) for µ and λ satisfying (2.1) µ ∈ σ(T )\{1} if and only if λ ∈ σ(Tω)\{1};
(iv) if the extrapolated method (1.4) is semiconvergent, then index(I − T ) = 1.

Moreover, we have proved in [12] the following semiconvergence theorem.

Theorem 2.1. The extrapolation method (1.4) is semiconvergent if and only if index(I−T ) = 1

and one of the following conditions is satisfied.

(i) Re(µ) < 1, for all µ ∈ σ(T )\{1}, and

0 < ω < min
µ∈σ(T )\{1}

2[1 − Re(µ)]

1 − 2Re(µ) + |µ|2
;

(ii) Re(µ) > 1, for all µ ∈ σ(T )\{1}, and

0 > ω > max
µ∈σ(T )\{1}

2[1 − Re(µ)]

1 − 2Re(µ) + |µ|2
.

Now, we give some notations which will be used in the sequel. Let

S ≡ σ(T )\{1} = {µj = xj + iyj , j = 1, · · · , t}

be a set consisting of the eigenvalues of T , excluding 1, and the real and the imaginary parts

satisfy

xm ≤ xj ≤ xM , ym ≤ |yj | ≤ yM , j = 1, · · · , t.

In addition, we denote

φ = (xM − xm)(1 − xM ), ψ = 2y2
M , φ̃ = (xM − xm)(xm − 1),

ω1 =
1 − xM

(xM − 1)
2

+ y2
M

, ω0 =
2

2 − (xm + xM )
, ω̃1 =

xm − 1

(xm − 1)
2

+ y2
M

.
(2.2)

Then, we have the following main result.

Theorem 2.2. Assume that index(I − T ) = 1. If xM < 1, then for the extrapolated method

(1.4), it holds that

min
ω
ϑ(Tω) ≤





yM

[(xM − 1)
2

+ y2
M ]

1

2

, if φ ≤ ψ

[(xM − xm)
2

+ 4y2
M ]

1

2

2 − xm − xM

, if φ ≥ ψ




< 1.

Moreover, if xm + iyM , xM + iyM ∈ S, then we have

ωopt =

{
ω1, if φ ≤ ψ,

ω0, if φ ≥ ψ,
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and

min
ω
ϑ(Tω) = ϑ(Tωopt

) =





yM

[(xM − 1)
2

+ y2
M ]

1

2

, if ωopt = ω1,

[(xM − xm)
2

+ 4y2
M ]

1

2

2 − xm − xM

, if ωopt = ω0,

which satisfies

ϑ(Tωopt
) ≤ ϑ(T ) = max{(x2

m + y2
M )

1

2 , (x2
M + y2

M )
1

2 }

with equality holding if and only if one of the following conditions holds:

(i) xm + xM = 0 and x2
m + y2

M − xM ≤ 0, when ωopt = ω0,

(ii) xm + xM ≥ 0 and x2
M + y2

M − xM = 0, when ωopt = ω1.

Proof. According to Lemma 2.1, we have

index(I − Tω) = index(I − T ) = 1

and

σ(Tω)\{1} = {1 − ω + ωµj | µj ∈ S, j = 1, · · · , t},

which implies that

ϑ2(Tω) = max
j

{| 1 − ω + ωxj |2 +ω2 | yj |2}

≤ (max
j

| 1 − ω + ωxj |)2 + ω2y2
M . (2.3)

Theorem 2.1 shows that the necessity for semiconvergence is ω > 0.

It can be shown that

max
j

| 1 − ω + ωxj |=
{
ωxM + 1 − ω, if 0 < ω ≤ ω0,

ω − 1 − ωxm, if ω ≥ ω0,

where

ω0 =
2

2 − (xm + xM )
.

Therefore, from (2.3) we have

ϑ2(Tω) ≤
{

(ωxM + 1 − ω)2 + ω2y2
M = g1(ω), if 0 < ω ≤ ω0,

(ω − 1 − ωxm)2 + ω2y2
M = g2(ω), if ω ≥ ω0.

(2.4)

As a result, it holds that

min
ω
ϑ2(Tω) ≤

{
min

ω
g1(ω), if 0 < ω ≤ ω0,

min
ω
g2(ω), if ω ≥ ω0.

Noting that g′1(ω) ≥ 0 if and only if ω ≥ ω1, g
′
2(ω) ≥ 0 if and only if ω ≥ ω2, and ω2 ≤ ω0,

where




ω1 =
1 − xM

(xM − 1)
2
+ y2

M

,

ω2 =
1 − xm

(xm − 1)
2

+ y2
M

,
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we can conclude that




min
0<ω<ω0

g1(ω) = g1(ω1), if ω1 ≤ ω0,

min
0<ω<ω0

g1(ω) = g1(ω0), if ω1 ≥ ω0,

min
ω≥ω0

g2(ω) = g2(ω0) = g1(ω0).

It is easily seen that ω1 ≤ ω0 is equivalent to φ ≤ ψ, where φ and ψ are given in (2.2). Then

we have

min
ω
ϑ2(Tω) ≤

{
g1(ω1), if φ ≤ ψ,

g1(ω0), if φ ≥ ψ,

which is equivalent to

min
ω
ϑ(Tω) ≤






yM

[(xM − 1)2 + y2
M ]

1

2

, if φ ≤ ψ,

[(xM − xm)
2
+ 4y2

M ]
1

2

2 − xm − xM

, if φ ≥ ψ.

Under the conditions that xm + iyM and xM + iyM are eigenvalues of T , we can obtain by

combining (2.4) and the above analysis that

ωopt =

{
ω1, if φ ≤ ψ,

ω0, if φ ≥ ψ,

and

min
ω
ϑ(Tω) = ϑ(Tωopt

) =





yM

[(xM − 1)
2
+ y2

M ]
1

2

, if ωopt = ω1,

[(xM − xm)
2
+ 4y2

M ]
1

2

2 − xm − xM

, if ωopt = ω0.

If φ ≥ ψ, we have 2y2
M ≤ (xM − xm)(1 − xM ). Since

(xM − xm)(1 − xM ) < 2(1 − xm)(1 − xM ),

we obtain

y2
M < (1 − xm)(1 − xM ),

which implies

[(xM − xm)
2

+ 4y2
M ]

1

2

2 − xm − xM

< 1,

and therefore ϑ(Tωopt
) < 1. It can be shown that

ω0 = 1, φ ≥ ψ; ω1 = 1, φ ≤ ψ,

are equivalent to

xm + xM = 0, x2
m + y2

M − xM ≤ 0, ωopt = ω0,

xm + xM ≥ 0, x2
M + y2

M − xM = 0, ωopt = ω1,

respectively. The proof is then complete. �

Similar to Theorem 2.2, we have the following result.
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Theorem 2.3. Assume that index(I − T ) = 1. If xm > 1, then for the extrapolated method

(1.4) it holds that

min
ω
ϑ(Tω) ≤





yM

[(1 − xm)
2
+ y2

M ]
1

2

, if φ̃ ≤ ψ

[(xM − xm)2 + 4y2
M ]

1

2

xM + xm − 2
, if φ̃ ≥ ψ




< 1.

Moreover, if xm + iyM , xM + iyM ∈ S, then we have

ωopt =

{
−ω̃1, if φ̃ ≤ ψ,

ω0, if φ̃ ≥ ψ

and

min
ω
ϑ(Tω) = ϑ(Tωopt

) =





yM

[(1 − xm)
2

+ y2
M ]

1

2

, if ωopt = −ω̃1,

[(xM − xm)
2

+ 4y2
M ]

1

2

xM + xm − 2
, if ωopt = ω0,

which satisfies

ϑ(Tωopt
) ≤ ϑ(T ) = max{[(2 − xM )

2
+ y2

M ]
1

2 , [(2 − xm)
2

+ y2
M ]

1

2 }

with equality holding if and only if one of the following conditions holds:

(i) xm + xM = 4 and (2 − xM )
2

+ y2
M − 2 + xm ≤ 0, when ωopt = ω0,

(ii) xm + xM < 4 and (2 − xm)2 + y2
M − 2 + xm = 0, when ωopt = −ω̃1.

Proof. According to Lemma 2.1, we have

index(I − Tω) = index(I − T ) = 1

and

σ(Tω)\{1} = {1 − ω + ωµj | µj ∈ S, j = 1, · · · , t},

which implies that

ϑ2(Tω) = max
j

{| 1 − ω + ωxj |2 +ω2 | yj |2}

≤ max
j

| 1 − ω + ωxj |2 +ω2y2
M .

Theorem 2.1 shows that under the condition xm > 1 the necessity for the semiconvergence is

ω < 0. Now, let ω̃ = −ω, x̃j = 2 − xj and ỹj = −yj . Then

ϑ2(Tω) = max
j

{| 1 − ω̃ + ω̃x̃j |2 + ω̃2| ỹj |2}

≤ max
j

| 1 − ω̃ + ω̃x̃j |2 +ω̃2y2
M ,

where





2 − xM ≤ x̃j ≤ 2 − xm < 1,

max ỹj = max yj = yM ,

ω̃ > 0.
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From Theorem 2.2 and its proof, we get the results immediately. This completes the proof.

�

From the above discussion, we know that if the real part of any eigenvalue of the iteration

matrix is smaller than 1 or the real part of any eigenvalue of the iteration matrix is larger than

1, then the extrapolated method can be applied directly.

Under some conditions, we have a more general conclusion as follows.

Theorem 2.4. Assume that index(I − T ) = 1, and xj 6= 1, j = 1, · · · , t. If

yM < min
j

| 1 − xj |, j = 1, · · · , t

or

ym > max
j

| 1 − xj |, j = 1, · · · , t,

then the iteration

x(k+1) = T (2I − T )x(k) + (I − T )M−1b, k = 0, 1, 2, · · · (2.5)

is consistent with (1.1), and the extrapolated method can be applied directly.

Proof. There exists a nonsingular matrix P such that

T = P−1

(
I 0

0 K

)
P,

where I −K is nonsingular. Then we can prove that

(I − T )x = M−1b (2.6)

is equivalent to

(I − T )(I − T )x = (I − T )M−1b. (2.7)

In fact, if we denote

PM−1b = b̃ =

(
b̃1

b̃2

)
, Px =

(
v1

v2

)
,

then (2.6) and (2.7) are respectively equivalent to

(
0 0

0 I −K

)(
v1

v2

)
=

(
b̃1

b̃2

)
(2.8)

and
(

0 0

0 (I −K)
2

)(
v1

v2

)
=

(
0 0

0 I −K

)(
b̃1

b̃2

)
. (2.9)

Since (1.1) is solvable, we have b̃1 = 0. Now, it is easy to see that (2.8) and (2.9) have the same

set of solutions. On the other hand,

index(I − T (2I − T )) = 1,
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and the real part of any of σ(T (2I − T ))\{1} is

xj(2 − xj) + y2
j , j = 1, · · · , t,

which is smaller than 1 whenever

yM < min
j

| 1 − xj |, j = 1, · · · , t,

or larger than 1 whenever

ym > max
j

| 1 − xj |, j = 1, · · · , t.

According to Theorems 2.2 and 2.3, the proof is then complete. �

If all the eigenvalues of T are real, i.e., σ(T ) ∈ R, then we have the following result.

Corollary 2.1. Assume that σ(T ) ∈ R, index(I − T ) = 1.

(i) If either xM < 1 or xm > 1, then for the extrapolation (1.4), it holds that

ωopt =
2

2 − xM − xm

, ϑ(Tωopt
) =

xM − xm

|2 − xM − xm| ;

(ii) If xm < 1 and xM > 1, then the extrapolated method can be applied to (2.5) directly and

ωopt =
2

2 − x̄M − x̄m

, ϑ(T̄ωopt
) =

x̄M − x̄m

|2 − x̄M − x̄m| ,

where

T̄ = T (2I − T ),

x̄m = min{2xm − x2
m, 2xM − x2

M},
x̄M = max{2xj − x2

j}.

Proof. For the case (i), noting that

yM = 0 < min
j

| 1 − xj |

and according to Theorems 2.1-2.4, the results are immediate.

For the case (ii), let x̄j = 2xj −x2
j . Then x̄j , j = 1, · · · , n, are the eigenvalues of the matrix

T (2I − T ) and x̄j = 1 if and only if xj = 1. It is easy to check that x̄j ≤ 1 and

x̄m = min{2xm − x2
m, 2xM − x2

M}.

The rest of the proof is obvious. �

3. An Application

Definition 3.1. ([16]) A matrix A = (aij) of order n has Property A if there exist two disjoint

subsets S1 and S2 of W , the set of the first n positive integers, such that S1∪S2 = W and such

that if i 6= j and if either aij 6= 0 or aji 6= 0, then i ∈ S1 and j ∈ S2 or else i ∈ S2 and j ∈ S1.



On the Optimization of Extrapolation Methods for Singular Linear Systems 235

If a matrix has Property A with non-vanishing diagonal elements, by [16] it follows that the

eigenvalues of Jacobi matrix occur in ± pairs. So we have the following theorem, which is an

application of Theorem 2.2.

Theorem 3.1. Assume A in (1.1) has non-vanishing diagonal elements, and let (1.3) be the

Jacobi method. We assume that index(I − J) = 1 and let

S̃ ≡ {µj = xj + iyj ∈ σ(J)\{1,−1}, j = 1, · · · ,m− 1}.

Suppose that µ = γ + iδ ∈ S̃, where 0 ≤ γ < 1, δ ≥ 0, and all other eigenvalues of J lie in the

rectangle

| xj |≤ γ, | yj |≤ δ.

If | µ |2 ≥ 1 − δ2, then the optimum JOR method is always better than the Jacobi method, that

is,

ϑ(Jωopt
) < min{ϑ(J), 1},

where

ωopt =
1 − γ

(γ − 1)
2

+ δ2
< 1.

Proof. Since the eigenvalues of J occur in plus minus pairs, we have xm = −1, xM = γ and

yM = δ. By Theorem 2.2, the result is true. �

Example 3.1. Consider the homogeneous system of equations

(I − P )v = 0, (3.1)

which arises from the stationary probability distribution of a Markov chain. Here v is the

stationary distribution vector associated with the chain and P is a n×n transition matrix with

P = Dn ≡




0 1

q 0 p

q 0 p

. . .
. . .

. . .

q 0 p

1 0




, (3.2)

where 0 < p < 1 and q = 1− p. This chain is called a random walk and it can be used to model

various physical situations.

Iterative methods for solving Markov chains are investigated by many authors. As usual,

we split I − P into

I − P = I − L− U,

where L and U are the strictly lower and strictly upper triangular parts of the matrix P

respectively. Then, we obtain the Jacobi iteration matrix J = P and the Gauss-Seidel iteration
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matrix G = (I − L)−1
U . The corresponding Jacobi and Gauss-Seidel extrapolated iterative

methods for solving (3.1) are

vk+1 = [(1 − ω)I + ωJ ]vk, k = 0, 1, 2, · · · (3.3)

and

vk+1 = [(1 − ω)I + ωG]vk, k = 0, 1, 2, · · · , (3.4)

respectively.

For clarity, we first give the following results.

Lemma 3.1. ([5]) Let A ∈ Zn×n, i.e., the off-diagonal elements of A are not positive. If A

has all positive diagonal entries, then index(I − J) ≤ 1 if and only if index(I −G) ≤ 1.

Lemma 3.2. Let n× n matrix P be given by (3.2). Then the following statements are true:

(i) The eigenvalues of the matrix J in (3.3) are

λ1 = 1, λs = 2
√
pq cos(

sπ

n− 1
), s = 1, · · · , n− 2, λn−1 = −1 (3.5)

and index(I − J) = 1.

(ii) If λ is an eigenvalue of the matrix G in (3.4), then there exists an eigenvalue µ of the

matrix J in (3.3) such that

λ2 = λµ2 (3.6)

and index(I −G) = 1.

Proof. For the matrix Dn defined by (3.2), by induction, we have

det(P − λIn) = λ2 det(I − λDn−2) + det(I − λDn−3) + pq det(I − λDn−4)

and

det(I − λDn−2) = − det(I − λDn−3) − pq det(I − λDn−4).

Thus

det(P − λIn) = (λ2 − 1) det(I − λDn−2).

Here det(·) denotes the determination of the corresponding matrix.

As shown in [9, 13], the eigenvalues of the matrix Dn−2 are

λs = 2
√
pq cos(

sπ

n− 1
), s = 1, 2, · · · , n− 2,

As a result, we obtain (3.5).

Note that I − J is a tri-diagonal matrix with non-vanishing diagonal elements. By [16,

Theorem 5-2.2], the relation (3.6) holds.

Since J is an irreducible nonnegative matrix and Je = e, where e is a column vector with

unit entries, according to Perron-Frobenius Theorem in [14], ρ(J) = 1 is a simple eigenvalue of

the matrix J . Consequently, index(I − J) = 1. Obviously, I − J ∈ Zn×n, by Lemma 3.1, we

have index(I −G) = 1. This completes the proof of this lemma. �

As a direct application of Theorem 2.1 and Corollary 2.1, we have the following theorem.
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Theorem 3.2. For the matrix P given in (3.2), we have the following results:

(i) The Jacobi extrapolated iterative method (3.3) is semiconvergent if and only if

0 < ω < 1.

Furthermore,

ωopt =
2

3 − 2
√
pq cos( π

n−1 )
, ϑ(ωopt) =

1 + 2
√
pq cos( π

n−1 )

3 − 2
√
pq cos( π

n−1 )
.

(ii) The Gauss-Seidel extrapolated iterative method (3.4) is semiconvergent if and only if

0 < ω < 2.

Furthermore,

ωopt =
2

2 − 4pq cos2( π
n−1 )

, ϑ(ωopt) =
2pq cos2( π

n−1 )

1 − 2pq cos2( π
n−1 )

.

Now, we give the numerical results for the iterative methods (3.3) and (3.4). In Table 3.1,

the initial approximation v0 is taken as (2, 3, 4, 1, 1, · · · , 1)T . It is easy to see that the solutions

of (3.1) is c(1, 1, · · · , 1)T where c is any constant. Here,

‖(I − P )vk

‖(I − P )v0
‖ ≤ 10−6

is used as the stopping criterion. The maximum number of iterations for all the numerical

experiments is set to 10000. In addition, we choose p = 1
10 and q = 9

10 .

All experiments were executed on a PC using the MATLAB programming package. MAT-

LAB carries out calculations in double precision by default.

In Table 3.1, we report the pseudo-spectral radius of the corresponding iteration matrix

(SPEC), the CPU time elapsed for the iteration (CPU) and the number of iterations (IT). It

should be pointed out that the final approximation solution is affected by the initial approx-

imation. In the table, c means that the approximation solution is c(1, 1, · · · , 1)T . Notations

Jω, Gω, ωJ and ωG represent Jacobi extrapolation matrix, Gauss-Seidel extrapolation matrix

and the corresponding extrapolation parameters respectively. The data with underline are the

optimal parameter in theory. N means that P is an N ×N matrix.

During our experiments, we found that the approximation solution depends on the initial

approximation v0, e.g., Table 3.1 shows that for the given initial approximation, extrapolated

Jacobi method is semiconvergent to 2.59671(1, 1, · · · , 1)T , while the approximation solution of

the extrapolated Gauss-Seidel method is 3.07407(1, 1, · · · , 1)T . From the table, we can also

see that when N is not large, the optimum values can be obtained at the optimal parameters.

The larger the N is, the more serious the perturbation is. This is due to the singularity of the

coefficient matrix I − P . In this case, the optimal parameter is referenced by the choice of the

other parameters. Normally, the parameter for the practical optimum value is not very far from

the theoretic optimal one.
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Table 3.1: Pseudo-spectral radius, CPU time and number of iterations (IT).

N Jω (c = 2.59671) Gω(c = 3.07407)

ωJ IT CPU SPEC ωG IT CPU SPEC

0.5 58 0 0.781908 0.7 21 0 0.522522

0.6 47 0 0.738289 0.9 15 0 0.386099

10 0.7 39 0 0.694671 1.1 10 0 0.249677

0.8 33 0 0.651052 1.18898 10 0 0.188981

0.820956 33 0 0.641912 1.2 10 0 0.2

0.9 61 0 0.8 1.7 46 0 0.7

0.5 103 0 0.795908 1 16 0 0.350247

0.6 84 0 0.75509 1.1 14 0 0.285272

20 0.7 70 0 0.714272 1.2 12 0 0.220297

0.8 60 0 0.673453 1.2123 11 0 0.212303

0.830502 57 0 0.661003 1.3 13 0 0.3

0.9 63 0 0.8 1.5 23 0 0.5

0.3 617 0.078 0.879909 1 36 0 0.359633

0.5 361 0.047 0.799849 1.1 32 0 0.295601

0.7 251 0.031 0.719789 1.2 28 0 0.231565

100 0.8 216 0.031 0.679758 1.21924 27 0 0.219243

0.833228 206 0.016 0.666457 1.3 24 0 0.3

0.9 189 0.016 0.8 1.7 46 0 0.7

0.5 2822 103.703 0.799999 1 186 6.875 0.359996

0.6 2339 86.844 0.759998 1.2 151 5.657 0.231996

0.7 1994 74.422 0.719998 1.21951 148 5.531 0.21951

1000 0.8 1734 63.891 0.679998 1.3 137 5.266 0.3

0.833332 1662 61.375 0.666665 1.8 88 3.297 0.8

0.9 1532 56.421 0.8 1.9 167 6.234 0.9

0.5 8042 2698.81 0.8 1 476 157.516 0.36

0.6 6681 2415.95 0.76 1.2 389 128.907 0.232

3000 0.7 5708 1954.55 0.72 1.21951 383 126.578 0.219512

0.8 4977 1651.28 0.68 1.3 356 118.125 0.3

0.833333 4772 1579.53 0.666666 1.7 259 85.703 0.7

0.9 4407 1460.59 0.8 1.9 224 74.469 0.9

under grant BK2006725 and the College Natural Science Foundation of Jiangsu Province under

grant 05KJB110062.

The author would like to thank the referees for their very careful readings of the original

manuscript and many valuable comments and corrections.

References

[1] Z.-Z. Bai, Experimental study of the asynchronous multisplitting relaxation methods for linear

complementarity problems, J. Comput. Math., 20 (2002), 561-574.

[2] Z.-Z. Bai and Y.-G. Huang, Relaxed asynchronous iterations for the linear complementarity prob-

lem, J. Comput. Math., 20 (2002), 97-112.

[3] Z.-Z. Bai and Y.-G. Huang, A class of asynchronous parallel multisplitting relaxation methods for

the large sparse linear complementarity problems, J. Comput. Math., 21 (2003), 773-790.

[4] Z.-Z. Bai, L. Wang and J.-Y. Yuan, Weak-convergence theory of quasi-nonnegative splittings for

singular matrices, Appl. Numer. Math., 47 (2003), 75-89.



On the Optimization of Extrapolation Methods for Singular Linear Systems 239

[5] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for

Industrial and Applied Mathematics, Philadelphia, 1994.

[6] Z. Cao, A convergence theorem on an extrapolated iterative method and its applications, Appl.

Numer. Math., 27 (1998), 203-209.

[7] A. Hadjidimos, On the optimization of classical iterative schemes for the solution of complex

singular linear systems, SIAM Journal on Algebraic and Discrete Methods, 6 (1985), 555-566.

[8] A. Hadjidimos and A. Yeyios, The principle of extrapolation in connection with the accelerated

overrelaxation method, Linear Algebra Appl., 30 (1980), 115-128.

[9] J.W. Hu and H.M. Tang, Numerical Methods for Differential Equations (In Chinese), Academic

Press, Peking, 1999.

[10] Y. Song, Semiconvergence of extrapolated iterative methods for singular linear systems, J. Com-

put. Appl. Math., 106 (1999), 117-129.

[11] Y. Song, Semiconvergence of nonnegative splittings for singular matrices, Numer. Math., 85

(2000), 109-127.

[12] Y. Song and L. Wang, On the semiconvergence of extrapolated iterative methods for singular

linear systems, Appl. Numer. Math., 44 (2003), 404-413.

[13] J.W. Thomas, Numerical Partial Differential Equations Finite Difference Methods, Springer-

Verlag, New York, 1997

[14] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics: 27,

Springer-Verlag, Berlin, 2000.

[15] A. Yeyios, On the optimization of an extrapolation method, Linear Algebra Appl., 57 (1984),

191-203.

[16] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

[17] D. Yuan and Y. Song, Modified AOR methods for linear complementarity problem, Appl. Math.

Comput., 140 (2003), 53-67.


