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Abstract

In this paper, a discontinuous finite element method for the positive and symmetric,

first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed

by using linear triangle elements, and the O(h2)-order optimal error estimates are derived

under the assumption of strongly regular triangulation and the H
3-regularity for the exact

solutions. The convergence analysis is based on some superclose estimates of the inter-

polation approximation. Finally, we discuss the Maxwell equations in a two-dimensional

domain, and numerical experiments are given to validate the theoretical results.
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1. Introduction

It is well known that for the k-th order finite element approximations to elliptic or parabolic

problems, the optimal order error estimate in the L2 norm is of order O(hk+1) with the exact

solution u in Hk+1(Ω). However, for linear hyperbolic problems, it is still a completely unsolved

problem whether or not the finite element solutions admit this optimal order estimate. Generally

speaking, the convergence order of the Galerkin finite element method for hyperbolic problems

is of order O(hk), that is one order lower than the approximation order of the finite element

space; see, e.g., [7,14]. In addition, in [7] Dupont gave a counterexample by using a third-order

Hermite element to indicate that this convergence rate is sharp. Since then, in order to obtain

the high accuracy and cope with the characteristics of hyperbolic problems, the discontinuous

Galerkin method is proposed and used extensively in this area; see, e.g., [4,9,12,15,18,20].

Historically, the original discontinuous Galerkin finite element method was introduced by

Reed and Hill [18] in 1973 to solve the linear neutron transport equation. Soon Lesaint and

Raviart [15] gave its mathematical analysis and obtained the O(hk)-order error estimates when

the k-th order discontinuous finite element spaces were used. Later on, Johnson and Pitkaranta

[12] improved this convergence rate to O(hk+ 1

2 ), and Peterson [17] further proved that, under

the quasi-uniform triangulation condition, the O(hk+ 1

2 ) convergence rate is sharp, namely, this

is the optimal order error estimate for discontinuous Galerkin finite element approximations to

first-order hyperbolic problems. On the superconvergence research, Lesaint and Raviart [15]

first obtained estimate of the form ‖u − uh‖ ≤ Chk+1‖u‖k+2, for rectangular mesh finite el-

ements (also see [16] for the piecewise constant approximation case), and Richter [19] did so
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for semi-uniform triangular meshes under the curious assumption that all element edges are

bounded away from the characteristic direction of the hyperbolic equation, which is less signif-

icant in the practical case. However, all the papers mentioned above discuss the single scalar

hyperbolic equation only. Indeed, the discontinuous Galerkin finite element methods have been

extended successfully to linear systems of first-order hyperbolic equations and nonlinear prob-

lems. Now there is a lot of literature available in this area. For example, Johnson and Huang

[13] studied this method for Friedrichs system of equations, and gained the O(hk+ 1

2 )-order er-

ror estimate, this result was extended to the initial-boundary value problems of positive and

symmetric, linear systems of hyperbolic equations by Zhang in [20]. Huang also discussed dis-

continuous Galerkin finite element methods for mixed Tricomi equations and nonlinear vorticity

transport equations [9,10]. Since the 1990s, Cockburn and Shu et al. systematically studied the

discontinuous Galerkin finite element method for nonlinear convection laws and related prob-

lems. By using numerical flow of finite differences with higher resolution, TVB, and gradient

limiters, some new type of discontinuous Galerkin finite element methods for various hyper-

bolic problems were designed, see, e.g., [1,2,3,4]. Furthermore, the Maxwell equations with

periodic boundary conditions were also discussed by using the locally divergence-free discontin-

uous Galerkin method in [5]. For more literature, the reader is referred to Cockburn and Shu’s

review article [3] and the references therein.

In this paper, we will discuss the discontinuous linear finite element approximations to

positive and symmetric linear hyperbolic systems (steady and nonsteady state). Under the

assumption of strongly regular triangulation and H3-regularity for the exact solutions, the

O(h2)-order optimal error estimate is established. The theoretical tools for the error analysis

are some superclose estimates of interpolation approximation that are also derived in this paper.

In our discontinuous finite element method (see (2.7)-(2.8)), the approximations of the traces

of the fluxes on the boundary of the elements (the so-called numerical fluxes) are different from

that introduced by Reed and Hill [18] or Lesaint and Raviart [15] in the original DG method.

Generally speaking, our method will lead to an implicit scheme, while those schemes in [15,18]

are in an explicit fashion such that the discrete equations can be solved explicitly through

an ordering, element by element. The advantage of our method is that it allows us to derive

the optimal order error estimates. To the authors’ knowledge, very few optimal order error

estimates have been obtained for hyperbolic problems, even in one dimensional case. Hence,

our research work in this paper is theoretically significant.

Let Ω ⊂ R2 be a polygonal domain, Jh = {e} the finite element triangulation of the domain

Ω parameterized by the mesh size h so that Ω = ∪e∈Jh
{ e }. Introduce the discontinuous linear

finite element space Sh defined by

Sh = { v ∈ L2(Ω) : v|e is linear, ∀e ∈ Jh }.

We will use the standard notations for the Sobolev spaces Wm
p (Ω) with corresponding norms

and seminorms, and when p = 2, Wm
2 (Ω) = Hm(Ω), ‖ · ‖m,2 = ‖ · ‖m. Denote by (·, ·) and

‖ · ‖ the standard inner product and norm in L2(Ω). Let X be a Banach space. For constant

T > 0, we will also use the space,

Lp(0, T ; X) =
{

v(t) : (0, T ) → X : ‖v‖Lp(X) =
(

∫ T

0

‖v(t)‖p
X dt

)
1

p < ∞
}

.

In this paper, the letter C represents a generic constant independent of the mesh size h.

The plan of this paper is as follows. In Section 2, the discontinuous finite element approxi-

mations are constructed for steady and nonsteady positive and symmetric hyperbolic systems,
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respectively. In Section 3, some superclose properties for interpolation are analyzed, and the

optimal order error estimates are derived. Finally, in Section 4, we discuss the discontinuous

finite element approximations to Maxwell equations with periodic boundary value condition

in a two-dimensional domain, and numerical experiments are given to validate the theoretical

results.

2. Problems and Discontinuous Finite Element Methods

2.1. Steady problems

Consider the following first-order hyperbolic problem:

A · ∇u + Bu = f(x, y), (x, y) ∈ Ω, (2.1)

Nu =
1

2
(M − Dn)u = 0, (x, y) ∈ ∂Ω. (2.2)

Here, A = (A1, A2), Ak = (a
(k)
ij (x, y)), k = 1, 2, B = (bij(x, y)) and M = (mij(x, y)) are some

given m×m matrices, a
(k)
ij ∈ W 1

∞(Ω), bij , mij ∈ L∞(Ω), Dn = A· n, n = (nx, ny) is the outward

unit normal vector on ∂Ω, u = (u1, · · · , um)T and f = (f1, · · · , fm)T are m-dimensional vector

functions. We assume that problem (2.1)-(2.2) is a positive and symmetric hyperbolic system,

namely (see [8])

A1 = AT
1 , A2 = AT

2 , (x, y) ∈ Ω, (2.3)

B + BT − divA ≥ σ0I, (x, y) ∈ Ω, (2.4)

M + MT ≥ 0, (x, y) ∈ ∂Ω, (2.5)

Ker(M − Dn) + Ker(M + Dn) = Rm, (x, y) ∈ ∂Ω, (2.6)

where the constant σ0 > 0. Let φ be a piecewise smooth function on Jh, define its jump at a

point p0 ∈ ∂e,

[ φ ] = φ+ − φ−, φ+(p0) = lim
p→p0,p∈e

φ(p), φ−(p0) = lim
p→p0,p 6∈e

φ(p),

and we always set φ−
∣

∣

∂Ω
= 0. Below we will use the notations,

(u, v)h =
∑

e∈Jh

(u, v)e, (u, v)e =

∫

e

u v; < u, v >∂e=

∫

∂e

u v.

Introduce the bilinear form:

A(u,v) = (A · ∇u,v)h + (Bu,v) +
1

2

∑

e∈Jh

< (Me − De)[u ],v >∂e, (2.7)

where

De = Dn, Me = M, (x, y) ∈ ∂e ∩ ∂Ω; De = A · ne, Me = c0h
−1I, (x, y) ∈ ∂e\∂Ω ,

and ne is the outward unit normal vector on ∂e, c0 > 0 (for example, c0 = 1) is a constant

independent of h, which may be adjusted according to the practical computation results.

Now we define the discontinuous finite element approximation to problem (2.1)-(2.2) by

finding uh ∈ [Sh]m such that

A(uh,vh) = (f ,vh), ∀vh ∈ [Sh]m. (2.8)
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Lemma 2.1. Let w be any piecewise smooth vector function on Jh. Then we have the following

identity,

A(w, w) =
1

2
( (B + BT − divA)w, w)h +

1

2
< Mw, w >∂Ω

+
1

2

∑

l∈B

< Me[w ], [w ] >l, (2.9)

where B represents the union of all interior boundary segments l ⊂ ∂e\∂Ω, e ∈ Jh.

Proof. By Green’s formula, from (2.7) we have

A(w, w) =
1

2
( (B + BT − divA)w, w)h +

1

2

∑

e∈Jh

< Dew, w >∂e

+
1

2

∑

e∈Jh

< (Me − De)[w ], w >∂e=
1

2
( (B + BT − divA)w, w)h

+
1

2

∑

e∈Jh

< Me[w ], w >∂e +
1

2

∑

e∈Jh

< Dew
−, w+ >∂e . (2.10)

Note that

De = A · ne, De = DT
e , w−

∣

∣

∂Ω
= 0.

So we have
∑

e∈Jh

< Dew
−, w

+
>∂e= 0.

Let l = ∂e ∩ ∂e′, e and e′ are two adjacent elements with common edge l. Since

(w+ − w−)w+
∣

∣

l∈∂e
+ (w+ − w−)w+

∣

∣

l∈∂e′

= (w+ − w−)w+
∣

∣

l∈∂e
+ (w− − w+)w−

∣

∣

l∈∂e
= [w][w]

∣

∣

l∈∂e
,

we have
∑

e∈Jh

< Me[w], w >∂e=< Mw, w >∂Ω +
∑

l∈B

< Me[w], [w] >l .

Thus, from (2.10) we complete the proof of Lemma 2.1. �

From Lemma 2.1, (2.4)-(2.5) and the Cauchy inequality, it is easy to see that the solution

uh of problem (2.8) uniquely exists and satisfies the stability estimate

σ0‖uh‖2 + 2 < Muh,uh >∂Ω +2
∑

l∈B

< Me[uh], [uh] >l ≤
4

σ0
‖ f ‖2. (2.11)

2.2. Nonsteady problems

Consider the time-dependent first-order hyperbolic problem:

ut + A · ∇u + Bu = f(t), (t, x, y) ∈ [0, T )× Ω, (2.12)

Nu =
1

2
(M − Dn)u = 0, (t, x, y) ∈ [0, T )× ∂Ω, (2.13)

u(0) = u0, (x, y) ∈ Ω, (2.14)

where the notation representations in (2.12)-(2.14) are the same as those in (2.1)-(2.2).
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Define the discontinuous finite element approximation for problem (2.12)-(2.14) by finding

uh : [0, T ) → [Sh]m such that

(uh,t,vh) + A(uh,vh) = (f ,vh), ∀vh ∈ [Sh]m, (2.15)

uh(0) ∈ [Sh]m, (2.16)

where the bilinear form A(u,v) is given by (2.7). Taking vh = uh in (2.15), from (2.9) we

obtain

d

dt
‖uh(t)‖2 + σ0‖uh(t)‖2+ < Muh,uh >∂Ω +

∑

l

< Me[uh], [uh] >l≤ 2‖f(t)‖‖uh‖. (2.17)

This implies the stability estimate

‖uh(t)‖ ≤ e−σ0t/2‖uh(0)‖ +

∫ t

0

‖f(τ)‖ dτ , t > 0, (2.18)

which ensures that the ordinary differential system (2.15)-(2.16) has a unique solution.

3. Superclose Estimates and Error Analysis

In this section, we will give the error analysis for discontinuous finite element approximations

to the steady and nonsteady first-order hyperbolic problems. Our analysis is based on some

superclose results.

3.1. Superclose estimates

Definition 3.1. Let e = △p1p2p3 and e′ = △p′1p
′
2p

′
3 be two adjacent triangle elements sharing

a common edge in Jh. The quadrilateral e ∪ e′ is called an approximate parallelogram if (see

Fig. 3.1)

|−−→p1p2 +
−−−→
p′1p′2| = O(h2) , |−−→p2p3 +

−−−→
p′2p′3| = O(h2). (3.1)

Definition 3.2. A triangulation Jh is called strongly regular, if any two adjacent triangular

elements in Jh form an approximate parallelogram (see Fig. 3.1).

Fig. 3.1. An approximate parallelogram.
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Remark 3.1. Strongly regular triangulations must be quasi-uniform. Some common domains

(for example, convex quadrilateral and L-shaped domain, etc.) can be subdivided into strongly

regular triangulation; see [6, Chapter 2, p.23-65] and [21].

Lemma 3.1. Let the triangulation Jh be strongly regular, e = △p1p2p3 and e′ = △p′1p
′
2p

′
3 be

two adjacent triangle elements (see Fig. 3.1). Assume vectors ~L = −−→p1p2 (or −−→p2p3,
−−→p3p1) and

~L′ =
−−→
p′1p

′
2 (or

−−→
p′2p

′
3,

−−→
p′3p

′
1), the lengths l = |~L|, l′ = |~L′|, and the unit direction vectors nl = ~L/l,

nl′ = ~L′/l′. Then

| l − l′ | = O(h2) , |nl + nl′ | = O(h). (3.2)

Proof. From (3.1) we have

| l − l′ | =
1

l + l′
|~L · ~L − ~L′ · ~L′| =

1

l + l′
|(~L + ~L′) · (~L − ~L′)|

≤ |~L + ~L′| = O(h2),

|nl + nl′ | = |1
l
~L +

1

l′
~L′| =

1

l l′
|(l′ − l)~L + l (~L + ~L′)|

≤ 1

l′
( | l′ − l | + | ~L + ~L′| ) = O(h).

It is obvious that l − l′ = 0, nl + nl′ = 0 when ~L = −−→p3p1, ~L′ =
−−−→
p3

′p1
′. Thus, the proof is

completed. �

Now let the triangular element e = △p1p2p3 have three edge vectors ~L1 = −−→p1p2, ~L2 = −−→p2p3,
~L3 = −−→p3p1, li = |~Li| and nli = li

−1~Li denote the lengths and unit direction vectors of ~Li

(i = 1, 2, 3), respectively, and Di = nli · ∇ is the directional derivatives (see Fig. 3.2).

Fig. 3.2. Triangular element and unit triangular element.

Lemma 3.2. Let e = △p1p2p3 in Jh, w ∈ H3(e), φ ∈ H1(e). Then

∫

e

(w − wI)φ = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w φ + O(h3)

(

‖w‖2,e‖φ‖1,e + ‖w‖3,e‖φ‖0,e

)

, (3.3)

where wI ∈ C(Ω) ∩ Sh is the piecewise linear interpolation approximation of the continuous

function w.
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Proof. Let ê be the unit triangle with vertices p̂1 = (0, 0), p̂2 = (1, 0) and p̂3 = (0, 1) (see

Fig. 3.2). Set l̂1 = 1, l̂2 =
√

2, l̂3 = 1, D̂1 = ∂x, D̂2 = (∂y − ∂x)/
√

2 and D̂3 = −∂y. By

straightforward calculation, we can see that for any quadratic polynomial q,

∫

ê

q =
ê

3

3
∑

i=1

q(p̂i) −
1

24

∫

ê

3
∑

i=1

(l̂i)
2(D̂i)

2q, (3.4)

which is invariant under affine-linear transformations. Define the linear bounded functional F

on W 3
1 (ê) by

F (ŵ) =

∫

ê

(ŵ − ŵI) +
1

24

∫

ê

3
∑

i=1

(l̂i)
2(D̂i)

2ŵ. (3.5)

From (3.4) and noting that (w − wI)(pi) = 0 and D2
i wI = 0, we obtain

F (q) = 0, ∀ q ∈ P2(ê).

Then, by using the Bramble-Hilbert lemma,

|F (ŵ )| ≤ C|ŵ|3,1,ê . (3.6)

Combining (3.5) and (3.6) and using the affine-linear transformation, we have

∫

e

(w − wI) = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w + O(h3)|w |3,1,e. (3.7)

Let φ =
1

|e|

∫

e

φ . Writing

∫

e

(w − wI)φ =

∫

e

(w − wI)φ +

∫

e

(w − wI)(φ − φ),

it follows from (3.7) and the interpolation approximation properties that

∫

e

(w − wI)φ = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w(φ − φ + φ) + O(h3)|w |3,1,eφ + O(h3)‖w‖2,e‖φ‖1,e

= − 1

24

∫

e

3
∑

i=1

l2i D
2
i wφ + O(h3)

(

‖w ‖2,e‖φ‖1,e + ‖w‖3,e‖φ‖0,e

)

.

The proof is completed. �

Lemma 3.3. Let the triangulation Jh be strongly regular, ~β ∈ [W 1
∞(Ω)]2, w ∈ H3(Ω), v ∈ Sh.

Then

| (w − wI , ~β · ∇v )h| ≤ Ch2‖w‖3

(

‖v‖ + (
∑

l∈B

< Me[v], [v] >l +

∫

∂Ω

|~β · nv|2 )
1

2

)

.

Proof. By using Lemma 3.2 with φ = ~β · ∇v, the finite element inverse inequality and

Green’s formula, and noting that v is piecewise linear, we have

Eh =
∑

e∈Jh

∫

e

(w − wI)~β · ∇v =
∑

e∈Jh

− 1

24

∫

e

3
∑

i=1

l2i D
2
i w

~β · ∇v + O(h2)‖w ‖3‖v‖

= − 1

24

∑

e∈Jh

∫

∂e

3
∑

i=1

l2i D
2
i w

~β · nev + O(h2)‖w ‖3‖v‖ . (3.8)
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Now let the segment le = le′ = ∂e∩∂e′ be the common edge of two adjacent triangular elements

e and e′ (see Fig. 3.1). Notice that, for any element boundary segment le 6⊂ ∂Ω, the integration

in (3.8) is taken two times on le = le′ , one is for le ⊂ ∂e and the other for le′ ⊂ ∂e′. Then, by

using [v] = v+ − v−, v(x ∈ e′)±|le′ = v(x ∈ e)∓|le and ne′ = −ne, we have from (3.8) that

Eh = − 1

24

∑

le∈B

∫

le

3
∑

i=1

l2i D
2
i w ~β · nev − 1

24

∑

le′∈B

∫

le′

3
∑

i=1

(l′i)
2(D′

i)
2w~β · ne′v

− 1

24

∑

∂e∈∂Ω

∫

∂e

3
∑

i=1

l2i D
2
i w

~β · nev + O(h2)‖w ‖3‖v‖

= − 1

24

∑

le∈B

∫

le

3
∑

i=1

(

l2i D
2
i w − (l′i)

2(D′
i)

2w
)

~β · nev − 1

24

∑

le′∈B

∫

le′

3
∑

i=1

(l′i)
2(D′

i)
2w~β · ne′ [ v ]

− 1

24

∑

∂e∈∂Ω

∫

∂e

3
∑

i=1

l2i D
2
i w

~β · nev + O(h2)‖w ‖3‖v‖, (3.9)

where li and l′i ( i = 1, 2, 3) are the edges of the two adjacent elements e and e′, respectively,

Di = nli · ∇, D′
i = nl′

i
· ∇ , and nli and nl′

i
are the unit tangent vectors along li and l′i,

respectively (see Lemmas 3.1 and 3.2). For example, as shown in Fig. 3.1, we may have

l1 = |−−→p1p2|, l2 = |−−→p2p3|, l3 = |−−→p3p1|, l′1 = |
−−−→
p1

′p2
′|, l′2 = |

−−−→
p2

′p3
′|, l′3 = |

−−−→
p3

′p1
′|.

Obviously the common edge le = l3 = l′3 = le′ . Now it follows from Lemma 3.1 that

| l2i D2
i w − (l′i)

2(D′
i)

2w | = | ( l2i − (l′i)
2 )D2

i w + (l′i)
2(D2

i − (D′
i)

2 )w |
= | (li + l′i)(li − l′i)D

2
i w + (l′i)

2(Di + D′
i)(Di − D′

i)w |
≤ Ch3|D2w| + (l′i)

2|(nli + nl′
i
) · ∇(Di − D′

i)w | ≤ Ch3|D2w |.

Substituting this into (3.9) yields

|Eh | ≤Ch3
∑

l∈B

∫

l

|D2w | |v| + Ch2
∑

l∈B

∫

l

|D2w | |[ v ]|

+ Ch2‖w‖2,∂Ω

(

∫

∂Ω

|~β · n v|2
)

1

2

+ Ch2‖w‖3‖v‖

≤Ch2‖w‖3

[

‖v‖ +

(

∑

l∈B

< Me[ v ], [ v ] >l +

∫

∂Ω

|~β · n v|2
)

1

2

]

,

where we have used the fact that Me = c0h
−1I and the following trace inequalities and inverse

inequality:

(

∫

∂e

w2
)

1

2 ≤ Ch− 1

2

(

h‖∇w‖0,e + ‖w‖0,e

)

, w ∈ H1(e), (3.10)

(

∫

∂Ω

|w|2
)

1

2 ≤ C(Ω)‖w‖1, w ∈ H1(Ω); ‖v‖1.e ≤ Ch−1‖v||0,e, v ∈ Sh. (3.11)

The proof is completed. �
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3.2. Error analysis

First consider the steady-state problem. In order to do the error analysis here we assume

a stronger condition than (2.5), which can be satisfied by some hyperbolic problems. There

exists a constant σ1 > 0 such that

(H) < (M + MT )vh,vh >∂Ω ≥ σ1 < vh,vh >∂Ω, ∀vh ∈ [Sh]m.

Theorem 3.1. Let u and uh be the solutions of problems (2.1)-(2.2) and (2.8) respectively,

u ∈ [H3(Ω)]m, the triangulation Jh be strongly regular and hypothesis (H) hold. Then uh

satisfies the optimal order error estimate

‖u− uh‖ +
(

< M(u− uh), (u − uh) >∂Ω +
∑

l∈B

< Me[u − uh], [u− uh] >l

)
1

2

≤Ch2‖u‖3.

Proof. First from (2.1)-(2.2) and (2.8), we have the error equation

A(u − uh,vh) = 0, ∀vh ∈ [Sh]m.

Then by using Green’s formula and noting that u− uI ∈ C(Ω), De = A · ne, we obtain

A(uh − uI ,vh) = A(u − uI ,vh)

=(A · ∇(u − uI),vh)h + (B(u − uI ,vh)h +
1

2
< (M − Dn)(u − uI),vh >∂Ω

= − (u − uI , A · ∇vh)h + ((B − divA)(u − uI),vh)h

+
∑

e∈Jh

< De(u − uI),vh >∂e +
1

2
< (M − Dn)(u − uI),vh >∂Ω

= − (u − uI , A · ∇vh)h + ((B − divA)(u − uI),vh)h

+
∑

l∈B

< De(u − uI), [vh] >l +
1

2
< (M + Dn)(u − uI),vh >∂Ω, ∀vh ∈ [Sh]m.

Take vh = uh−uI . By using Lemmas 2.1 and 3.3, and the interpolation approximation property

we obtain

1

2
σ0‖uh − uI‖2 +

1

2

∑

l∈B

< Me[uh − uI ], [uh − uI ] >l +
1

2
< M(uh − uI), uh − uI >∂Ω

≤Ch2‖u‖3

[

‖uh − uI‖ +
(

∑

l∈B

< Me[uh − uI ], [uh − uI ] >l +

∫

∂Ω

|Dn(uh − uI)|2
)

1

2

]

+ Ch2
∑

l∈B

∫

l

|D2u| | [uh − uI ]| + Ch2‖u ‖2,∂Ω‖uh − uI‖0,∂Ω

≤Ch2‖u‖3

[

‖uh − uI‖ +
(

∑

l∈B

< Me[uh − uI ], [uh − uI ] >l

+ < M(uh − uI), (uh − uI) >∂Ω

)
1

2

]

,

where we have utilized hypothesis (H), Me = c0h
−1I, and the trace inequalities (3.10)-(3.11).

Thus, the proof is completed by using the continuity of u and uI . �
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Remark 3.2. From Theorem 3.1 and noting that Me = c0hI we see that the jump of uh on

the element boundaries is of order O(h5/2). This is a superconvergence result.

Now we are in the position to discuss the nonsteady problem (2.12)-(2.14) and its discon-

tinuous finite element approximation (2.15)-(2.16).

Theorem 3.2. Let u and uh be the solutions of problems (2.12)-(2.14) and (2.15)-(2.16) respec-

tively, u(0) ∈ [H3(Ω)]m, ut(t) ∈ L1(0, T ; [H3(Ω)]m ), the triangulation Jh be strongly regular

and hypothesis (H) hold. Then, there exists a constant C independent of t ∈ [0, T ) such that

‖u(t) − uh(t)‖ ≤ e−
σ0

2
t‖u(0) − uh(0)‖ + Ch2

(

‖u(0)‖3 +

∫ t

0

‖ut(τ)‖3 dτ
)

, t > 0.

Proof. First introduce the projection approximation of the solution u in [Sh]m by setting

Rhu(t) : [0, T ) → [Sh]m such that

A(u(t) − Rhu(t),vh) = 0, ∀vh ∈ [Sh]m.

From Theorem 3.1 we know that

‖Dj
t (u− Rhu)(t)‖ ≤ Ch2‖Dj

tu(t)‖3, t ∈ [0, T ), j = 0, 1. (3.12)

Now we write the error function as

u(t) − uh(t) = u(t) − Rhu(t) + Rhu(t) − uh(t) = η + θ.

Then, from the equations satisfied by u(t), uh(t) and Rhu(t), we see that θ ∈ [Sh]m satisfies

(θt,vh) + A(θ,vh) = −(ηt,vh), ∀vh ∈ [Sh]m. (3.13)

Taking vh = θ, similar to the argument of (2.18), and using the triangular inequality and (3.12),

the proof is completed. �

Remark 3.3. For nonsteady problems, the equation condition (2.4) is not necessary for our

analysis. In fact, we may use the transformation: u = eσtw with σ satisfying σ > ‖B + BT −
div A‖∞, so that (2.4) holds.

Remark 3.4. For some special cases, the hypothesis (H) in Theorems 3.1 and 3.2 can be

removed, see Section 4 for an example.

4. Maxwell Equations in a Two-Dimensional Domain

The Maxwell equations are a class of very important partial differential equations in elec-

tromagnetism. Various approximation methods have been proposed for solving the Maxwell

equations numerically. In this paper, as an application of our discontinuous finite element

method mentioned in Section 2, we will discuss the two-dimensional linear Maxwell equations

in the following form:

∂Hx

∂t
= −∂Ez

∂y
,

∂Hy

∂t
=

∂Ez

∂x
,

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
. (4.1)



Optimal Convergence Order of Discontinuous Finite Methods for Hyperbolic Systems 699

For convenience, we consider Eq. (4.1) with periodic boundary value condition on the rectangu-

lar domain Ω = [0, a ] × [0, b ]. Set the vector function w = (Hx, Hy, Ez )T . Then the problem

mentioned above can be rewritten as the following first-order hyperbolic system:

wt + A1∂xw + A2∂yw = 0, t > 0, (x, y) ∈ Ω, (4.2)

Nw =
1

2
(M − Dn)w = 0, t > 0, (x, y) ∈ ∂Ω, (4.3)

with given initial value w(0, x, y) = w0(x, y) and matrices

A1 =





0 0 0

0 0 −1

0 −1 0



 , A2 =





0 0 1

0 0 0

1 0 0



 , Dn =





0 0 ny

0 0 −nx

ny −nx 0



 .

For the periodic boundary value problem, we may simply choose the boundary matrix N = O

or M = Dn. Introduce the periodic function space

[ Hp ]3 = {w : Ω → R3 ;w(0, y) = w(a, y), w(x, 0) = w(x, b), (x, y) ∈ ∂Ω }.

Notice that for any function w ∈ [ Hp ]3, we have < Dnw,w >∂Ω= 0, hence for problem

(4.2)-(4.3) with periodic boundary value condition, we have the stability estimate

‖w(t)‖ ≤ ‖w(0)‖, t > 0. (4.4)

Introduce the discontinuous finite element space [Sh,p]
3 = [Sh]3∩[Hp]3. Now the discontinu-

ous finite element approximation to the Maxwell equations reads: Find wh(t) : [0,∞) → [Sh,p]
3

such that

(wh,t,vh) + A(wh,vh) = 0, vh ∈ [Sh,p]
3, t > 0, (4.5)

w(0) ∈ [Sh,p]
3. (4.6)

According to Theorem 3.2 and Remark 3.3 (note that < Dnu,v >∂Ω=< Mu,v >∂Ω= 0, ∀u, v ∈
[Hp]

3, then from the argument of Theorem 3.1, it is easy to see that the hypothesis (H) can be

removed in Theorems 3.1 and 3.2), we immediately obtain the following theorem.

Theorem 4.1. Let w and wh be the periodic solutions of problems (4.2)-(4.3) and (4.5)-(4.6)

respectively, w(0) ∈ [H3(Ω)]3, wt(t) ∈ L1(0, T ; [H3(Ω)]3 ), and let the triangulation Jh be

strongly regular. Then

‖w(t) − wh(t)‖ ≤ ‖w(0) − wh(0)‖ + Ch2
(

‖w(0)‖3 +

∫ t

0

‖wt(τ)‖3 dτ
)

, t > 0.

Finally, we give a numerical example to validate the theoretical analysis. Notice that the

Maxwell equation (4.1) admit the following exact solution:





Hx

Hy

Ez



 =





−β

α

1



 f(cosω(t + α x + β y)),

where f is an arbitrary proper smooth function, α, β, ω are constants, and α2 + β2 = 1. In

our numerical experiment, we take f(u) = eu and the domain Ω = [ 0, 2π/|αω| ]× [ 0, 2π/|βω| ],
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and the periodic boundary condition is used. In the numerical experiments, we have taken

β = α = 1/
√

2, ω = 2
√

2π and the final time t = 1. For the time discretization, we use the

backward Euler scheme with step size △t = ch2. A uniform triangulation is formed by means

of first dividing the domain into a uniform square partition and then dividing each square into

two right triangles in the same configuration. Now the discontinuous finite element methods

described in Section 2 can be applied to solve the problem (4.2)-(4.3). The numerical results

are given in Table 4.1, where L2 and L∞ errors are presented with different mesh sizes. The

numerical convergence rates are computed by using the formula,

α = ln

(

e(h)

e(h/2)

)

/ ln 2,

where e(h) represents the error in the L2 norm with mesh size h.

The numerical example suggests that the proposed methods have 2nd-order convergence

rate.

Table 4.1: L2, L∞ errors and convergence rates.

h L∞ error L2 error convergence rate

1/10 6.63E-4 9.85E-4

1/20 3.67E-4 3.42E-4 1.5261

1/40 1.86E-4 7.90E-5 2.1141

1/80 9.52E-5 1.81E-5 2.1259

1/160 4.84E-5 4.21E-6 2.1041
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