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Abstract
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1. Introduction

Consider the unconstrained variable programming problem (VPI)

min
x∈Rn

max
i∈I(x)

fi(x), (1.1)

where

I(x) = {j ∈ K|qj(x) = q(x)}, (1.2a)

q(x) = max
l∈K

{ql(x)}, K = {1, 2, · · · , k}. (1.2b)

We also consider the constrained variable programming problem (VPII)

min
x

max
i∈I(x)

fi(x) (1.3)

s.t cj(x) ≤ 0, j = 1, 2, · · · , p, (1.4)

where

I(x) = {j ∈ K|qj(x) = max
l∈K

ql(x)}, K = {1, 2, · · · , k}. (1.5)

In [8], Wang and Xu gave some theoretical results for the optimality conditions. In [3,4], Jiao

et al. presented some useful theories and algorithms for (1.1)-(1.2) and (1.3)-(1.5). However,

these theoretical results are only first-order optimality conditions. In this paper, we focus on the

second-order optimality conditions for unconstrained and constrained variable programming.

Let

ϕ(x) = max
i∈I(x)

fi(x). (1.6)
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Fixing x, let us consider the set of indices R(x) defined by

R(x) = {i|i ∈ I(x), fi(x) = ϕ(x)}. (1.7)

Lemma 1.1 ([3]) For x0 ∈ Rn, suppose that the functions qi(x), i ∈ K, are continuous at point

x0, then there exists a real number δ > 0 such that for all x ∈ S(x0, δ) := {x|||x− x0|| < δ}),

I(x) ⊆ I(x0). (1.8)

Lemma 1.2 ([3]) For x0 ∈ Rn, let the functions fi(x), qi(x), i ∈ K, be continuous at point x0.

If there exists a real number δ > 0 such that for all x ∈ S(x0, δ),

I(x) ∩R(x0) 6= ∅, (1.9)

then

ϕ(x) = max
i∈I(x)

fi(x) = max
i∈I(x)∩R(x0)

fi(x). (1.10)

Theorem 1.1. For x0 ∈ Rn, suppose that the functions fi(x), qi(x), i ∈ K, are continuous at

point x0. Then ϕ(x) is continuous at point x0 if and only if there exists a real number δ > 0

such that for all x ∈ S(x0, δ),

I(x) ∩R(x0) 6= ∅. (1.11)

Proof. If I(x) ∩R(x0) 6= ∅, we obtain from Lemma 1.2 that

lim
x→x0

ϕ(x) = lim
x→x0

max
i∈I(x)∩R(x0)

fi(x) = max
i∈R(x0)

fi(x0) = ϕ(x0).

Hence, ϕ(x) is continuous at point x0. On the other hand, suppose that ϕ(x) is continuous at

point x0. If there exists a sequence xi → x0 such that I(xi) ∩R(x0) = ∅, then for ∀ǫ satisfying

0 < ǫ ≤ 1
2 (ϕ(x0) − fj0(x0)), where

j0 ∈
{
j|fj(x0) = max

j∈{ lim
xi→x0

I(xi)}
{fj(x)}

}
,

there exists an integer N0 such that for i > N0,

ϕ(xi) = max
j∈I(xi)

{fj(xi)} ≤ fj0(x0) + ǫ.

Thus,

|ϕ(xi) − ϕ(x0)| ≥ |fj0(x0) + ǫ− ϕ(x0)|

≥ |fj0(x0) − ϕ(x0)| − ǫ

≥
1

2
(ϕ(x0) − fj0(x0)),

which is a contradiction with the assumption that ϕ(x) is continuous at point x0. Hence, the

theorem is proved. �

For x0 ∈ Rn, and ∀h ∈ Rn, R′(x0, h) is defined by

R′(x0, h) = lim
α→0+

I(x0 + αh) ∩R(x0), (1.12)

R′(x0) = ∪||h||=1R
′(x0, h). (1.13)

Furthermore, let

L(x) =
{
z =

∑

i∈R′(x0)

µi ▽ fi(x0)|µi ≥ 0, i ∈ R′(x0),
∑

i∈R′(x0)

µi = 1
}
. (1.14)
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2. Optimality Conditions for Unconstrained Variable Programming

Suppose K = {1, 2, · · · , k}, R′(x0) = {i1, i2, · · · , il}. Let

ΓK =
{
µ|µ = (µi)k×1, i ∈ K,µi ≥ 0,

∑

i∈K

µi = 1
}
, (2.1)

ΓR′(x0) =
{
µ|µ = (µi)l×1, µi ≥ 0, i ∈ R′(x0),

∑

i∈R′(x0)

µi = 1
}
. (2.2)

The variable programming (1.1)-(1.2) is called regular at point x0 if R′(x0) = R(x0).

Theorem 2.1. Let the functions fi(x), i ∈ K be continuously differentiable, and qi(x), i ∈ K be

continuous. Assume the variable programming (1.1)-(1.2) is regular at point x∗. Then 0 ∈ L(x∗)

if and only if there exists a multiplier vector µ ∈ ΓK such that
∑

i∈K

µi ▽ fi(x
∗) = 0, (2.3a)

∑

i∈K

µi(ϕ(x∗) − fi(x
∗)) = 0, (2.3b)

∑

i∈K

µi(q(x
∗) − qi(x

∗)) = 0. (2.3c)

Proof. From (2.3a), (2.3b) and (2.3c), we have

µi ≥ 0, i ∈ R(x∗),

µi = 0, i /∈ R(x∗).

Hence, we obtain this theorem from the regularity of (1.1)-(1.2). �

Theorem 2.2. Let the functions fi(x), i ∈ K be twice continuously differentiable, and qi(x), i ∈

K be continuous. Assume that x∗ is a local minimizer of ϕ(x). Let the critical cone H(x∗) be

defined by

H(x∗) = {h ∈ Rn, dϕ(x∗, h) = 0}, (2.4)

and for any h ∈ Rn

R′′(x∗, h) = {j ∈ R′(x∗, h)|dϕ(x∗, h) = ▽fj(x
∗)Th}. (2.5)

Then

max
j∈R′′(x∗,h)

hT ▽2 fj(x
∗)h ≥ 0, ∀h ∈ H(x∗). (2.6)

Proof. Since x∗ is a local minimizer of ϕ(x), it is a stationary point for the problem (VPI).

Furthermore, for any h ∈ Rn, there exists a t > 0, such that

0 ≤ ϕ(x∗ + th) − ϕ(x∗)

= max
i∈R′(x∗,h)

{fi(x
∗ + th) − fi(x

∗)}

= max
i∈R′(x∗,h)

{t▽ fi(x
∗)Th+

t2

2
hT ▽2 fi(x

∗ + sith)h},

where si = si(t, h) ∈ [0, 1]. Now suppose h ∈ H(x∗). Then i ∈ R′′(x∗, h),

▽fi(x
∗)Th = 0.

The above two results yield (2.6), which completes the proof of this theorem. �
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Theorem 2.3. Let the functions fi(x), i ∈ K be twice continuously differentiable, and qi(x), i ∈

K be continuous. Assume that x∗ is a stationary point of the problem (VPI). If there exist a

µ∗ ∈ ΓR′(x∗) and an ǫ > 0 such that for all h ∈ H(x∗)

hT




∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x

∗)



 h ≥ ǫ‖h‖2
. (2.7)

Then x∗ is a strict local minimizer of the problem (VPI).

Proof. Observe that

ϕ(x∗ + th) − ϕ(x∗) = max
i∈I(x∗+th)∩R(x∗)

fi(x
∗ + th) − max

i∈R(x∗)
fi(x

∗)

= max
i∈R′(x∗,h)

{fi(x
∗ + th) − fi(x

∗)}

= max
i∈R′(x∗,h)

{t▽ fi(x
∗ + sith)

Th}, 0 ≤ si ≤ 1.

If h 6∈ H(x∗), then dϕ(x∗, h) > 0. Hence, there exists a δ > 0, such that x ∈ S(x∗, δ),

max
i∈R′(x∗,h)

▽fi(x)
Th > 0. (2.8)

Let 0 < t < δ
‖h‖ and x∗ + th ∈ S(x∗, δ). We have

ϕ(x∗ + th) − ϕ(x∗) > 0.

We know from (2.7) that there exists a δ > 0, such that for x ∈ S(x∗, δ),

hT




∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x)



 h >
ǫ

2
||h||2.

On the other hand, if h ∈ H(x∗), then

ϕ(x∗ + th) − ϕ(x∗)

= max
i∈R′(x∗,h)

{fi(x
∗ + th) − fi(x

∗)}

≥
∑

i∈R′(x∗,h)

µ∗
i [fi(x

∗ + th) − fi(x
∗)]

=
∑

i∈R′(x∗,h)

∫ 1

0

µ∗
i h

T ▽2 fi(x
∗ + th)(1 − t)hdt+

∑

i∈R′(x∗,h)

tµ∗
i ▽ fi(x

∗)
T
h

=

∫ 1

0

hT




∑

i∈R′(x∗,h)

µ∗
i ▽

2 fi(x
∗ + th)(1 − t)



 hdt

≥
ǫ

2
‖h‖2

∫ 1

0

(1 − t)dt =
ǫ

4
‖h‖2

> 0.

This completes the proof of the theorem. �
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Theorem 2.4. Let the functions fi(x), i ∈ K be twice continuously differentiable, and qi(x), i ∈

K be continuous. Assume that x∗ is a stationary point of the problem (VPI). If there exist

µ∗ ∈ ΓR′(x∗) and positive constants α, δ, ǫ, such that for all x ∈ S(x∗, δ) and for all h ∈ Hα(x∗),

hT




∑

i∈R′(x∗,h)

µ∗
i ▽

2 fi(x)



 h ≥ 0, (2.9)

and for all h ∈ Ĥα(x∗)

max
i∈R′′(x∗,h)

hT ▽2 fi(x
∗)h ≥ ǫ‖h‖2

, (2.10)

where

Ĥα(x∗) = {h ∈ Hα(x∗)|hT (
∑

i∈R′(x∗,h)

µ∗
i ▽

2 fi(x))h = 0}, (2.11)

Hα(x∗) = {h ∈ Rn|dϕ(x∗, h) ≤ α‖h‖}. (2.12)

Then x∗ is a strict local minimizer of the problem (VPI).

Proof. Observe that

ϕ(x∗ + th) − ϕ(x∗) = max
i∈R′(x∗,h)

{fi(x
∗ + th) − fi(x

∗)}.

If h 6∈ Hα(x∗), dϕ(x∗, h) > α‖h‖ > 0.

Arguing in the same way as in the proof of Theorem 2.3, we obtain

ϕ(x∗ + th) − ϕ(x∗) > 0.

Assume that h ∈ Hα(x∗), but h 6∈ Ĥα(x∗). In this case, due to (2.9) and the fact that the

functions fi, i ∈ K are twice continuously differentiable, there exists a σ = σ(h) such that for

all t ∈ [0, σ]

hT
( ∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x

∗ + th)
)
h > 0.

Hence, it follows that

ϕ(x∗ + th) − ϕ(x∗)

≥
∑

i∈R′(x∗,h)

µ∗
i (fi(x

∗ + th) − fi(x
∗))

=
∑

i∈R′(x∗,h)

t2

2
µ∗

i h
T ▽2 fi(x

∗ + sith)h+
∑

i∈R′(x∗,h)

tµ∗
i ▽ fi(x

∗)
T
h. (2.13)

In (2.13), the first term is greater than zero because h ∈ Hα(x∗), but h 6∈ Ĥα(x∗). The second

term is equal to zero, because x∗ is a stationary point of the problem (VPI). Thus, we obtain

ϕ(x∗ + th) − ϕ(x∗) > 0.
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If h ∈ Ĥα(x∗), let i ∈ argmaxj∈R′′(x∗,h) h
T ▽2 fj(x

∗)h. Then

ϕ(x∗ + th) − ϕ(x∗)

≥ fi(x
∗ + th) − fi(x

∗)

= t▽ fi(x
∗)Th+

∫ 1

0

(1 − t)hT ▽2 fi(x
∗ + th)hdt

≥

∫ 1

0

(1 − t)hT ▽2 fi(x
∗ + th)hdt

≥
ǫ

2
‖h‖2

∫ 1

0

(1 − t)dt =
ǫ

4
‖h‖2

> 0,

where the second inequality holds because ▽fi(x
∗)Th ≥ 0, i ∈ R′′(x∗, h), and the third inequal-

ity holds because of (2.10). Thus, the proof of the theorem is completed. �

Theorem 2.5. Let the functions fi(x), i ∈ K be twice continuously differentiable, and qi(x), i ∈

K be continuous. Assume that x∗ is a stationary point of the problem (VPI). If the functions

fi(x), i ∈ K are convex, then x∗ is a local minimizer of the problem (VPI).

Proof. For the stationary point x∗ and a neighborhood S(x∗, δ) of the x∗, let h = x−x∗

||x−x∗|| , t =

||x− x∗||. By the same arguments as in the proof of Theorem 2.3, we have

ϕ(x∗ + th) − ϕ(x∗)

≥
∑

i∈R′(x∗,h)

µ∗
i [fi(x

∗ + th) − fi(x
∗)]

=
∑

i∈R′(x∗,h)

µ∗
i

[
t▽ fi(x

∗)Th+
t2

2
hT ▽2 fi(x

∗ + sith)h
]

=
∑

i∈R′(x∗,h)

[ t2

2
hTµ∗

i ▽2 fi(x
∗ + sith)h

]
,

where si = si(t, h) ∈ [0, 1]. Since x∗ is a stationary point and the functions fi, i ∈ K, are

convex, hT ▽2 fi(x
∗ + sith)h ≥ 0. Hence,

ϕ(x) − ϕ(x∗) ≥ 0, ∀x ∈ S(x∗, δ).

Consequently, x∗ is a local minimizer of the problem (VPI). �

Example 2.1. Consider

f1(x1, x2) = x2
1 + x3

2, f2(x1, x2) = x2
2 + x2 + x3

1,

f3(x1, x2) = x3
2 − x2 − x3

1, f4(x1, x2) = x2
2 + x3

1.

Let

I(x) =






{1, 2, 3}, x1 + x2 < 1,

{1, 2, 3, 4}, x1 + x2 = 1,

{3, 4}, x1 + x2 > 1.
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It can be verified that x∗ = (0, 0) and µ∗
1 = 0, µ∗

2 = µ∗
3 = 0.5. Moreover,

∇f1(0, 0) =

(
0

0

)
, ∇f2(0, 0) =

(
0

1

)
, ∇f3(0, 0) =

(
0

−1

)
, R′(0) = {1, 2, 3},

∇2f1(0, 0) =

(
2 0

0 0

)
, ∇2f2(0, 0) =

(
0 0

0 2

)
, ∇2f3(0, 0) =

(
0 0

0 0

)
.

It can be shown that the necessary condition (2.6) is satisfied. Furthermore,

Hα(0, 0) = {h = (h1, h2)
T |max{h2,−h2} ≤ α

√
h2

1 + h2
2}

∀h ∈ Hα(0, 0),

hT




∑

i∈R′(x∗,h)

µ∗
i∇

2fi(x)



 h = (2 + 6x2)h
2
2 ≥ 0.

Hence, (2.9) is satisfied. Now, Ĥα(0, 0) = {h = (h1, 0)}, and for h ∈ Ĥα(0, 0), R′′(0, h) = {1},

max
i∈R′′(0,h)

hT∇2fi(0, 0)h = 2h2
1,

which shows that the inequality (2.10) is also satisfied. Therefore, x∗ is a strict local minimizer.

In fact, the set I(x) is very important. If I(x) = {1, 2}, x1 + x2 ≤ 1, then x∗ = (0, 0) is not a

local minimizer.

Remark 2.1. Theorem 17 in [3] demonstrated that x∗ is a local minimizer of the problem

(VPI) if ϕ(x) is convex. It is also shown in [8] that ϕ(x) is not convex even though the

functions fi(x), i ∈ K are convex. Hence, Theorem 2.5 is sharper than Theorem 17 in [3]. But

the minimizer x∗ in Theorem 2.5 is a local minimizer.

Example 2.2. Consider f1(x) = x2 and f2(x) = (x− 2)2 − 2, and

q1(x) =

{
(x− 0.5)2 x < 0.5,

0 x ≥ 0.5,
q2(x) =

{
0 x < 0.5,

(x − 0.5)2 x ≥ 0.5.

Then

ϕ(x) =

{
x2 x < 0.5,

(x − 2)2 − 2 x ≥ 0.5.

Obviously, x = 0 is a local minimizer of ϕ(x) even though f1(x), f2(x), q1(x) and q2(x) are

convex in R.

3. Optimality Conditions for Constrained Variable Programming

Let x∗ be a local minimizer of the problem (VPII). Then we define:

gi(x) = fi(x) − ϕ(x∗), i ∈ K. (3.1)

Next, as before, we define

min max
i∈I(x),j∈P

{gi(x), cj(x)}, (3.2)
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where

P = {1, 2, · · · , p},

ψ(x) = max
i∈I(x),j∈P

{gi(x), cj(x)}, (3.3)

J(x) = {j|cj(x) = ψ(x), j = 1, 2, · · · , p}, (3.4)

L̂(x0) =

{
z =

∑

i∈R′(x0)

µi ▽ fi(x0) +
∑

j∈J(x0)

λj ▽ cj(x0)|µi,

λj ≥ 0, i ∈ R′(x0), j ∈ J(x0),
∑

i∈R′(x0)

µi +
∑

j∈J(x0)

λj = 1

}
. (3.5)

Theorem 3.1. If x∗ is a local minimizer of the problem (VPII), then it is a local minimizer

of (3.2).

Proof. Observe that

ψ(x∗ + th) − ψ(x∗) = ψ(x∗ + th)

= max
i∈R′(x∗,h),j∈P

{gi(x
∗ + th), cj(x

∗ + th)} ≥ 0.

This completes the proof of the theorem. �

Theorem 3.2. x∗ is a strict local minimizer of the problem (VPII) if and only if it is a strict

local minimizer of (3.2).

Proof. If x∗ is a strict local minimizer of (3.2), we have ψ(x∗) = 0. Moreover, there exists

a neighborhood S(x∗, δ) such that for x 6= x∗, x ∈ S(x∗, δ),

ψ(x) > ψ(x∗) = 0.

Hence, if x is feasible, it follows that

ϕ(x) > ϕ(x∗).

Consequently, x∗ is a strict local minimizer of the problem (VPII). On the other hand, suppose

x∗ is a strict local minimizer of the problem (VPII). Then there exists a neighborhood S(x∗, δ)

such that for x 6= x∗, x ∈ S(x∗, δ), either x is infeasible, i.e., cj(x) > 0 for some j ∈ {1, 2, · · · , p},

or x is feasible but ϕ(x) > ϕ(x∗). In both cases, we have

ψ(x) > ψ(x∗).

Hence, x∗ is a strict local minimizer of (3.2). �

Theorem 3.3. Let the functions fi(x), cj(x), i ∈ K, j ∈ P be continuously differentiable, and

qi(x), i ∈ K be continuous. Suppose that the variable programming (1.3)-(1.4) is regular. Then,

0 ∈ L̂(x∗) holds if and only if there exist µ∗ ∈ ΓK , λ∗ ∈ ΓP , such that

∑

i∈K

µ∗
i ▽ fi(x

∗) +

p∑

j=1

λ∗j ▽ cj(x
∗) = 0, (3.6)

∑

i∈K

µ∗
i (fi(x

∗) − ϕ(x∗)) +

p∑

j=1

λ∗j cj(x
∗) = 0. (3.7)
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Proof. The assertions follow by using the same arguments as in the proof of Theorem 2.1.

�

Theorem 3.4. Let the functions fi(x), cj(x), i ∈ K, j ∈ P be twice continuously differentiable,

and qi(x), i ∈ K is continuous. Suppose x∗ is a local minimizer of the problem (VPII). Let the

critical cone for the programming (VPII) at x∗ be defined by

H(x∗) = {h ∈ Rn|dψ(x∗, h) = 0}

=
{
h ∈ Rn| max

i ∈ R′(x∗, h)

j ∈ J(x∗)

{▽fi(x
∗)Th,▽cj(x

∗)Th} = 0
}
, (3.8)

and for all h ∈ Rn, let

u(x∗, h) = {i ∈ R′(x∗, h)|dψ(x∗, h) = ▽fi(x
∗)Th}, (3.9)

v(x∗, h) = {j ∈ J(x∗)|dψ(x∗, h) = ▽cj(x
∗)Th}. (3.10)

Then for all h ∈ H(x∗)

max
i∈u(x∗,h),j∈v(x∗,h)

{hT ▽2 fi(x
∗)h, hT ▽2 cj(x

∗)h} ≥ 0. (3.11)

Proof. The proof is similar to that used in the proof of Theorem 2.2. �

Theorem 3.5. Let the functions fi(x), i ∈ K, cj(x), j ∈ P be twice continuously differen-

tiable, and qi(x), i ∈ K be continuous. Suppose that x∗ is a stationary point of the problem

(VPII), and µ∗, λ∗ are the corresponding Lagrange multipliers. If there exists an ε > 0 such

that for all h ∈ H(x∗),

hT




∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x

∗) +
∑

j∈J(x∗)

λ∗j ▽2 cj(x
∗)



 h ≥ ε||h||2. (3.12)

Then x∗ is a strict local minimizer of the problem (VPII).

Proof. By the same arguments as in the proof of Theorem 2.3, we deduce that x∗ is a strict

local minimizer of ψ(x). Thus, we conclude this theorem in view of Theorem 3.2. �

Theorem 3.6. Let the functions fi(x), cj(x), i ∈ K, j ∈ P be twice continuously differentiable,

and qi(x), i ∈ K be continuous. Assume that x∗ is a stationary point of the problem (VPII). If

there exist µ∗ ∈ ΓR′(x∗), λ
∗ ∈ ΓJ(x∗), and positive constants α, δ, ǫ such that for all x ∈ S(x∗, δ)

and for all h ∈ Hα(x∗)

hT




∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x) +

∑

j∈J(x∗)

λ∗j ▽2 cj(x)



 h ≥ 0, (3.13)

where

Hα(x∗) = {h ∈ Rn|dψ(x∗, h) ≤ α||h||}, (3.14)

and for all h ∈ Ĥα(x∗)

max
i∈u(x∗,h)
j∈v(x∗,h)

{hT ▽2 fi(x
∗)h, hT ▽2 cj(x

∗)h} ≥ ǫ‖h‖2
, (3.15)
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where

Ĥα(x∗) =

{
h ∈ Hα(x∗)

∣∣∣hT
( ∑

i∈u(x∗,h)

µ∗
i ▽

2 fi(x
∗))h

+ hT (
∑

j∈v(x∗,h)

λ∗j ▽2 cj(x
∗)

)
h = 0

}
. (3.16)

Then x∗ is a strict local minimizer of the problem (VPII).

Proof. By the same arguments as in the proof of Theorem 2.4, we deduce that x∗ is a strict

local minimizer of ψ(x). Thus, we conclude this theorem in view of Theorem 3.2. �

Corollary 3.1. Let the functions fi(x), cj(x), i ∈ K, j ∈ P be twice continuously differentiable,

and qi(x), i ∈ K be continuous. Suppose that x∗ is a stationary point of the problem (VPII).

If the functions fi(x), cj(x), i ∈ R(x∗), j ∈ J(x∗) are strict convex, then x∗ is a strict local

minimizer of the problem (VPII).

Proof. If fi(x), cj(x), i ∈ R(x∗), j ∈ J(x∗) are strict convex, then (3.13) and (3.15) are

satisfied. Taking Theorems 3.2 and 3.6 into account, we complete the proof. �

Example 3.1. Consider f1(x1, x2) = x2
1 + x2, f2(x1, x2) = x2

2 + x1, f3(x1, x2) = x3
1 − x1 − x2,

s.t. − 1
2 ≤ x1 + x2 ≤ 1. Let

I(x) =






{1, 2}, − 1
2 ≤ x1 + x2 <

1
2 ,

{1, 2, 3}, x1 + x2 = 1
2 ,

{3, 1}, 1
2 < x1 + x2 ≤ 1.

It can be verified that x∗ = (−0.25,−0.25). Then

∇f1(x
∗
1, x

∗
2) =

(
− 1

2

1

)
, ∇f2(x

∗
1, x

∗
2) =

(
1

− 1
2

)
,

∇c1(x
∗
1, x

∗
2) =

(
−1

−1

)
, ∇c2(x

∗
1, x

∗
2) =

(
1

1

)
.

We obtain only one solution: µ∗
1 = µ∗

2 = 2
5 , λ

∗
1 = 1

5 , λ
∗
2 = 0. Moreover,

∇2f1(x
∗
1, x

∗
2) =

(
2 0

0 0

)
, ∇2f2(x

∗
1, x

∗
2) =

(
0 0

0 2

)
,

∇2c1(x
∗
1, x

∗
2) =

(
0 0

0 0

)
, ∇2c2(x

∗
1, x

∗
2) =

(
0 0

0 0

)
.

It can be shown that ∀h ∈ H(x∗1, x
∗
2),

hT

( ∑

i∈R′(x∗,h)

µ∗
i ▽2 fi(x

∗)

)
h+ hT

( ∑

j∈J(x∗)

λ∗j ▽2 cj(x
∗)

)
h = 2(h2

1 + h2
2),

which implies that (3.12) is satisfied. Therefore, x∗ is a local strict minimizer.
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