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Abstract

We construct and implement a non-oscillatory relaxation scheme for multidimensional

hyperbolic systems of conservation laws. The method transforms the nonlinear hyperbolic

system to a semilinear model with a relaxation source term and linear characteristics

which can be solved numerically without using either Riemann solver or linear iterations.

To discretize the relaxation system we consider a high-resolution reconstruction in space

and a TVD Runge-Kutta time integration. Detailed formulation of the scheme is given for

problems in three space dimensions and numerical experiments are implemented in both

scalar and system cases to show the effectiveness of the method.
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1. Introduction

In this paper we are interested in solving numerically the multidimensional hyperbolic system

of conservation laws

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
+

∂H(U)

∂z
= 0, t > 0, (x, y, z) ∈ R

3, (1.1a)

U(t = 0, x, y, z) = U0(x, y, z), (1.1b)

where U(t, x, y, z) ∈ R
N is a vector of conserved quantities; F(U) ∈ R

N , G(U) ∈ R
N and

H(U) ∈ R
N are nonlinear flux functions; and U0 ∈ R

N is given initial data. We assume that

the Jacobian matrices ∂F/∂U, ∂G/∂U and ∂H/∂U are diagonalizable with real eigenvalues

{λ1, · · · , λN}, {µ1, · · · , µN} and {ξ1, · · · , ξN}, respectively.

The relaxation system proposed in [7] and considered in this paper reads

∂U

∂t
+

∂V

∂x
+

∂W

∂y
+

∂Z

∂z
= 0, (1.2a)

∂V

∂t
+ A

∂U

∂x
= −1

ε

(

V − F(U)
)

, (1.2b)

∂W

∂t
+ B

∂U

∂y
= −1

ε

(

W − G(U)
)

, (1.2c)

∂Z

∂t
+ C

∂U

∂z
= −1

ε

(

Z − H(U)
)

, (1.2d)
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where V ∈ R
N , W ∈ R

N and Z ∈ R
N are relaxation variables; A = diag{A1, · · · , AN},

B = diag{B1, · · · , BN} and C = diag{C1, · · · , CN} are positive diagonal matrices; and ε > 0 is

the relaxation time. The relaxation system (1.2) has a typical semilinear structure with linear

characteristic variables defined by

V ±
√

AU, W ±
√

BU and Z±
√

CU. (1.3)

Formally, in the zero relaxation limit ε −→ 0, we recover the original system (1.1) provided the

subcharacteristic condition [7, 11, 8],

λ2
ν

Aν

+
µ2

ν

Bν

+
ξ2
ν

Cν

≤ 1, ∀ ν = 1, · · · , N, (1.4)

holds in (1.2). Note that if we project the relaxation variables into the local equilibrium

V = F(U), W = G(U) and Z = H(U), (1.5)

then the first equation of (1.2) reduces to the original conservation laws (1.1). Further references

on the analysis and convergence of relaxation methods can be found in [19, 20] among others.

Our aim in this paper is to reconstruct high order relaxation schemes for the hyperbolic sys-

tems (1.1) in multi-space dimensions. The central key for such reconstruction is the combination

of Weighted Essentially Non-Oscillatory (WENO) polynomials for the space discretization and

asymptotic-preserving implicit-explicit (IMEX) methods for the time integration. Although we

concentrate on a third-order reconstruction, the formalism presented here can readily be applied

to develop relaxation methods with arbitrary order of accuracy. It is worthwhile to mention

that WENO schemes of order between 7 and 11 can be found in the literature, compare [3] for

details. We also should mention that central schemes [6] and non-uniform mesh methods [18]

offer useful numerical tools for solving multi-dimensional hyperbolic systems of conservation

laws. However, all these methods solve the relaxed original problem (1.1) instead of the relax-

ation system (1.2). In many practical applications one may also be interested in the transient

regimes before the equilibrium. For instance, there is strong links between relaxation methods

and kinetic or lattice Boltzmann schemes used in the frame of Boltzmann equation (as a simple

case, the BGK model which offers a similar structure as the one we referred to as relaxation

system (1.2) with ε denotes the Knudsen number). It is well known that, by keeping the Knud-

sen number small one can derive inviscid Euler problems from the kinetic equation. However,

it is a challenging problem to construct consistent space and time discretization of the transient

equations that preserve the asymptotic limit and converge to the correct numerical solution of

the limit equations as the Knudsen number goes to zero. Therefore, one of the purposes of our

work was to combine in a formal way a high order space and time discretizations in order to

construct a numerical method that works for both small and large relaxation rates ε.

The design of high order relaxation schemes has been partially addressed by other authors

in [13, 10], however, in those references the formulations and numerical results are given only

for the one-dimensional problems. Extension to the two-dimensional hyperbolic systems was

recently discussed in [14, 5] along with a comparison between relaxed schemes (ε = 0) and the

well-established central methods. Relaxation methods were also used in [15] for the shallow

water equations in one and two space dimensions and in [16] for the two-dimensional Riemann

problems in gas dynamics. To our knowledge, this is the first time that multi-dimensional hyper-

bolic systems of conservation laws are approximated by relaxation techniques. To demonstrate

the basic algorithms, and show that it can adapt to multi-dimensional features of a solution,
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we have implemented a third-order relaxation scheme to solve the scalar Burgers’ equation and

the Euler system of inviscid gas dynamics.

2. Third-order Relaxation Method

To develop a relaxation scheme for the system (1.2), it is convenient to treat the spatial and

temporal discretizations separately using the method of lines.

2.1. The semi-discrete approximation

We divide the spatial domain into cells Ii,j,k = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] × [zk− 1

2
, zk+ 1

2
]

with uniform sizes ∆x, ∆y and ∆z and centered at (xi = i∆x, yj = j∆y, zk = k∆z). We use

the notations Ui± 1
2

,j,k(t) = U(t, xi± 1
2
, yj , zk), Ui,j± 1

2
,k(t) = U(t, xi, yj± 1

2
, zk), Ui,j,k± 1

2
(t) =

U(t, xi, yj, zk± 1
2
) and

Ui,j,k(t) =
1

∆x

1

∆y

1

∆z

∫ x
i+1

2

x
i− 1

2

∫ y
i+1

2

y
j− 1

2

∫ x
k+1

2

z
k−

1
2

U(t, x, y, z)dxdydz,

to denote the point-values and the approximate cell-average of the function U at (t, xi± 1
2
, yj, zk),

(t, xi, yj± 1
2
, zk), (t, xi, yj , zk± 1

2
), and (t, xi, yj , zk), respectively. We also use the following dif-

ference notation

DxUi,j,k =
Ui+ 1

2
,j,k − Ui− 1

2
,j,k

∆x
, DyUi,j,k =

Ui,j+ 1
2
,k − Ui,j− 1

2
,k

∆y
,

DzUi,j,k =
Ui,j,k+ 1

2
− Ui,j,k− 1

2

∆z
. (2.1)

Then, the space discretization of (1.2) reads

dUi,j,k

dt
+ DxVi,j,k + DyWi,j,k + DzZi,j,k = 0, (2.2a)

dVi,j,k

dt
+ ADxUi,j,k = −1

ε

(

Vi,j,k − F(U)i,j,k

)

, (2.2b)

dWi,j,k

dt
+ BDyUi,j,k = −1

ε

(

Wi,j,k − G(U)i,j,k

)

, (2.2c)

dZi,j,k

dt
+ CDzUi,j,k = −1

ε

(

Zi,j,k − H(U)i,j,k

)

, (2.2d)

The ν-th component (ν = 1, · · · , N) of approximate solution is reconstructed by a piecewise

polynomial over the gridpoints as

Uν(x, y, z, t) =
∑

i,j,k

Pi,j,k(x, y, z;U)χi,j,k(x, y, z), (2.3)

where χi,j,k’s are the characteristic functions in the cell Ii,j,k. The polynomials Pi,j,k are defined

in Ii,j,k and reconstructed “direction by direction” as

Pi,j,k(x, y, z;U) = Pi(x, y, z;U) + Pj(x, y, z;U) + Pk(x, y, z;U).

For simplicity in presentation, the subscript ν will be omitted in (2.3). The degree of the poly-

nomials Pi,j,k is determined by the required order of accuracy of the method. In this paper
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we consider the third-order WENO reconstruction from [17]. Other WENO reconstructions

of order higher than three are also presented in [17], their implementation in the relaxation

framework can be formulated following the same arguments discussed in this paper. In the fol-

lowing we formulate the x-direction polynomial Pi(x, y, z;U), the formulation of Pj(x, y, z;U)

and Pk(x, y, z;U) can be done analogously. Hence

Pi(x, y, z;U) = ω−1P−1(x, y, z) + ω0P0(x, y, z) + ω+1P+1(x, y, z),

where the weights ωl, l ∈ {−1, 0, +1} are defined as

ωl =
αl

∑

m αm

, l, m ∈ {−1, 0, +1}, αl =
cl

(ISl)2
, c−1 = c+1 =

1

4
, c0 =

1

2
.

Note that the normalizing factor
∑

m αm is used here to guarantee
∑

l ωl = 1. The smoothness

indicators ISl and the polynomials Pl(x, y, z) are given by

IS−1 = (Ui,j,k − Ui−1,j,k)2, IS+1 = (Ui+1,j,k − Ui,j,k)2,

IS0 =
13

3
(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k)2 +

1

4
(Ui+1,j,k − Ui−1,j,k)2,

P−1(x) = Ui,j,k +
Ui,j,k − Ui−1,j,k

∆x
(x − xi), P+1(x) = Ui,j,k +

Ui+1,j,k − Ui,j,k

∆x
(x − xi),

P0(x) = Ui,j,k − 1

12
(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k)

− 1

12
(Ui,j+1,k − 2Ui,j,k + Ui,j−1,k) − 1

12
(Ui,j+1,k − 2Ui,j,k + Ui,j,k−1)

+
Ui+1,j,k − Ui−1,j,k

2(∆x)
(x − xi) +

(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k)

(∆x)2
(x − xi)

2.

We can now discretize the characteristic variables (1.3) as follows

(V ±
√

AνU)i+ 1
2
,j,k = Pi(xi+ 1

2
, yj , zk;V ±

√
AU), (2.4a)

(W ±
√

BνU)i,j+ 1
2
,k = Pj(xi, yj+ 1

2
, zk;W ±

√
BU), (2.4b)

(Z ±
√

CνU)i,j,k+ 1
2

= Pk(xi, yj , zk+ 1
2
;Z ±

√
CU). (2.4c)

Recall that U , V , W , Z, Aν , Bν and Cν are the ν-th (ν = 1, · · · , N) components of U, V,

W, Z, A, B and C, respectively. Solving (2.4) for the unknowns Ui+ 1
2
,j,k, Vi+ 1

2
,j,k, Ui,j+ 1

2
,k,

Wi,j+ 1
2

,k, Ui,j,k+ 1
2

and Zi,j,k+ 1
2

gives

Ui+ 1
2
,j,k =

1

2
√

Aν

(

Pi(xi+ 1
2
, yj, zk;V +

√
AU) − Pi+1(xi+ 1

2
, yj , zk;V −

√
AU)

)

,

Vi+ 1
2

,j,k =
1

2

(

Pi(xi+ 1
2
, yj, zk;V +

√
AU) + Pi+1(xi+ 1

2
, yj , zk;V −

√
AU)

)

,

Ui,j+ 1
2
,k =

1

2
√

Bν

(

Pj(xi, yj+ 1
2
, zk;W +

√
BU) − Pj+1(xi, yj+ 1

2
, zk;W −

√
BU)

)

,

Wi,j+ 1
2
,k =

1

2

(

Pj(xi, yj+ 1
2
, zk;W +

√
BU) + Pi+1(xi, yj+ 1

2
, zk;W −

√
BU)

)

,

Ui,j,k+ 1
2

=
1

2
√

Cν

(

Pk(xi, yj, zk+ 1
2
;Z +

√
CU) − Pk+1(xi, yj , zk+ 1

2
;Z −

√
CU)

)

,

Zi,j,k+ 1
2

=
1

2

(

Pk(xi, yj, zk+ 1
2
;Z +

√
CU) + Pk+1(xi, yj , zk+ 1

2
;Z −

√
CU)

)

.
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Therefore, we obtain the following expressions for the numerical fluxes in the semi-discrete

equations (2.2)

Ui+ 1
2
,j,k =

Ui,j,k + Ui+1,j,k

2
− Vi+1,j,k − Vi,j,k

2
√

Aν

+
σx,+

i,j,k + σx,−
i+1,j,k

4
√

Aν

,

Vi+ 1
2

,j,k =
Vi,j,k + Vi+1,j,k

2
−

√

Aν

Ui+1,j,k − Ui,j,k

2
+

σx,+
i,j,k − σx,−

i+1,j,k

4
;

Ui,j+ 1
2
,k =

Ui,j,k + Ui,j+1,k

2
− Wi,j+1,k − Wi,j,k

2
√

Bν

+
σy,+

i,j,k + σy,−
i,j+1,k

4
√

Bν

,

Wi,j+ 1
2
,k =

Wi,j,k + Wi,j+1,k

2
−

√

Bν

Ui,j+1,k − Ui,j,k

2
+

σy,+
i,j,k − σy,−

i,j+1,k

4
,

Ui,j,k+ 1
2

=
Ui,j,k + Ui,j,k+1

2
− Wi,j,k+1 − Wi,j,k

2
√

Cν

+
σz,+

i,j,k + σz,−
i,j,k+1

4
√

Cν

,

Zi,j,k+ 1
2

=
Zi,j,k + Zi,j,k+1

2
−

√

Cν

Ui,j,k+1 − Ui,j,k

2
+

σz,+
i,j,k − σz,−

i,j,k+1

4
,

where σx,±
i,j,k, σy,±

i,j,k and σz,±
i,j,k are the slopes of V±

√
AU, W±

√
BU and Z±

√
CU on the cell

Ii,j,k, respectively. The value of σx,±
i,j,k is defined by

σx,±
i,j,k = ω±

−1

(

(V ±
√

AνU)i,j,k − (V ±
√

AνU)i−1,j,k

)

+
ω±

0

2

(

(V ±
√

AνU)i+1,j,k − (V ±
√

AνU)i−1,j,k

)

+
ω±

0

3

(

(V ±
√

AνU)i+1,j,k − 2(V ±
√

AνU)i,j,k + (V ±
√

AνU)i−1,j,k

)

−ω±
0

9

(

(V ±
√

AνU)i,j+1,k − 2(V ±
√

AνU)i,j,k + (V ±
√

AνU)i,j−1,k

)

−ω±
0

9

(

(V ±
√

AνU)i,j,k+1 − 2(V ±
√

AνU)i,j,k + (V ±
√

AνU)i,j,k−1

)

+ω±
+1

(

(V ±
√

AνU)i+1,j,k − (V ±
√

AνU)i,j,k

)

.

The values σy,±
i,j,k and σz,±

i,j,k are defined similarly. The weight parameters ω±
−1, ω±

0 and ω±
+1 for

σx,±
i,j are given by

ω±
l =

α±
l

∑

m α±
m

, l, m ∈ {−1, 0, +1}, α±
l =

cl

(IS±
l )2

, c−1 = c+1 =
1

4
, c0 =

1

2
,

IS±
−1 =

(

(V ±
√

AνU)i,j,k − (V ±
√

AνU)i−1,j,k

)2

,

IS±
0 =

13

3

(

(V ±
√

AνU)i+1,j,k − 2(V ±
√

AνU)i,j,k + (V ±
√

AνU)i−1,j,k

)2

+
1

4

(

(V ±
√

AνU)i+1,j,k − (V ±
√

AνU)i−1,j,k

)2

,

IS±
+1 =

(

(V ±
√

AνU)i+1,j,k − (V ±
√

AνU)i,j,k

)2

.

The corresponding weight parameters for σy,±
i,j,k or σz,±

i,j,k are obtained by changing V ±
√

AνU

to W ±
√

BνU or Z ±
√

CνU in the above formulas and differentiating respect to y-direction or
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z-direction, respectively. We would like to point out that in this higher order scheme we approx-

imate F(U)i,j,k, G(U)i,j,k and H(U)i,j,k in (2.2) using the fourth-order Simpson quadrature

rule as opposed to the Midpoint Rule which was used in the first and second order reconstruc-

tions in [7].

2.2. The fully-discrete approximation

The semi-discrete system (2.2) can be rewritten as a system of ordinary differential equations

of form

dY

dt
= Φ(Y) − 1

ε
Ψ(Y), (2.5)

where Y = [Ui,j,k,Vi,j,k,Wi,j,k,Zi,j,k]T and the time-dependent vector functions Ψ and Φ are

given by

Ψ(Y) =

















0

Vi,j,k − F(U)i,j,k

Wi,j,k − G(U)i,j,k

Zi,j,k − H(U)i,j,k

















, Φ(Y) =

















−DxVi,j,k −DyWi,j,k −DzZi,j,k

−ADxUi,j,k

−BDyWi,j,k

−CDzZi,j,k

















.

When ε −→ 0, the equations (2.5) become highly stiff and any explicit treatment of the right

hand side in (2.5) requires extremely small time stepsizes. This fact might restrict any long

term computation in (1.2). On the other hand, integrating the equations (2.5) by implicit

scheme, either linear or nonlinear algebraic equations have to be solved at every time step of the

computational process. To find solutions of such systems is computationally very demanding.

In this paper we consider an alternative approach based on implicit-explicit (IMEX) Runge-

Kutta splitting. The non stiff stage of the splitting for Φ is treated by an explicit Runge-Kutta

scheme, while the stiff stage for Ψ is approximated by a diagonally implicit Runge-Kutta

(DIRK) scheme. Compare [2, 12] for more details.

Let ∆t be the time step and Yn denotes the approximate solution at t = n∆t. We formulate

the IMEX scheme for the system (2.5) as

Kl = Yn + ∆t

l−1
∑

m=1

ãlmΦ(Km) − ∆t

ε

s
∑

m=1

almΨ(Km), l = 1, 2, · · · , s,

(2.6)

Yn+1 = Yn + ∆t
s

∑

l=1

b̃lΦ(Kl) −
∆t

ε

s
∑

l=1

blΨ(Kl).

The s × s matrices Ã = (ãlm), ãlm = 0 for m ≥ l and A = (alm) are chosen such that the

resulting scheme is explicit in Φ, and implicit in Ψ. The s-vectors b̃ and b are the canonical

coefficients which characterize the IMEX s-stage Runge-Kutta scheme [12]. They can be given

by the standard double tableau in Butcher notation,

c̃ Ã c A

b̃T bT

Here, c̃ and c are s-vectors used in non autonomous cases. The implementation of the IMEX

algorithm to solve (2.5) can be carried out in the following steps:
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1. For l = 1, . . . , s,

(a) Evaluate K∗
l as: K∗

l = Yn + ∆t

l−2
∑

m=1

ãlmΦ(Km) + ∆tãll−1Φ(Kl−1).

(b) Solve for Kl: Kl = K∗
l −

∆t

ε

l−1
∑

m=1

almΨ(Km) − ∆t

ε
allΨ(Kl).

2. Update Yn+1 as: Yn+1 = Yn + ∆t

s
∑

l=1

b̃lΦ(Kl) −
∆t

ε

s
∑

l=1

blΨ(Kl).

Note that, using the above relaxation scheme neither linear algebraic equation nor nonlinear

source terms can arise. In addition, since the relaxation source is treated implicitly, the high

order relaxation scheme is stable independently of ε, so the choice of ∆t is based only on the

usual CFL condition

CFL = max
1≤ν≤N

(

∆t

h
, Aν

∆t

∆x
, Bν

∆t

∆y
, Cν

∆t

∆z

)

≤ 1, (2.7)

where h denotes the maximum cell size, h = max(∆x, ∆y, ∆z).

In this paper we use the third order IMEX scheme proposed in [2], the associated double

tableau can be represented as

0 0 0 0 0 0 0 0

γ γ 0 0 γ 0 γ 0

1 − γ γ − 1 2 − 2γ 0 1 − γ 0 1 − 2γ γ

0 1
2

1
2

0 1
2

1
2

where γ = (3 +
√

3)/6. Other IMEX schemes of third and higher order are also discussed in

[12]. It is clear that, at the limit (ε −→ 0) the time integration procedure tends to a time

integration scheme of the limit equations based on the explicit scheme given by the left table.

3. Implementation and Numerical Examples

We present numerical results for some benchmark tests on hyperbolic equations in two and

three space dimensions using our third-order relaxation scheme. We consider both scalar and

systems of nonlinear equations of conservation laws. In all the computational results presented

in this section, the relaxation rate ε is set to 10−8 and the characteristic speeds Aν , Bν and Cν

are chosen as

Ai+ 1
2
,j,k = max

U∈

{

U
−

i+ 1
2

,j,k
,U

+

i+ 1
2

,j,k

}

∣

∣

∣

∣

∂F

∂Uν

(U)

∣

∣

∣

∣

,

Bi,j+ 1
2

,k = max
U∈

{

U−

i,j+ 1
2

,k
,U+

i,j+ 1
2

,k

}

∣

∣

∣

∣

∂G

∂Uν

(U)

∣

∣

∣

∣

, (3.1)

Ci,j,k+ 1
2

= max
U∈

{

U
−

i,j,k+ 1
2

,U
+

i,j,k+ 1
2

}

∣

∣

∣

∣

∂H

∂Uν

(U)

∣

∣

∣

∣

,
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where the values at the cell boundary point are given by

U−

i+ 1
2
,j,k

= pi(xi+ 1
2
, yj , zk;U), U+

i+ 1
2
,j,k

= pi+1(xi+ 1
2
, yj , zk;U);

U−

i,j+ 1
2

,k
= pj(xi, yj+ 1

2
, zk;U), U+

i,j+ 1
2

,k
= pj+1(xi, yj+ 1

2
, zk;U);

U−

i,j,k+ 1
2

= pk(xi, yj , zk+ 1
2
;U), U+

i,j,k+ 1
2

= pk+1(xi, yj , zk+ 1
2
;U).

In order to avoid initial and boundary layer in (1.2), initial and boundary conditions are chosen

to be consistent to the associated local equilibrium (1.5). For instance, if Dirichlet boundary

condition is given, U = Ub, then the boundary and initial conditions for (1.2) are given by

V = F (Ub) , W = G (Ub) , Z = H (Ub) , (3.2a)

V0 = F (U0) , W0 = G (U0) , Z0 = H (U0) . (3.2b)

A simplified flow chart for the relaxation scheme used to approximate solutions to system of

equations (1.1) is presented in figure 3.1. First the semilinear relaxation system of hyperbolic

equations (1.2) with initial and boundary-value independent variables is transformed into an

ODE initial-value problem by approximation of the spatial derivatives with the third order

reconstruction (2.3) on a “dimension by dimension” basis. Starting by an initial condition, the

ODE problem is integrated in time by the higher order IMEX methods (2.6). As can be seen

from the figure, the relaxation solution of (1.1) is a modular algorithm into which any higher

order spatial discretization scheme and any higher order ODE solver can easily be incorporated.

Note that the algorithms presented in this paper can be highly optimized for the vector

computers, because they not require nonlinear solvers and contain no recursive elements. Some

difficulties arise from the fact that for efficient vectorization the data should be stored contin-

uously within long vectors rather than three-dimensional arrays.

3.1. Accuracy Test Problems

Burgers’ equation. In order to check the accuracy of our relaxation scheme, we first consider

the one-dimensional inviscid Burger’s equation

∂u

∂t
+

(

u2

2

)

x

= 0, x ∈ [0, 2π], (3.3)

augmented with the smooth initial data, u(x, 0) = 0.5 + sin(x), and periodic boundary condi-

tions. The relaxation system for (3.3) is constructed as in (1.2) with A = {A1}. We discretize

the spatial domain into N gridpoints, and we choose A1 = 1.5 in all computations. Recall that

the unique entropy solution of (3.3) is smooth up to the critical time t = 1. In table 3.1 we

show the errors norms at the pre-shock time t = 0.5 when the solution is still smooth using

CFL = 0.75. The errors are measured by the difference between the pointvalues of the exact

solution and the reconstructed pointvalues of the computed solution. As expected the scheme

preserves the third order of accuracy.

Inviscid gas Euler equation. We consider the one-dimensional Euler system of inviscid gas

dynamics formulated by equations (1.1), where

U =





ρ

ρu

E



 , F(U) =





ρu

ρu2 + p

u(E + p)



 . (3.4)
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Fig. 3.1. Flow chart of relaxation schemes for the three-dimensional problem (1.1).

Here ρ is the density, u is the velocity, ρu is the momentum, E is the energy and p is the

pressure. In addition we require the equation of state p = (γ−1)(E − 1

2
ρu2), where the specific

heats ratio γ = 1.4 for an ideal gas. Based on the formulation (1.1), a relaxation system can

be constructed as in (1.2) where A = diag{A1, A2, A3}. We used constant characteristic speeds
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Table 3.1: Error-norms for the invscid Burgers’ problem

N L∞-error Rate L1-error Rate L2-error Rate

40 0.37681E-01 —– 0.28977E-01 —– 0.30533E-01 —–

80 0.15964E-01 1.239 0.71792E-02 2.013 0.82323E-02 1.891

160 0.47363E-02 1.753 0.12559E-02 2.515 0.17511E-02 2.233

320 0.78772E-03 2.588 0.14477E-03 3.117 0.22551E-03 2.957

640 0.69819E-04 3.496 0.92831E-05 3.963 0.17196E-04 3.713

Table 3.2: Error-norms for the invscid Euler system

N L∞-error Rate L1-error Rate L2-error Rate

40 0.30776E-00 —– 0.19331E-00 —– 0.25518E-00 —–

80 0.94069E-01 1.710 0.52084E-01 1.892 0.73078E-01 1.804

160 0.24111E-01 1.964 0.12250E-01 2.088 0.18105E-01 2.013

320 0.53134E-02 2.182 0.21210E-02 2.530 0.35661E-02 2.344

640 0.81827E-03 2.699 0.28200E-03 2.911 0.50957E-03 2.807

Ai as in [7], and we define the CFL number as in (2.7).

We solve the inviscid Euler system (3.4) in space domain [−π, π] with periodic boundary

conditions [14]. Initial data is obtained from the smooth exact solution

U(x, t) = (1 + 0.2 sin(x − t), 1 + 0.2 sin(x − t), 3 + 0.1 sin(x − t))T . (3.5)

We take A1 = 0.33, A2 = 1, A3 = 2.35 and CFL = 0.5. In table 3.2, we list the error norms for

the density variable at time t = 1. Once again, the relaxation scheme preserves the third order

accuracy for this nonlinear system.

3.2. Two-dimensional problems

Burgers’ equation. We start by considering the invscid Burgers’ equation in two space di-

mensions

∂u

∂t
+

(u2

2

)

x
+

(u2

2

)

y
= 0, t > 0, (x, y) ∈ [0, 1]× [0, 1],

(3.6)
u(t = 0, x, y) = sin2(πx) sin2(πy), (x, y) ∈ [0, 1] × [0, 1],

augmented with periodic boundary conditions. By setting the flux functions

F (u) = G(u) =
u2

2
,

the associated relaxation system to (3.6) can be formulated as in (1.2) with A = diag{A} and

B = diag{B}. We discretize the spatial domain uniformly into 50 × 50 gridpoints and we

compute the solution using A = 1.0, B = 1.0 and CFL = 0.75.
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0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
t = 1.0

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
t = 2.0

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
t = 3.0

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8
t = 4.0

Fig. 3.2. Results for the inviscid two-dimensional Burgers’ equation (3.6).

The obtained results are shown in Figure 3.2 at four different times, t = 1, 2, 3, and 4. The

solutions are completely free of spurious oscillations and the shocks are well resolved by the

third-order relaxation scheme.

Inviscid gas Euler equations. The two-dimensional Euler equations for an ideal gas are

given by the hyperbolic system (1.1) with

U =









ρ

ρu

ρv

E









, F(U) =









ρu

ρu2 + p

ρuv

u(E + p)









, G(U) =









ρv

ρuv

ρv2 + p

v(E + p)









. (3.7)

In (3.7), ρ is the density, u is the x-velocity, v is the y-velocity, E = ρe = 1

2
ρ(u2 + v2) is the

total energy, e is the internal energy of the gas, p = (γ − 1)ρe is the pressure, and γ = 1.4 is

the ratio of specific heats. The associated relaxation system can be formulated as (1.2), where

A = diag{A1, A2, A3, A4} and B = diag{B1, B2, B3, B4}.
The eigenvalues of the Jacobian matrix ∂F(U)/∂U (or ∂G(U)/∂U) are λ1 = u − c, λ2 =

λ3 = u and λ4 = u + c (or µ1 = v − c, µ2 = µ3 = v and µ4 = v + c), where c is the sound speed

given by c2 = γp/ρ. These are the characteristic speeds for one-dimensional gas dynamics and

are needed here only for the estimation of relaxation variables. Thus, in all our numerical tests
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with equations (3.7) we used

A1 = A2 = A3 = A4 = max (sup|u − c|, sup|u|, sup|u + c|) ,

B1 = B2 = B3 = B4 = max (sup|v − c|, sup|v|, sup|v + c|) .

The double-Mach reflection problem. This test example consists of the canonical double-

Mach reflection problem [21]. The spatial domain Ω = [0, 4]× [0, 1]. The reflecting wall lies at

the bottom of the computational domain starting from x = 1

6
. Initially a right-moving Mach

10 shock is positioned at x = 1

6
, y = 0 and makes a 60◦ angle with the x-axis. For the bottom

boundary, the exact post-shock condition is imposed for the part from x = 0 to x = 1

6
and a

reflective boundary condition is used for the rest. At the top boundary of the domain Ω, the

flow values are set to describe the exact motion of the Mach 10 shock. For comparison reasons,

we use two different uniform meshes of 240 × 60, and 480 × 120 gridpoints.
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0

0.2

0.4

0.6

0.8

1

∆x = ∆y = 1/60

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

∆x = ∆y = 1/120

Fig. 3.3. Density contours for the double-Mach reflection problem on two meshes.

Figure 3.3 shows 30 equi-distributed contour plots of the density at time t = 0.2 with

∆t = 0.0005. We note that there is a very strong increase in resolution as the grids are refined

due to the high order accuracy of the relaxation scheme. We can also see the complicated

structures being captured by the new relaxation scheme. This test problem has been solved

in [7] using the second order relaxation scheme. By a simple comparison between Figure 3.3

and Figure 5 in [7] we can see that our third-order scheme uses only half of the gridpoints as

the second order scheme to obtain almost the same resolution. Furthermore, the resolution

achieved by the new relaxation scheme agree well with most of the results obtained by central

schemes, compare for example [6].
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The forward facing step problem. This is again a standard test problem for numerical

schemes in two-dimensional Euler equations of gas dynamics (3.7). The setting of the problem

is the following [21]:

A right going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3 units long.

The step is 0.2 units high and is located 0.6 units from the left hand end of the tunnel. The

problem is initialized by a uniform, right going Mach 3 flow. Reflective boundary conditions are

applied along the walls of the tunnel and inflow and outflow boundary conditions are applied

at the entrance and the exit of the tunnel, respectively.
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Fig. 3.4. Density contours for the forward facing step problem on two meshes.

The corner of the step is a singularity, which has to be treated carefully in numerical

experiments. Unlike in [21] and many other papers, we do not modify our relaxation scheme

near the corner. However, we use different grid refinements to decrease the entropy layer at

the downstream bottom wall. In Figure 3.4 we show 30 equi-distributed contour plots of the

density at time t = 4.0 using two different uniform meshes of 120×40, and 240×80 gridpoints.

We can clearly see that the resolution in the solution improves and the artifacts caused by the

corner decrease as long as the gridpoints on the mesh increase.
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3.3. Three-dimensional problems

Linear advection problem. We consider a three-dimensional linear advection problem in-

troduced and carefully studied in [9]. The deformation flow in this problem is obtained by

superimposing deformation in x-y plane with deformation in the x-z plane. The problem state-

ment is
∂u

∂t
+ v1

∂u

∂x
+ v2

∂u

∂y
+ v3

∂u

∂z
= 0, t ∈ (0, T ], (x, y, z) ∈ [0, 1]3, (3.8)

where the velocities are given by

v1(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz)g(t),

v2(x, y, z) = − sin(2πx) sin2(πy) sin(2πz)g(t), (3.9)

v3(x, y, z) = − sin(2πx) sin(2πy) sin2(πz)g(t).

The function g(t) is used to introduce time dependence in the flow domain and is defined as

g(t) = cos(πt/T ), t ∈ (0, T ]. As reported in [9], the flow slows down and reverses direction in

such a way that initial condition should be recovered at time T (i.e. u(0, x, y, z) = u(T, x, y, z)).

This is a very useful test example since the analytical solution at time T is known even though

the flow structure becomes complicated at this time. Here, we use T = 1.5 and the discontinuous

initial condition

u(0, x, y, z) =

{

1, if x < 1

2
,

0, if x ≥ 1

2
.

For this initial data, the interface at x = 1

2
deforms in a fully three-dimensional way and return

to its initial location at time t = T . It is easy to verify that the velocity field (3.9) is divergence

free, i.e.

∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
= 0.

This condition allows us to rewrite the equation (3.8) in a conservative form as (1.1), where the

flux functions are taken as F (u) = v1u, G(u) = v2u, and H(u) = v3u. Therefore, the associated

relaxation system to (3.8) is constructed as (1.2) with characteristic speeds given by (3.1). We

discretize the flow domain in 50 × 50 × 50 uniform cubes and a ∆t = 0.5∆x is used in our

computations. In Figure 3.5 we display the obtained results at times t = T
8
, t = T

2
and t = T ,

respectively. In this figure, the surface plots of the solution are shown only on the subdomain

[0, 1] × [0, 1]× [0, 1] r [1
2
, 1] × [1

2
, 1] × [0, 1] for better insight, while the contour plots are taken

by a cross section at z = 0.425 as in [9].

At t = T
2

the interface appears disconnected and at t = T the initial interface is recovered

with an non avoidable smearing introduced by the full three-dimensional deformation. The

results shown here agree well with those presented in [9]. We would like to comment on the

method used in [9] to solve the equation (3.8). Thus, the author in [9] proposed a high resolution

scheme based on upwind techniques where direct or approximate Riemann solvers are needed.

In contrast, our relaxation scheme does not require any Riemann solver and gives results which

are comparable to those obtained by upwinding in [9].

Burgers’ equation. The second test example is the three-dimensional Burgers’ equation

∂u

∂t
+

(u2

2

)

x
+

(u2

2

)

y
+

(u2

2

)

z
= 0, t > 0, (x, y, z) ∈ [0, 1]3, (3.10)
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Fig. 3.5. Results for the three-dimensional advection equation (3.8).

subject to periodic boundary conditions and to the Riemann initial data

u(0, x, y, z) =

{

1.5, if x2 + y2 + z2 ≤ 0.01,

1, otherwise.
(3.11)

Note that the application of equation (3.10) to the initial data (3.11) results in a circular shock

centered at the origin of the cube and moving along the main diagonal of the unit cube. The

relaxation system that gives at the limit equation (3.10) is formulated as (1.2) with

F (u) = G(u) = H(u) =
u2

2
,

and characteristic speeds given by (3.1).

As in the previous example, we discretize the spatial domain uniformly into 50 × 50 × 50

gridpoints and we set ∆t = 0.005. The obtained results are shown in Figure 3.6 at three different

times t = 0.1, t = 0.3 and t = 0.5. Here in the three-dimensional plots only a part of the unit

cube, [0, 1] × [0, 1

2
] × [0, 1

2
], is shown. Whereas, the two-dimensional plots represents contour

lines of a cross section at x = 1

2
. The third-order relaxation scheme captures accurately the

evolution of the shock along the main diagonal of the computational domain without diffusing

the fronts neither introducing oscillations near steep gradients.

Riemann problem in gas dynamics. The three-dimensional system of inviscid Euler equa-
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Fig. 3.6. Results for the three-dimensional Burgers’ equation (3.10).

tions can be written in conservative form as (1.1) with

U =















ρ

ρu

ρv

ρw

E















, F(U) =















ρu

ρu2 + p

ρuv

ρuw

u(E + p)















, G(U) =















ρv

ρuv

ρv2 + p

ρvw

v(E + p)















, H(U) =















ρw

ρuw

ρvw

ρw2 + p

w(E + p)















.

where ρ, u = (u, v, w)T , p, and E denote respectively the mass density, the flow velocity, the

thermal pressure and the total energy. The thermal pressure and total energy are related by

the equation of state p = (γ − 1)(E − ρ
2
u2).

The example we consider here, is inspired by the standard one-dimensional Sod tube shock

problem [1]. Similar test example but in two dimensions was proposed in [4]. The computational

domain is the unit cube Ω = [0, 1] × [0, 1] × [0, 1]. To define initial conditions for this problem

we first divide the domain into eight equally subcubes as: Ω1 = Il × Il × Il, Ω2 = Il × Ir × Il,

Ω3 = Ir × Il × Il, Ω4 = Ir × Ir × Il, Ω5 = Il × Il × Ir, Ω6 = Il × Ir × Ir, Ω7 = Ir × Il × Ir,

Ω8 = Ir × Ir × Ir, with Il = [0, 1

2
] and Ir = [1

2
, 1]. Then, velocity is set to u = 0 in Ω, density

and pressure are alternated between the subcubes Ωi, i = 1, · · · , 8, as follows

(ρ, p)T (0, x, y, z) =

{

(0.1, 0.1)T if (x, y, z) ∈ Ω1 ∪ Ω4 ∪ Ω6 ∪ Ω7,

(1, 1)T if (x, y, z) ∈ Ω2 ∪ Ω3 ∪ Ω5 ∪ Ω8.

Homogeneous Neumann boundary conditions are used, and ∆t = 0.001. The obtained results

for the density variable at t = 0.16 on a mesh of 50×50×50 gridpoints are illustrated in Figure
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Fig. 3.7. Results for the three-dimensional inviscid Euler equations.

3.7. Here, the three-dimensional surface plots represent the distribution of density on the whole

cube Ω and on the part Ω r [0, 2

3
] × [0, 1

4
] × [0, 1] of the cube, while the two-dimensional plot

represents the projection of density contours on the x-y plane at z = 1

2
. Our relaxation scheme

performs well for this test problem and high resolution of the scheme is clearly visible even on

coarse mesh as the one we used.

4. Concluding Remarks

Relaxation schemes of first and second order accuracy were introduced in [7]. In this paper

we have reconstructed high order relaxation schemes by using WENO ideas and a class of TVD

high order Runge-Kutta time integration methods. We have generalized the relaxation method

for multidimensional hyperbolic systems of conservation laws. This procedure combines the

attractive attributes of the two methods to yield a procedure for either scalar or system of

hyperbolic equations. The new method retains all the attractive features of central schemes

such as neither Riemann solvers nor characteristic decomposition are needed. Furthermore, the

scheme does not require either nonlinear solution or special front tracking techniques.

The third-order relaxation method have been tested on inviscid Burgers and Euler equations

in two and three space dimensions. The obtained results indicate good shock resolution with

high accuracy in smooth regions and without any nonphysical oscillations near the shock areas.
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