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Abstract

In this paper, we consider a hydrodynamic model of the semiconductor device. The
approximate solutions are obtained by a mixed finite volume method for the potential
equation and multistep upwind finite volume methods for the concentration equations.
Error estimates in some discrete norms are derived under some regularity assumptions on
the exact solutions.
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1. Introduction

Let us consider a system of equations describing the mobil carrier transport in a semicon-
ductor device in a bounded domain 2 € R4, d = 2, 3:

—Av =V u=alp—e+N(), (1.1)
% =V [De(x)Ve — pe(x)eVv] — Ry (e, p), (1.2)
% =V - [Dp(x)Vp + pp(x)pVv] — Ra(e, p). (1.3)

The above system is a hydrodynamic model of the semiconductor device. Three unknowns are
the electrostatic potential v, the electron mobile charge density e, and the hole mobile charge
density p. u = —Vw is the electric intensity. « is a constant related to the magnitude of
electronic charge and the dielectric permittivity. N(x) = Np(z) — Na(z), where Np(x) and
N4(x) denote the donor and acceptor impurity respectively. The diffusion coefficients D (x)
(s = e, p) are related to the mobilities us(x) by the relation Dg(x) = Upps(z), where Ur is the
thermal voltage. The recombination terms R;(e,p),i = 1,2 are Lipschitz continuous with the
Lipschitz constant A. All the coefficients appeared in (1.1)—(1.3) are positive and bounded, and
s > e >0,Dg > D, > 0,5 =e,p, where u, and D, is positive constants.
The equations can be completed by the following initial and boundary conditions

6(1‘,0) = 60(1'); p(l‘,O) = pO(x)v (14)
v=0,e=0, p=0, z€9Q, te(0,T] (1.5)
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There have existed many works on the numerical solution of the above system. In [5], a
finite difference method was constructed for one or two dimensional cases and the convergence
analysis was given. Numerical procedures based on a mixed finite element method for the
potential equation and finite element methods for the mobile charge density equations were
first presented in [4, 7]. The method was then applied to a mixed initial boundary model
in [12], where under some less smoothness assumptions on the exact solution, a priori error
estimates were obtained. In [13], two kinds of finite element schemes, one being partly linear
and another being nonlinear, were formulated and the existence of the approximate solutions
was proved for both cases. The convergence analysis for the nonlinear scheme was presented in
[14]. Some exponentially converging box methods, named Scharfetter-Gummel methods, were
used in [10] to treat two and three dimensional semiconductor device problems. The stability of
the methods and error estimates for the Slotboom variables are derived. Recently, characteristic
finite element methods have been presented in [11] to avoid nonphysical oscillation and optimal
error estimates were obtained there.

Finite volume method is a discretization tool used extensively in the computations for
conservation laws. The method is suitable in handling general domains, which can keep local
conservation properties of the numerical fluxes. We refer to [3, 6, 8, 9] and the references
therein for some details. In this paper, we study a finite volume method for the semiconductor
devices in multi-dimensions. We use a mixed finite volume method to treat the elliptic equation
(1.1) and upwind finite volume methods to treat the convection—diffusion Egs. (1.2)-(1.3). A
multistep time discretization is considered to enhance the accuracy in temporal direction. Under
the assumption that the exact solutions possess enough regularity we derive the optimal error
estimates in discrete norms for the scheme.

The rest of the paper is organized as follows. In Section 2, we introduce the admissible
meshes and some necessary notation. Section 3 is devoted to formulating a fully discrete finite
volume scheme for Egs. (1.1)-(1.5). In Section 4, we derive the priori error estimates for the
finite volume scheme under some regularity assumptions on the exact solutions.

Throughout this paper, we use C and ¢ to denote a general positive constant and a general
positive small constant, respectively, not necessarily the same in different places.

2. Meshes and Notations

Definition 2.1. (Admissible meshes) An admissible mesh Ty, of Q2 is given by a family of
control volumes, which are open polygonal (or polyhedral) subsets of Q. A family € of subsets
of Q0 contained in hyper-planes of R* with strictly positive measure (the edges of the mesh), and
a family of discrete points in ) satisfying the following properties:

1. The closure of the union of all control volumes is Q.

2. For any K € Ty, there exists a subset Ex C &, such that 0K = ?\K = Ugegy 0.
Furthermore, £ = Uker, Ek.

3. For any (K,L) € T? with K # L, either KNL =0 or KL =75. Then, we denote by
o= K|L.

4. The family of discrete points {zK}KeT; is such that vx € K and, if o = K|L, it is

assumed that the straight line T is orthogonal to o.

Let h denote the space step of the mesh T},. For any K € T}, and o € &, we denote by m(K)
the measure of K and m(o) the measure of the edge 0. If 0 € £, we denote dk » the Euclidean
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distance between the point zx and the edge o. The set of interior (resp. boundary) edges is
denoted by Eint (resp. Eext), that is, Eine = {0 € E; o & N} (resp. Eext = {0 € E; 0 C INY).
Then let dy = di,o +dr,o if 0 = K|L € Eine, and let dy = di o if 0 € Ex N Eeqt.

The mesh T}, is quasi—uniform, i.e., there exists a constant C, > 0 such that

di.o > Cuh, VK € Ty, 0 € Ek. (2.1)

Let x(T},) denote the piecewise constant space on Tj,. We introduce a discrete H} norm for this
space: for any ¢ € x(Th),

- () 22)

e

where Yo = ¢r — ¢k, if 0 = K|L € &, and Yoo = —@k, if 0 € Eg N ezt According to
[2], the discrete H} norm satisfies the following properties.

Lemma 2.1. Let Ty, be an admissible mesh defined on Q. For any ¢ € x(T}), there exists a
constant C' > 0 only depending upon 0 such that

el (2.3)

Lemma 2.2. Let T}, be an admissible mesh defined on Q satisfying (2.1). For any ¢ € x(Tr),
there exists a constant C' > 0 only depending upon 2 and C., such that

[l < C(Infh| +1) if d=2,
lpllze < Ch 2|l n, if d=3.

3. Fully Discrete Finite Volume Scheme
Let N be a positive integer. Let At = T'/N and t,, = nAt. Define by
O = p(tn), 6" =" — ", O™ = dp™ [ At. (3.1)

For any K € T}, we denote by nx the unit outer normal vector to K. For (1.1)-(1.3), we use
the Green’s formula to obtain the following integral conservation forms:

/ u-nrds = 7/81( Vo nids = /Ka[pfeJrN(:c)]d:c, (3.2)
/ %€ da +/ [—pe(x)eu — De(x)Ve] - nrds = — /KRl(e,p)d:E, (3.3)

Edm +/ [tp(x)pu — Dp(x)Vp] - nieds = —/ Ry(e, p)dzx. (3.4)
K

We denote by V™, E™, P" € x(T5) the approximations of v™, ¢ and p™ respectively. Let Uk »

be the approximation of u - nx on the edge o of K such that

V-V, V;
K it o =K|L € Ey; Uko = —, if 0 € Ex N Eent. (3.5)

Uko=——0" =,
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Let I be an extrapolator on time such that T¢"t! = 20" — "1, n > 1. Te"tt = W0, n = 0.
Define the upwind values ng of E"*! and P;fil of P"*! on an edge o as follows:

+1 t1
En+1 = EZ ’ IU}TQ’U ZO’ O':K|L€€ t
ot EY otherwise, e

0 U™t >0
Egil = { ’ Ko =2 4 € Ex N Eeut.

E?(H, otherwise,

n+1 n+1
Pn+1 = PK ’ IUK’U Z 0’ o= KlL S g'nt
ot PPt otherwise, mh

o€ (SK n gezt~

1 1
prtl _ PRt TUR >0,
o+ = .

0, otherwise,

Then the multistep finite volume scheme is given by: for any K € T,

> m(o)Uk , = am(K)(Pg — Ef + N), (3.6)
o€k
2 _ m(o
m(E)OER — 2 3 () ELETURS + Do ™ (x, 1))
o€k g
1 2
= gm(K)é)tE?( - gm(K)Rl(IE}L(H, IPEthy, (3.7)
2 _
m(K)d, Pt + 3 Y (@) x PEURE = Do md(o) (Yo P™))
cefk 7
1 2
= gm(K)atP;g - gm(K)RQ(IE;;Jrl,IP;;“), (3.8)
where
_ 1 _ 1 _
Ng = m /KN(:c)d:c, Ds, = (o) /Ds(x)ds, fs ik = ps(Ti),

for s = e, p, and the difference operator T, is defined in (2.2).

The initial approximate values {E%, P%} can be obtained by EY% = eg(zx) and PY =
po(rk), and {Ek, P} can be obtained by a single step scheme similar to (3.7)-(3.8). The
algorithm for the whole scheme is described as follows. Assume that the approximate so-
lution {Ep! ER Pr~t PR} are known. From (3.5)-(3.6), we can calculate {V;2~*, V} and
{U;é;l7 Uk »} in succession. Then we solve (3.7)-(3.8) independently and obtain (B PRty
Repeating this procedure, we can obtain all the approximations.

4. Error Estimates

First the assumptions on the regularity of the exact solutions of (1.1)-(1.5) are collected as
follows

v € L0, TsW>(Q)) N H(0, T3 Wh(Q),

e, p € L>®(0,T;L>(Q)) N L0, T; Wh*°(Q)) N H (0, T; W>(Q)) N H%(0,T; L*(Q)). (4.1)
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Lemma 4.1. ([1]) For any ¢ € x(Th), there exists a constant C > 0 depending upon various
norms of ¢ such that

H 2 a(pn+1

1
) n+1 .y n
3 ot tP +3 tP

< CAP. (4.2)
L2

Lemma 4.2. For any ¢ € x(T}) and the integer R < N, we have

R—1
n n 3
AL (Orph )it < Z K7+ (PR +2(ek)” + 5 (e (4.3)

n=1 n=1

Proof. Note that

l\DIOO

1 n— 1 n n n—
vk = 510k — vk Y+ (P + o 1)]=§[590K+(<pK+soK Yl

We then have

ALY @ )ei = 3 (e ek + 3 (e (6
n=1 n=1 n=1
1 R—1 R—1 R—1
=5 (T + X (k7 - k1)) + ek oer
n=1 n=1 n=1
1 R—1 R—1
= 5[ 2_00%)" + (k)% = (0%)°] + D_ (05) (™),
n=1 n=1

where

R—1 R—1 1 1R71
ALY @RI < Y000k + (el + (o) — ()P + 5 S (o)
n=1 n=1 n=1
3 R—1
=5 20k + (00 )* + (0K)* — 5(#k)?
n=1
3! 3
<3 (B2 + (o) + 2(0k) +§(w%)2

Thus, we get the desired result.
Now we define 7, &, ¥ € x(T},) such that for any z € K, K € T},
’/T:VKfv(IL'K), E:EKfe(xK), ﬁZPKfp(IL'K). (44)

Lemma 4.3. Suppose that v € L°°(0,T; W?2°°(Q)) and e,p € L>=(0,T; Wh>(L2)). Then there
exists a constant C > 0 such that

17113 n < CUW" 172 + [1€7 1172 + %) (4.5)
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Proof. Similar to (3.5) we define that

UK o = _—’U(.ﬁL);’U(IK), Zf o = K|L S gint; UK,oc = ,U(de)

L if 0 € ExNEupr.  (4.6)

Then from (3.2) and (3.6), we can obtain the following error equation.

S o) Uy — ) = S / . )ds + am(K) (9% — €3)

oc€lk c€fK
# [ ol er) =) - ") - e (@.7)

Multiply (4.7) by 7% and sum the result on T},. First, we see that

Z Z UKU* K)W?(:

KeTy c€€k

(4.8)

The terms on the right hand side of (4.7) will be estimated in sequence. Reordering by interior
edges and using Young inequality, we have

S % [ — i s

KeTy €€k
1
= > (5 > / — e )ds(m — T+ Y / (u" ¢ — u}z,g)dsw;z))
KeT, N\~ o=K|Le€fk c€EKNEeat C
< C{llvllz=wzy} Y mlo)dsh? + el|x"|} , = C{d, m(Q)}h* + €| 7" |17 . (4.9)
o€l

By Lemma 2.1, we have

> <am(K)( %E%H/K([P”(w)p"][6”(%K)6”])dx)ﬂ?<

KeTy,
< CfllellLeewroey, 1Pl Loewroo) Y1 | L2 + 1€7 ([ 22 + R)|7" [ 22
< (™72 + 167172 + h®) + el 7|13 - (4.10)

So combining (4.8)-(4.10) and choosing e small enough, we get the desired result.

In the error analysis below, we will use the estimates

sup [|{"[|Le — 0, sup [[9"|r~ — 0, (h,At) —0. (4.11)
0<n<N 0<n<N

From (4.4), we have £Y = 9% = 0 and (4.11) is trivial for N = 0. Next we make the induction
hypothesis that (4.11) holds for 0 < N < R — 1. We will prove that (4.11) holds for N = R by
an induction argument later. Let us consider the error estimates between (3.3) and (3.7).

Lemma 4.4. If v, e and p satisfy the reqularity assumption (4.1), then

|\5R||L2+At2Hsnﬂnmmz S S m@ U (L)

n=1 KeT, c€EK
R—1 R—1
< C<At4 HRE Ay €T+ A Y 0" Ge + €172 + |191|%2>- (4.12)

n=1 n=1
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Proof. For any K € Ty, 0 € £k, we define the upwind value e erl as follows:

n+1 IU"+1 >0
n+l { e (ZCL)) K,o =™ g:K|L€€inta

ent = .
o+ e"Hzg), otherwise,
0 U >0
enth = i Ko = g€ &k NEeut-
' e"Hak), otherwise,

Let g;{f = E:f e”Jrl From (3.3) and (3.7) we have the following error equation:
2 - n+1 n+1
= > (m(o) e,k &G UK + De g

2 d( ZS (4.13)
o€l

Multiply (4.13) by Atf?fl, and sum the resulting equation over T}, for 1 <n < R—1. Note
that €9 = 0 and an application of Lemma 4.2 gives

R—1
tY Y St = Atzz K) (D85 )65!

KeTh n=1 KeT, n=1

m(K)& —

l\3|H

pa 1 9
Z 16" 1|72 + ngRH%z + gllélHiz- (4.14)

Using Taylor expansion, we have

R—
At >N St

KeT, n=1
R—1 1
= At Z Z (/Ké?t(e"H — e"“(acK))dx ~3 /Kat(e" — e"(acK))dx) ?(H
n=1 KeTy
R-1
< Cfllelmwnm A2 + ALY €742, (415)
n=1

It follows from Lemma 4.1 that

R_IS ntl _ A 2 get! 9,ent1 18 n\entl
EY Y sy tZZ/(gat—te + 30 et o

KeT), n=1 n=1 KeTy
R—1
< C(AE + ALY [€™32). (4.16)
n=1

Next, we have

R—-1 AL R—
Aty ZS4§?(H:TZ

KET;, n=1

Z IU"H,ueK/ (egt: — e”“)ds&?rl

1 KeT, oclk g

_ 2At Z Z Z Iu}?raluek (egj: _en+1)d5€}z(+1

n=1 KeTy c€€k

AN S Y g - e [ (e s

n=1 KeTy, c€€k

R—
2At
=5 Z (S41 + Sa2).

n=1
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By (4.6) we have |Iu"+1,ue K| < 3||v]| oo w00y ||pte]| L. Reordering by interior edges gives

Su= 3 (5% mtn [ @ - e g

KeTy o=K|LeEK
SN R [ (et
UEEKﬂgezf 7
2 m(o)
<oy (52—t e 3 D r
KeTy, UGSK oce€
< C{le]| ooy } Z > m(o)dsh® + €ll¢™HT
KeTy oe€k

< C{d,m(Q)}0® + €€ 117 .

Note that

Z d()h2<C{C’} Z 0)dk,s < C{C,d}m(K).

0€EK o€EK

Therefore, it follows from (3.5) and (4.6) that

S=3 Y (U - ik / (e — e ) dsgict

KeTh c€€K e
< C{llellpeqwroey llpellz=} D Z 2|Ta7fn|+|Ta7T” leE
KeTy c€€k
O™} + I7" M3 +C Y Z 2
KeTh c€€k

Clm™ I3 + l7" M ) + ClE™ 12

Thus combining the two estimates for S4; and Sy and using Lemma 4.3 yield

R—-1
DI I

KeT, n=1
i 2eAt B3
< CAt 9|22 + [|€7]2.) + Ch? + 4.17
< nZ::O(II 72+ [1€™1722) 3 ; I (4.17)

Taking a similar argument yields

R-1 IA? R—-1
DIDIL DD DD IU}éﬁf/ (e, e = pe)e™ g™

KeT), n=1 n=1 KeTy, c€€k

IN
o

R—1
n n 2e At "
CALY (0132 + I ||%2)+Ch2+—3 S IETR L (418)

n=0 n=1
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where C' depends on ||pel| Lo (w1.0), [|€]| Loe (o), [[V]|Loe(wi.00y, Cx, d and m(€2).
For Sg, we have

MY Ysgr -2y vy [l e = 10 e sy

KeT, n=1 n=1 KeTy, o€k

B 2Atz Z Z /He n+1 Iun-‘,—l) nK6n+1dS§n+1

n=1 KGT;L o€l

2At
T Z Z //J/e n+1 N Iun+1) n+1d €n+1

KeTy, o€k

%z SN [l - 1 s

1 KeTy o€k

Then taking a similar argument as for (4.9) and (4.17) gives

R-1
DIDIEL

KeT, n=1
R-1 R-1
< CAE B2+ ALY (19772 + 1€71172)) + eAt > (1€ 13 4, (4.19)
n=0 n=1

where C' depends on |le|| o (o0 (q)), [[Vlw2.00 (Wi (@) [[VlLoe w2y, Ck, d and m(Q).
For the term S7, we reorder by interior edges to have

I I (L
KeT), n—1 3 = KeT, No=K|LEEk do

_Ventl .y )d8§n+1 Z /De(x)(_en+1(

.fK) _ ven-i-l X nK)d3§n+1)
0CERNEext V7 da "

R—-1

< C{He||L°°(W2 m)}At Z Zm d h2 + eAt Z Hgn+1”2
n=1cef n=1
R—-1

< C{d,m(Q)}h? + eAt Y ¢
n=1

(4.20)

At last, using the triangle inequality and the Lipschitz continuity of Ry, we have

R—1
EY Y St = Z/ V(IE™ P TP — Ry(en 1 pn ) ) dag et

KeT, n=1

IN

C{\ e HH2(L2) lle HLw(Wlw) ||P||H2(L2) HPHLOO(WLOO)}

R—1
(At4+h2+AtZ I€™132 + At ||19"||L2>. (4.21)

n=0 n=0

Now we estimate the terms on the left-hand side of (4.13).

AtZ > mE) @i = SIEE — 5 S0 e + zuaenHHL. (4.22)

n=1 KcT), KeTh
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Reordering by interior edges, we have

2Atz Z Z

n=1 KeT) c€€k

Let E;tl denote the downwind value of £"*! on an edge o of K such that

n+1
§n+1 K
n+1
L
n+1

n+1 __ K >
ar-{

Then,

2§t Z Z Z m(0) e, K§n+1IUn+1 ?(-i-l

n=1 KeT, c€EK

> (>

KeT, o=K|Le&k

>

o=K|LeEk

=)

Il
ol
M

—

=y
_

A
-T2 X

1 KeTy

3
I

+2

+2

M. Yang
2D R—1
by enthyenit > ALY (€ b (4.23)
n=1
IUnJrl
Ko = 0, O':K|L€5mt,
otherwise,
Iuptt >0
Ko B "o egngext-
otherwise,
Z ) ( )Ne K|IUn+1|£n+1( n+1 gnJrl)
0€EKNEeat
> Ym0 ek TURE
0€EKNEext

(2 - e (2 - @)

2.

o=K|LeEk

o€k mgezf

AN Y @

n=1 KeTy

+2

2
K e Y m

m(o) e TUR S (€2

>

Ym0 fie i [ TU LM (€07 — €212

0€EKNEeat

(o) UL}
oc€lk

-Gy

(o) e s TUR ;z“f)

(o) IURL,
oc€lk

where from (3.6) and the triangle inequality, we have

>

o€l

m(U)IU};Zl

< [al (21"l + B o + 20 P" |z + [Pl + [Nz ) m(K).

Note that ||[E™ ||z~ < |le]|poe(roey + [[€"||L~ and [|[P™||pec < [[p||pee(ro) + [|9"]| L. Using the
induction hypothesis, we know when h and At are small enough,

2B [Loe + 1B e + 2P || + [|1P" L < Co,

n<R-1,
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where Cj is a fixed positive constant. Hence,

R—-1

YT S mlome v

n=1 KeTy, c€€k

A R- . R—1
2 5t Z SN m) U (") = C{Co, ALY [I€F 7. (4.24)
n=1 KeTy, €€k —

Since £° = 90 = 0, combining (4.13)-(4.24) and choosing € small enough yield the desired result.
This completes the proof of Lemma 4.4.

For Egs. (3.4) and (3.8), we have the similar estimates as follows.

), e € L0, T; Whee

Lemma 4.5. Suppose thatv € L>(0,T; W2 (Q))NW2>(0,T; W>=(Q)
(0,T; L*>(Q))NH (0, T;

())NH?(0,T; L%(R)), and p € L>=(0,T; L>(Q))NL>(0,T; WL>)NH?
W1°(Q)). Then,

WHLHNZIlﬂ"“llmAtZ S m@UURL ()

n=1 KeT) o€k

R—1 R—1
< C<At4 HR ALY (ET T+ ALY IFe + (€17 + |191|i2>- (4.25)
n=1 n=1

Theorem 4.1. Suppose that the exact solutions of (1.1)-(1.5) satisfy the smooth condition (4.1)
and At = O(h'/?). For the fully discrete finite volume scheme (3.5)-(3.8), we have

N
o (II&”HL2 0" gz + 7™ ) + AEY (€L + [97150) " < (AL + h).  (4.26)
n=0
Proof. Using Lemmas 4.4 and 4.5 yields
R-1 R-1
™12 + 107172 + At Y lE I, + Aty |
n=1 n=1

R—-1 R—-1
< C(At4 + R ACY T + ALY 0 Te (1€ 122 + Iﬂlliz)- (4.27)

n=1 n=1

Applying Gronwall’s inequality gives

R—-1 R—-1
€T + 107 F2 + At D €T, + At Y|l

n=1 n=1

< C(At4 + R+ ||E|Fe + |z91|%2). (4.28)

For the single step scheme used to determine E' and P!, a similar argument as that used in
the proof of Lemma 4.4 will give ||}, + [[9']|2, < C(At* + h?). Thus, we have

R—-1

IEFIZ2 + 107122 + At D |

n=1

R—-1
Do, < CAE +h?). (4.29)
n=1
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If At = O(h'/?), from (4.29) we see that |||, , < Ch3/4. Then by Lemma 2.2,

1€ | Loe < C(In |h[ + 1|7 |1,n < Cln |h] + 1)AY* — 0, d =2,
168 e < CRTY2)|ER |1 < CRY* — 0, d = 3.

Similarly, we can verify that |[0%|p~ — 0. So (4.11) holds for N = R. Now the induction
argument is completed and we obtain the estimate (4.11). Therefore (4.29) holds for any integer
R. At last combining with (4.5) gives the desired result.
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