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Abstract

A numerical test case demonstrates that the Lobatto and the Gauss points are not
natural superconvergent points of the cubic and the quartic finite elements under equilateral
triangular mesh for the Poisson equation.
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1. Introduction

Natural superconvergent points are those points where the rate of convergence exceeds the
best possible global rate without post-processing. Research in this area started in the early
70s, and may even trace back to the late 60s (see [5, 6, 7, 8, 9, 12, 14] and references therein).
Consider the C0 finite element approximation for second-order elliptic equations. It is well
known that the Lobatto points and the Gauss points are superconvergent points for function
values and derivatives, respectively. This result is valid for the one dimensional case, as well
as for the tenser-product space in higher dimensional settings. As for triangular elements, the
situation is much more complicated. Earlier researches focused only on lower-order elements,
namely, the linear and the quadratic elements under strongly regular meshes.

In the mid-90s, two systematic methods to find superconvergent points were developed.
One was the symmetry theory due to Schatz-Sloan-Wahlbin [11, 12]. By this theory, super-
convergence occurs at mesh symmetry centers. One advantage of the symmetry theory is its
generality, since it is applicable in all dimensions. Nevertheless, this theory does not say that
there is no other superconvergence points, and therefore it is not conclusive. Almost at the
same time, another approach was proposed by Babuška-Strouboulis et al[2, 3]. They estab-
lished a theoretical framework which narrows the task of locating superconvergence points to
finding intersections of some polynomial contours on a “master cell”. The actual procedure was
carried out by a computer algorithm without explicitly constructing those polynomials, and
the computed superconvergent points were reported up to 10 digits. This approach is called
the “computer-based proof”. Using that computer algorithm, they predicted all derivative su-
perconvergence points for the Poisson equation, the Laplace equation, and the linear elasticity
equation under four different triangular mesh patterns for polynomial finite element spaces of
degrees up to 7. The advantage of this approach is that it is conclusive.

Along the line of the computer-based proof, Zhang proposed an analytic approach which
constructs explicitly the needed polynomials through an orthogonal decomposition [13]. Using
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this approach, Lin-Zhang studied superconvergent points for triangular elements [10]. Their
results verify that the computed data for triangular elements in [3] have 9 digits of accuracy
except for one pair (with 8-7 accurate digits). In addition, they reported superconvergent
points for function values, which are not discussed in the computer-based proof. The Lin-
Zhang approach has the following advantages:

1. The superconvergent points are computed with high accuracy. With polynomials explic-
itly given, one can easily verify how accurate those points are.

2. It can be readily verified. With paper and pencil, an interested reader may check if
those polynomials are indeed the periodic finite element solutions on master cells. As for
the superconvergent points, when polynomials are explicitly given, a root finding can be done
analytically for lower-order cases (which are the most interesting cases anyway).

3. It provides more insight. An orthogonal polynomial basis functions on triangular meshes
is constructed in a systematic way, which reveals the structure of the periodic finite element
solution.

4. It can be generalized to 3D cases, where superconvergence results are relatively scarce.
As a related work, Chen investigated superconvergent points in the triangular elements of

the regular pattern using the orthogonal decomposition and element analysis technique [5]. As
an example of his approach, superconvergent points in the cubic element are calculated for the
Poisson equation as well as for the Laplace equation. These points are consistent with the
symmetry theory and the computer-based proof.

According to the above review, investigation of natural superconvergent points for triangular
elements seems to be over except for one special case, the equilateral triangulation. Yet, this is
the most important case, since automatic mesh generators based on the Delaunay triangulation
produce nearly equilateral triangles for most part of the mesh. There was an interesting result
due to Blum-Lin-Rannacher in 1986 [4], which revealed that the convergent rate for linear ele-
ment at element vertices is of O(h4) for equilateral mesh. This rate is two orders higher than
that of the regular mesh pattern. Therefore, it is natural to ask if there are other special proper-
ties associated with equilateral triangular mesh for higher-order finite elements. Motivated with
the fact that the Lobatto (Gauss) points in the quadratic element are supercovergent points of
function (derivative) values along element edges (this is true for both regular and equilateral
triangulation [1, 14]), one may wonder if it is also true for higher-order elements. The cur-
rent paper provides a negative answer to this question. With a non-trivial numerical example,
we demonstrate that neither the Lobatto nor the Gauss points are natural superconvergent
points for the cubic and the quartic elements in the equilateral meshes. The convergence rate is
the same for the regular and the equilateral triangulations with only one exception, the linear
element.

2. A Numerical Example

Define an equilateral triangular domain Ω enclosed by the three straight lines y = 0, y =√
3x, and y =

√
3(1 − x). Consider the boundary value problem

−∆u = f in Ω, u = 0 on ∂Ω. (2.1)

We choose f such that u = y(y −
√

3x)(y +
√

3x−
√

3)ex+y, and then solve (2.1) by the linear,
the quadratic, the cubic, and the quartic finite elements under uniform triangulation of Ω by
dividing each side of Ω to n sub-intervals. We set h−1 = n = 8 (see Figure 1) for the initial
mesh, and use the regular refinement with bi-section strategy. Using this kind of meshes, we
will solve (2.1) with MATLAB 6.5.1 and FEMLAB 2.3. Earlier versions of MATLAB may lead
to different results as it uses Gaussian elimination to solve unrecognized sparse linear systems.
MATLAB 6.5.1 has a new solver that supports more types of sparse linear systems including
the systems arising in solving (2.1).

We calculate the error eh = u − uh at the Lobatto points and ∂teh = ~t · ∇(u − uh) at the
Gauss points. Here ~t is the tangential unit vector. Table 1 lists the Lobatto and the Gauss
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points on [−1, 1], and a suitable linear mapping is used to compute the Lobatto and the Gauss
points on element edges. For each given h = 1/n, we denote L(h), the set of all the Lobatto
points on element edges; and G(h), the set of all the Gauss points on element edges. Define the
sub-domain

ΩH = {(x, y) ∈ Ω : dist((x, y), ∂Ω) ≥ H)}
where H > 0 is a fixed constant (see Figure 2), and H = 1/8 in this particular example. Let
εh denote the set of element edges in the mesh, and we define the following measures

Eh(eh, ΩH) = max
z∈L(h)∩ΩH

|(eh)(z)|, Eh(∂teh, ΩH) = max
z∈G(h)∩ΩH

|∂t(eh)(z)|;

Ēh(eh, ΩH) =
1

|L(h)|
∑

z∈L(h)∩ΩH

|(eh)(z)|, Ēh(∂teh, ΩH) =
1

|G(h)|
∑

z∈G(h)∩ΩH

|∂t(eh)(z)|;

Ẽh(eh, ΩH) =

√

∑

ℓ∈εh∩ΩH

∫

ℓ

e2
hds, Ẽh(∂teh, ΩH) =

√

∑

ℓ∈εh∩ΩH

∫

ℓ

(∂teh)2ds.

Here |G(h)| is the cardinal value, i.e., the number of points in G(h). The integrals in Ẽh(eh, ΩH)

and Ẽh(∂teh, ΩH) are computed using the Gauss-Lobatto quadrature and the Gauss-Legendre
quadrature, respectively. Table 2 and Table 3 collect all computed error values for different L(h)
and G(h), respectively, where the relative graphs (in log-log scale) are plotted in Figures 3-6.
All measures of eh and ∂teh lead to the same conclusion, and hence we focus on Eh(eh, ΩH)
and Eh(∂teh, ΩH). Based on the computed data, we summarize our results in Table 4 and draw
the following conclusions:

1. For the cubic and the quartic finite element approximation of the Poisson equation,
the Lobatto points are not superconvergent points for u − uh, and the Gauss points are not
superconvergent points for ∂t(u − uh).

2. For the quadratic, the cubic, and the quartic elements, the convergence behavior of
equilateral mesh is the same as that of the regular mesh.

3. The only special case for equilateral mesh is the linear element, when the convergence
rate is O(h4) at element vertices.

4. Convergence behavior of average error is the same as that of point-wise error.
5. Mesh symmetry points in ΩH are element vertices and mid-edges, but the lobatto points

for the linear element are only the element vertices. That explains why the convergence rate of
Eh(eh, ΩH) drops from 4 to 2 when we switch from the Lobatto points to symmetry points in
the linear element as shown in Table 4.

6. If we replace ΩH with Ω in all the previous error measures, the superconvergence is lost
in two cases: superconvergence for eh at mesh symmetry points in the quartic element and
superconvergence for ∂teh at mesh symmetry points in the cubic element.

Table 1: Lobatto and Gauss points on [−1, 1] for elements of order 1 through 4

Element order Labatto points Gaussian points 
1 

�
±  �  

2 � � �±  
��±  

3 

� � �	± ±  

� � 


±  

4 
�� � � ��± ±  

� � �� � � �± ±  
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Table 2: Various error measures for eh in ΩH

Cubic element Quartic element �
 � � �� � �� �

Ω
 

 ! " #$ $ %& '
Ω  ( ) *+ + ,- .

Ω  ! " #$ $ %& '
Ω

/
 ! " #$ $ %& '

Ω  ( ) *+ + ,- .
Ω  

8 9.1561E-007 1.3541E-006 4.3632E-006 2.9158E-008 2.0899E-008 5.6626E-008 
16 1.2569E-007 7.2703E-008 3.2206E-007 2.0769E-009 6.6178E-010 2.2385E-009 
32 1.2833E-008 4.3698E-009 2.1923E-008 1.1056E-010 2.0852E-011 7.8289E-011 
64 1.1545E-009 2.6768E-010 1.3691E-009 4.8401E-012 6.5100E-013 2.4815E-012 

 
Table 3: Various error measures for ∂teh in ΩH

Cubic element Quartic element 0
 1 2 345 5 67 8

∂ Ω
9

 : ; <=> > ?@ A
∂ Ω  B C DEF F GH I

∂ Ω  J K LMN N OP Q
∂ Ω

R
 S T UVW W XY Z

∂ Ω  [ \ ]^_ _ `a b
∂ Ω  

8 1.0191E-004 8.6471E-005 1.6244E-004 1.5243E-006 1.3290E-006 3.3746E-006 
16 2.8295E-005 1.0704E-005 2.4089E-005 2.1569E-007 8.6482E-008 2.5139E-007 
32 5.9710E-006 1.3384E-006 3.2692E-006 2.2936E-008 5.5223E-009 1.7008E-008 
64 1.0371E-006 1.6634E-007 4.0779E-007 2.0076E-009 3.4686E-010 1.0613E-009 

 
Table 4: Convergence rates in ΩH

Convergence rate for ( , )
h h H
E e Ω  Convergence rate for ( , )

th h H
E e∂ Ω  Element 

order Lobatto Points Symmetry points Gaussian Points Symmetry points 

1 4 (superconvergence) 2 (superconvergence) 2 (no superconvergence) 2 (no superconvergence) 
2 4 (superconvergence) 4 (superconvergence) 3 (superconvergence) 2 (no superconvergence) 
3 4 (no superconvergence) 4 (no superconvergence) 3 (no superconvergence) 4 (superconvergence) 
4 5 (no superconvergence) 6 (superconvergence) 4 (no superconvergence) 4 (no superconvergence) 

 

 

Figure 1: Initial mesh when n = 8
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Figure 2: The subdomain ΩH
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Figure 3: Various error measures for eh in ΩH - cubic element
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Figure 4: Various error measures for eh in ΩH - quartic element
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Figure 5: Various error measures for ∂teh in ΩH - cubic element
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Figure 6: Various error measures for ∂teh in ΩH - quartic element
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