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Abstract
This paper proposes a modified Morley element method for a fourth order elliptic
singular perturbation problem. The method also uses Morley element or rectangle Morley
element, but linear or bilinear approximation of finite element functions is used in the lower
part of the bilinear form. It is shown that the modified method converges uniformly in the
perturbation parameter.
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1. Introduction

Let € be a bounded polygonal domain of R2. Denote the boundary of by 69Q. For
f € L?(2), we consider the following boundary value problem of fourth order elliptic singular
perturbation equation:
2A%u — Au = f, in €,
o (1.1)
= 0

ulon = 37| o =

where v = (v1,15) " is the unit outer normal to 9, A is the standard Laplacian operator and
€ is a real small parameter with 0 < ¢ < 1. When ¢ — 0 the differential equation formally
degenerates to Poisson equation.

To overcome the C' difficult, it is prefer to using nonconforming finite element to solve
problem (1.1). Since the differential equation degenerates to Poisson equation as e — 0, C°
nonconforming elements seem better to be used. An C° nonconforming finite element was
proposed in [4], and its uniform convergence in € was shown.

It is known that Morley element is not C¥ element and it is divergent for Poisson equation
(see [6]). When Morley element is applied to solve problem (1.1), it fails when ¢ — 0 (see [4]).
On the other hand, we have noticed the remark in the end of paper [4]: the best result uniformly
in € seems to be order of O(h'/2) for any finite element method to problem (1.1). Here A is the
mesh size. Since Morley element has the least number of element degrees of freedom, we prefer
to use a method which still uses the degrees of freedom of Morley element to solve problem

(1.1).
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In this paper, we will propose a modified Morley element method for problem (1.1). The
method also uses Morley element, but the linear approximation of finite element functions is
used in the part of the bilinear form corresponding to the second order differential term. The
modified method degenerates to the conforming linear element method for Poisson equation
when e = 0, and this is consistent with the degenerate case of problem (1.1). We will show that
the modified method converges uniformly in perturbation parameter e.

The modified rectangle Morley element method is also considered in this paper.

The paper is organized as follows. The rest of this section lists some preliminaries. Section
2 gives the detail descriptions of the modified Morley element method. Section 3 shows the
uniform convergence of the method. The last section gives some numerical results.

For nonnegative integer s, H*(Q2), || - ||s.o and | - |s.o denote the usual Sobolev space, norm
and semi-norm respectively. Let H§(€2) be the closure of C§°(Q2) in H*(€2) with respect to the
norm || - ||s,q and (-,-) denote the inner product of L?(£2). Define

2
a(v,w) / E 8171(?% arzaxjdx, Yo, w e H*(Q). (1.2)
ov 8w 1
b(v, w) / E o, 9z dz, VYv,we H (Q). (1.3)

The weak form of problem (1.1) is: find u € HZ(£2) such that
e2a(u,v) +b(u,v) = (f,v), Yo € HZ(RQ). (1.4)

Let u° be the solution of following boundary value problem:

—Au’ = f, in Q,
0 (1.5)
u |aQ =0
The following lemma is shown in paper [4].
Lemma 1.1. If Q is convex, then there exists a constant C' independent of € such that
[ub.0 + eluls.o < C=7#[ £l (1.6)
fu =0 < Ce*||fllo.0 (L.7)

for all f € L*(Q2).

2. Modified Morley Element Method

For a subset B C R? and r a nonnegative integer, let P,.(B) be the space of all polynomials
with degree not greater than r.

Morley Element

Given a triangle T', its three vertices is denoted by a;, 1 < j < 3. The edge of T' opposite
a; is denoted by F}j, 1 < j < 3. Denote the measures of T and F; by |T'| and |F;| respectively.
Morley element can be described by (T, Pr, 1) with

1) T is a triangle.
2) Pr = Py(T).

3) ®r is the vector of degrees of freedom whose components are:

1 v
— —ds, 1<5<3
& |Fj|/pj 7

for v € CH(T).
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Rectangle Morley Element
Given a rectangle T', its four vertices and edges are denoted by a; and F;, 1 < j < 4,
respectively. Rectangle Morley element can be described by (T, Pr, ®7) with

1) T is a rectangle with its edges parallel to some coordinate axes respectively.
2) Pr = Py(T) + span{z{, 23}.

3) ®r is the vector of degrees of freedom whose components are:
1 Bv

<7<
v(a;), Tl s, v ds, 1<j<4

for v € C1(T).

The degrees of freedom of these two elements are shown in Fig. 1.

} !

Morley element Rectangle Morley element

Fig. 1

The Morley element and its convergence for biharmonic equations can be found in [1-3,5],
while the rectangle Morley element in [7].

For mesh size h, take 7, a triangulation of 2. For Morley element 7}, consists of triangles,
otherwise 7}, consists of rectangles with their edges parallel to some coordinate axes respectively.
For each T € Tp, let hp be the diameter of the smallest disk containing 7" and pr be the
diameter of the largest disk contained in T'. Let {73} be a family of triangulations with h — 0.
Throughout the paper, we assume that {73} is quasi-uniform, namely it satisfied that hp <
h < npr, VT € T} for a positive constant 7 independent of h.

For each 73, let V, and V3¢ be the corresponding finite element spaces associated with
Morley element or with rectangle Morley element for the discretization of H%(Q) and HZ(f2)
respectively. This defines two families of finite element spaces {V4} and {Vio}. It is known
that Vi, ¢ H2(Q) and Vo ¢ HZ(Q). Let IIj, be the interpolation operator corresponding to 73,
and Morley element or the rectangular Morley element.

We define
(v, w) 2/22: Pv_ Puw € HXQ) + Vi (2.1)
ap (v = —————du, v, .
G T 4~ Oz;0x; Ox;0x; v h
TETh i,j=1
Ov ow 1
(v, w) Z Z@xz Zd:zc v,we H () + (2.2)
TETh

The standard finite element method for problem (1.4) corresponding to Morley element or to
rectangle Morley element is: find up € Vo such that

€2ah(uh, vh) + bh(uh,vh) = (f, ’Uh), Yoy € Vo (2.3)

For Morley element, let H,ll be the interpolation operator corresponding to linear conforming

element for second order partial differential equation and 7;. For the rectangle Morley element
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let H,lI be the bilinear interpolation operator. We consider the following modified Morley element
method: to find uy, € Vj0 such that

£2ah(uh, 'Uh) + bh(H,lLuh, H,llvh) = (f, H,llvh), Yo € Vio (2.4)
Problem (2.4) has unique solution when £ > 0. When & = 0, the problem degenerates to
bh(l'[,lluh,l'[,llvh) = (f, H,llvh), Yo € Vio (2.5)

Although the solution of problem (2.5) is not unique yet, H,lluh is uniquely determined. Actually,
T} uy, is the exact finite element solution of linear or bilinear conforming elemet for problem
(1.5). Hence the modified Morley element method seems to give a more natural way to solve
problem (1.1).

We introduce the following mesh dependent norm || - ||, and semi-norm | - |y, 5:
1/2
lolhma = (32 ollZr)
TET
< Vo € Vi, + H™ ().
, \1/2
Ol = (D2 Polr)
TETh

3. Convergence Analysis

In this section, we discuss the convergence properties of the modified Morley element meth-
ods in previous section.

Let w and uy, be the solutions of problem (1.4) and (2.4) respectively.
Lemma 3.1. There exists a constant C' independent of h and € such that Vv, € Vg
| b, (T}, u, T vp ) + (A, T op)| < Chlule.ol T vs]1n (3.1)
| an(u,vp) — (A%u, o) < Chlulsolval2.n (3.2)
when u € H3(Q).

Proof. Let vy, € Viyo. Then 1T} vy, € H} () and
| bn (T u, T,0n) + (Au, I on)| = | b (u — I u, 0]

By the interpolation theory and Schwarz inequality we obtain (3.1).

Now take ¢ € H'(Q). Given T € Tj, and an edge F of T, let P2 be the orthogonal projection
operator from L?(F) to Py(F).

Let 4,5 € {1,2}. It is known that the integral average of %vh on F is continuous through
F and vanishes when F' C 0€2. Then Green formula gives

Z / 0%y, 8(;5 %)dx
O0x;0x; (%ci Ox;

TET,
vy, vy,
= Z ¢ vids = Z Z /(b -v;ds
Ty

TeT), TeT, FCoT
8'Uh 8’Uh
—zz/ S = PR Juds
TeT, FCOT

=3 ¥ [wo-rro %—Ppg“") ds

TeT, FCOT
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From Schwarz inequality and the interpolation theory we have

by Z/ %_ngvh) vids

TeT, FCOT
8vh 8vh
SO D T [

TeTn FCOT

<C > hlohrlonlar < Chldlalvnlan.
TETh

Consequently, we obtain that V¢ € H'(Q), Yo, € Vio, i,5 € {1,2},

2
|3 [ (o * g )] < OHlhall

117

(3.3)

We obtain the conclusion of the lemma from (3.3), the interpolation theory and the following

equality,
ap(u,vp) —(A%u, I} vg)

Sy [ oo,

=1 TET,

8vh 8Auavh
+Z Z/ o 3xi>dx

i=1T€eT,

0%u  0%vy, Pu  Ovp
+ / + — )dz
1<7,;£Z]<2 TGZT Ox;0x; dwdx;  dxidx; 8xj>
Z Z / 8ua2vh ou (%h)d
8%? 8$ 8$28$J 8@ Z.

1<i#£j<2TET

From lemma 3.1, we have

Theorem 3.1. There exists a constant C independent of h and € such that
ellu — unllo,n + [lu — Mhunll1.o < Ch(elulsa + ul2,q)
when u € H3(L).
Proof. Let wy, = Ilju, then

ellu — unlla,n + llu = Munllio < ellu—whll2n + lu—

tellun — wall2n + [T (un — wi)|l10
Set vy, = up, — wp. From (2.4) and (1.1), we have

EQCLh(’Uh, vh)—th (H}Lvh, H}Lvh)

:E2ah(u — Wy, vh) + bh(H,lL(u — wh), H,llvh)
+ 82((A2u, H,llvh) — ap(u, vh))

— ((Au, 1T} v,) + by (I} u, H}Lvh))
From the interpolation theory, (3.1) and (3.2),

e%an (vn, vn) + bn (I vp, o) < Chleluls,o + |ul2.0)(elvnl2,n + [T vn]1.0)-

(3.4)
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Since
e |lvnll3,n + IMLvallf o < C(a2ah(vh, vp) + bh(H;llvh,H,lLUh)>
we obtain that
ellun = wnllzn + 1T, (un — wn)llne < Chieluls.a + [ul20).
The theorem follows from the interpolation theory, (3.6) and (3.7).

(3.7)

Theorem 3.2. If Q is convex, then there exists a constant C independent of h and € such that

ellu —unll2,n + [Ju—

Proof. From the interpolation theory,
lu = hul3, < Clulz,ollu — Mpulla,n < Chlulzolulso
By lemma 1.1, we have
ellu = Thullan < CAY| flo0.
Similar to (4.4) in [4], we can show that
lv = v]% o < Chlvhielvlze, Vo€ HF ().
Using (3.10), we obtain
Ju = T (u = u) 2 < Chlu— w01 0fu —
and by the interpolation theory,
lu® — 1T} 1.0 < Chl|u’|2.q.
From lemma 1.1 and the following inequalities
w20 < Cllflo.0
lu =Ml < flu—u® =10 (u—u°) 10 + [lu’ — Iu

we have

lu = ulle < ChY2| fllo.0-
Set vy, = up, — Ipu. Then H,llvh € H}(Q) and
| bp (T3, T vp) + (Au, T op)| = | ba(u — T u, o).
From (3.11) and Schwarz inequality,
| bn (I u, I 0n) + (Aw, I0n)| < CRY2| fllo,allTThon1,0-
Now take ¢ € H'(Q2) and i,j € {1,2}. From the proof of lemma 3.1, we have

PIWACE 28 29

<SS lo-Pholor| 5 - PG,

TeT, FCOT

Since

1/2 1/2
[ ozllallyz

we have, by the interpolation theory

8? Uh 8(}5 8vh 1/2 1/2 1/2
’ Z / 5%5% 6;101 )d ’<Oh ||¢H0QH¢||1,Q|Uh|2,h-

If e <h, then by Green formula

> [ ge iy, 5 [ ),

TET TETh i

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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From Schwarz inequality, the interpolation thoery and (3.13), we obtain

|5 [ g < 3 petoan |

TETh TETH
+ Z H¢”O,T|Hllzvh — Unl2,T
TEThH
<C(h2|16 N/l Sl ey + 1llo.c) [vnlz,.
Hence when € < h
8(}5 8 H Vp — 1/2 1/2
2| > / T } < CR2 (219 I0ILG + =2 Nllo.0 ) lonlzn.  (3.15)
TET, v

When € > h, by Schwarz inequality and the interpolation theory we have,

1)
’ ) / (%c h O = ) ]< Che?|pl1.alvnlan < ChY25/2|¢|1 qlvnlon. (3.16)
TETh v

From lemma 1.1, (3.4), (3.14), (3.15) and (3.16) we obtain
€2| ah(u, vh) - (AQ’UJ, H;ll’Uh)| < Cah1/2|‘f|‘oﬁgz|vh|21h. (317)
Combining (3.9), (3.11), (3.12), (3.17) and the proof of theorem 3.1, we obtain the theorem.

4. Numerical Results

In this section, we will show some numerical results of the modified Morley element methods.
We will use the same example used in [4] for comparison.

Let © = [0,1] x [0,1] and u(z) = (sin(wwl)sin(wxg))2. For ¢ > 0, set f = e2A%u — Au.
Then w is the solution of problem (1.1) when e > 0, and is the solution of problem (1.5) when
e = 0. For the rectangle Morley element, 2 is divided into h x h squares, and for Morley
element, each square is further divided into two triangles by the diagonal with a negative slash.

Define

1/2
= (52ah(vh,vh) + bh(H;ll’Uh,H;lth)) / ,  Yup € Vi

Different values of € and h are chosen to demonstrate the behaviors of the following relative
error of two modified Morley element methods,

l|up, — unllc.n
|

where wuy, is the solution of problem (2.4) and uh denote the interpolant of u by Morley element
or rectangular Morley element.

Let g = AZ%u, then u is the solution of the following boundary value problem of biharmonic
equation,

E.p, = (4.1)

A%y =g, in €,
oo = ou B (4.2)
o= B lea ~

For comparison, we also consider the error of finite element solution to problem (4.2). Let
up, € Vo be the solution of the following problem,

ah(ﬁh, ’Uh) = (g,H,lLvh), Y, € Vio. (4.3)
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In this situation, the relative error Ej, is presented by

ah(u}ll - ﬁh,u,ll — ﬂh)
an(uj,, uj,)
For the modified Morley element method and the modified rectangular Morley element

E? = (4.4)

method, E; ; and Ej, corresponding some € and h, are listed in Table 1 and Table 2 respectively.

Table 1. Modified Morley Element Method

e\ h 273 274 27° 270
0 0.0576 | 0.0145 | 0.0036 | 0.0009
2~ 10 0.0577 | 0.0146 | 0.0037 | 0.0009
278 0.0586 | 0.0156 | 0.0046 | 0.0017
2-6 0.0713 | 0.0266 | 0.0119 | 0.0057
271 0.1653 | 0.0832 | 0.0418 | 0.0210
272 0.3404 | 0.1749 | 0.0885 | 0.0451
2v 0.3869 | 0.1979 | 0.1000 | 0.0512
Biharmonic | 0.3908 | 0.1998 | 0.1010 | 0.0517

Table 2. Modified Rectangular Morley Element Method

e\ h 277 271 27° 27°
0 0.0205 | 0.0046 | 0.0011 | 0.0002
2~ 10 0.0205 | 0.0047 | 0.0011 | 0.0003
278 0.0211 | 0.0052 | 0.0016 | 0.0006
2 0.0285 | 0.0107 | 0.0049 | 0.0024
277 0.0757 | 0.0360 | 0.0179 | 0.0091
272 0.1568 | 0.0770 | 0.0392 | 0.0211
2v 0.1774 | 0.0875 | 0.0449 | 0.0246
Biharmonic | 0.1791 | 0.0884 | 0.0453 | 0.0249

From Table 1 we see that the modified Morley element method, unlike Morley element

method (see Table 1 in [4]), converges for all € € [0,1]. More precisely, the result shows that
E. j, tends to Ey j, as € approaches 0, while E. 5, is linear with respect to h as well as E), is when
¢ is large. That is, the modified Morley element method behaves in the way that the conforming
linear element does for Poisson equation when ¢ is small, while it likes Morley element for the
biharmoni equation when ¢ is large.

We can get the similar discussion about the modified rectangular Morley element method

from Table 2.
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