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Abstract

This paper proposes a modified Morley element method for a fourth order elliptic
singular perturbation problem. The method also uses Morley element or rectangle Morley
element, but linear or bilinear approximation of finite element functions is used in the lower
part of the bilinear form. It is shown that the modified method converges uniformly in the
perturbation parameter.
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1. Introduction

Let Ω be a bounded polygonal domain of R2. Denote the boundary of Ω by ∂Ω. For
f ∈ L2(Ω), we consider the following boundary value problem of fourth order elliptic singular
perturbation equation:







ε2∆2u − ∆u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω

= 0
(1.1)

where ν = (ν1, ν2)
⊤ is the unit outer normal to ∂Ω, ∆ is the standard Laplacian operator and

ε is a real small parameter with 0 < ε ≤ 1. When ε → 0 the differential equation formally
degenerates to Poisson equation.

To overcome the C1 difficult, it is prefer to using nonconforming finite element to solve
problem (1.1). Since the differential equation degenerates to Poisson equation as ε → 0, C0

nonconforming elements seem better to be used. An C0 nonconforming finite element was
proposed in [4], and its uniform convergence in ε was shown.

It is known that Morley element is not C0 element and it is divergent for Poisson equation
(see [6]). When Morley element is applied to solve problem (1.1), it fails when ε → 0 (see [4]).
On the other hand, we have noticed the remark in the end of paper [4]: the best result uniformly
in ε seems to be order of O(h1/2) for any finite element method to problem (1.1). Here h is the
mesh size. Since Morley element has the least number of element degrees of freedom, we prefer
to use a method which still uses the degrees of freedom of Morley element to solve problem
(1.1).
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In this paper, we will propose a modified Morley element method for problem (1.1). The
method also uses Morley element, but the linear approximation of finite element functions is
used in the part of the bilinear form corresponding to the second order differential term. The
modified method degenerates to the conforming linear element method for Poisson equation
when ε = 0, and this is consistent with the degenerate case of problem (1.1). We will show that
the modified method converges uniformly in perturbation parameter ε.

The modified rectangle Morley element method is also considered in this paper.
The paper is organized as follows. The rest of this section lists some preliminaries. Section

2 gives the detail descriptions of the modified Morley element method. Section 3 shows the
uniform convergence of the method. The last section gives some numerical results.

For nonnegative integer s, Hs(Ω), ‖ · ‖s,Ω and | · |s,Ω denote the usual Sobolev space, norm
and semi-norm respectively. Let Hs

0(Ω) be the closure of C∞
0 (Ω) in Hs(Ω) with respect to the

norm ‖ · ‖s,Ω and (·, ·) denote the inner product of L2(Ω). Define

a(v, w) =

∫

Ω

2
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
dx, ∀v, w ∈ H2(Ω). (1.2)

b(v, w) =

∫

Ω

2
∑

i=1

∂v

∂xi

∂w

∂xi
dx, ∀v, w ∈ H1(Ω). (1.3)

The weak form of problem (1.1) is: find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ H2

0 (Ω). (1.4)

Let u0 be the solution of following boundary value problem:
{

−∆u0 = f, in Ω,

u0|∂Ω = 0
(1.5)

The following lemma is shown in paper [4].

Lemma 1.1. If Ω is convex, then there exists a constant C independent of ε such that

|u|2,Ω + ε|u|3,Ω ≤ Cε−
1

2 ‖f‖0,Ω (1.6)

|u − u0|1,Ω ≤ Cε
1

2 ‖f‖0,Ω (1.7)

for all f ∈ L2(Ω).

2. Modified Morley Element Method

For a subset B ⊂ R2 and r a nonnegative integer, let Pr(B) be the space of all polynomials
with degree not greater than r.

Morley Element
Given a triangle T , its three vertices is denoted by aj , 1 ≤ j ≤ 3. The edge of T opposite

aj is denoted by Fj , 1 ≤ j ≤ 3. Denote the measures of T and Fi by |T | and |Fi| respectively.
Morley element can be described by (T, PT , ΦT ) with

1) T is a triangle.

2) PT = P2(T ).

3) ΦT is the vector of degrees of freedom whose components are:

v(aj),
1

|Fj |

∫

Fj

∂v

∂ν
ds, 1 ≤ j ≤ 3

for v ∈ C1(T ).
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Rectangle Morley Element
Given a rectangle T , its four vertices and edges are denoted by aj and Fj , 1 ≤ j ≤ 4,

respectively. Rectangle Morley element can be described by (T, PT , ΦT ) with

1) T is a rectangle with its edges parallel to some coordinate axes respectively.

2) PT = P2(T ) + span{ x3
1, x

3
2}.

3) ΦT is the vector of degrees of freedom whose components are:

v(aj),
1

|Fj |

∫

Fj

∂v

∂ν
ds, 1 ≤ j ≤ 4

for v ∈ C1(T ).

The degrees of freedom of these two elements are shown in Fig. 1.

� -
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Rectangle Morley element

••

• •
?

3Y

•

• •

Morley element

Fig. 1

The Morley element and its convergence for biharmonic equations can be found in [1-3,5],
while the rectangle Morley element in [7].

For mesh size h, take Th a triangulation of Ω. For Morley element Th consists of triangles,
otherwise Th consists of rectangles with their edges parallel to some coordinate axes respectively.
For each T ∈ Th, let hT be the diameter of the smallest disk containing T and ρT be the
diameter of the largest disk contained in T . Let {Th} be a family of triangulations with h → 0.
Throughout the paper, we assume that {Th} is quasi-uniform, namely it satisfied that hT ≤
h ≤ ηρT , ∀T ∈ Th for a positive constant η independent of h.

For each Th, let Vh and Vh0 be the corresponding finite element spaces associated with
Morley element or with rectangle Morley element for the discretization of H2(Ω) and H2

0 (Ω)
respectively. This defines two families of finite element spaces {Vh} and {Vh0}. It is known
that Vh 6⊂ H2(Ω) and Vh0 6⊂ H2

0 (Ω). Let Πh be the interpolation operator corresponding to Th

and Morley element or the rectangular Morley element.
We define

ah(v, w) =
∑

T∈Th

∫

T

2
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
dx, v, w ∈ H2(Ω) + Vh (2.1)

bh(v, w) =
∑

T∈Th

∫

T

2
∑

i=1

∂v

∂xi

∂w

∂xi
dx, v, w ∈ H1(Ω) + Vh (2.2)

The standard finite element method for problem (1.4) corresponding to Morley element or to
rectangle Morley element is: find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(uh, vh) = (f, vh), ∀vh ∈ Vh0. (2.3)

For Morley element, let Π1

h be the interpolation operator corresponding to linear conforming
element for second order partial differential equation and Th. For the rectangle Morley element
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let Π1

h be the bilinear interpolation operator. We consider the following modified Morley element
method: to find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(Π1

huh, Π1

hvh) = (f, Π1

hvh), ∀vh ∈ Vh0 (2.4)

Problem (2.4) has unique solution when ε > 0. When ε = 0, the problem degenerates to

bh(Π1

huh, Π1

hvh) = (f, Π1

hvh), ∀vh ∈ Vh0 (2.5)

Although the solution of problem (2.5) is not unique yet, Π1

huh is uniquely determined. Actually,
Π1

huh is the exact finite element solution of linear or bilinear conforming elemet for problem
(1.5). Hence the modified Morley element method seems to give a more natural way to solve
problem (1.1).

We introduce the following mesh dependent norm ‖ · ‖m,h and semi-norm | · |m,h:






















‖v‖m,h =
(

∑

T∈Th

‖v‖2

m,T

)1/2

,

|v|m,h =
(

∑

T∈Th

|v|2m,T

)1/2

,

∀v ∈ Vh + Hm(Ω).

3. Convergence Analysis

In this section, we discuss the convergence properties of the modified Morley element meth-
ods in previous section.

Let u and uh be the solutions of problem (1.4) and (2.4) respectively.

Lemma 3.1. There exists a constant C independent of h and ε such that ∀vh ∈ Vh0

| bh(Π1

hu, Π1

hvh) + (∆u, Π1

hvh)| ≤ Ch|u|2,Ω|Π
1

hvh|1,h (3.1)

| ah(u, vh) − (∆2u, Π1

hvh)| ≤ Ch|u|3,Ω|vh|2,h (3.2)

when u ∈ H3(Ω).

Proof. Let vh ∈ Vh0. Then Π1

hvh ∈ H1
0 (Ω) and

| bh(Π1

hu, Π1

hvh) + (∆u, Π1

hvh)| = | bh(u − Π1

hu, Π1

hvh)|.

By the interpolation theory and Schwarz inequality we obtain (3.1).

Now take φ ∈ H1(Ω). Given T ∈ Th and an edge F of T , let P 0

F be the orthogonal projection
operator from L2(F ) to P0(F ).

Let i, j ∈ {1, 2}. It is known that the integral average of ∂
∂xj

vh on F is continuous through

F and vanishes when F ⊂ ∂Ω. Then Green formula gives

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

dx

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xj
νids =

∑

T∈Th

∑

F⊂∂T

∫

F

φ
∂vh

∂xj
νids

=
∑

T∈Th

∑

F⊂∂T

∫

F

φ
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νids

=
∑

T∈Th

∑

F⊂∂T

∫

F

(φ − P 0

F φ)
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νids
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From Schwarz inequality and the interpolation theory we have
∣

∣

∣

∑

T∈Th

∑

F⊂∂T

∫

F

(φ − P 0

F φ)
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)

νids
∣

∣

∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ − P 0

F φ‖0,F

∥

∥

∥

∂vh

∂xj
− P 0

F

∂vh

∂xj

∥

∥

∥

0,F

≤ C
∑

T∈Th

h|φ|1,T |vh|2,T ≤ Ch|φ|1,Ω|vh|2,h.

Consequently, we obtain that ∀φ ∈ H1(Ω), ∀vh ∈ Vh0, i, j ∈ {1, 2},
∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

dx
∣

∣

∣
≤ Ch|φ|1,Ω|vh|2,h. (3.3)

We obtain the conclusion of the lemma from (3.3), the interpolation theory and the following
equality,

ah(u, vh) −(∆2u, Π1

hvh)

=
2

∑

i=1

∑

T∈Th

∫

T

∂∆u

∂xi

∂(Π1

hvh − vh)

∂xi
dx

+

2
∑

i=1

∑

T∈Th

∫

T

(

∆u
∂2vh

∂x2
i

+
∂∆u

∂xi

∂vh

∂xi

)

dx

+
∑

1≤i6=j≤2

∑

T∈Th

∫

T

( ∂2u

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3u

∂x2
i ∂xj

∂vh

∂xj

)

dx

−
∑

1≤i6=j≤2

∑

T∈Th

∫

T

(∂2u

∂x2
i

∂2vh

∂x2
j

+
∂3u

∂x2
i ∂xj

∂vh

∂xj

)

dx.

(3.4)

From lemma 3.1, we have

Theorem 3.1. There exists a constant C independent of h and ε such that

ε‖u − uh‖2,h + ‖u − Π1

huh‖1,Ω ≤ Ch(ε|u|3,Ω + |u|2,Ω) (3.5)

when u ∈ H3(Ω).

Proof. Let wh = Πhu, then

ε‖u − uh‖2,h + ‖u − Π1

huh‖1,Ω ≤ ε‖u − wh‖2,h + ‖u − Π1

hwh‖1,Ω

+ε‖uh − wh‖2,h + ‖Π1

h(uh − wh)‖1,Ω

(3.6)

Set vh = uh − wh. From (2.4) and (1.1), we have

ε2ah(vh, vh)+bh(Π1

hvh, Π1

hvh)

=ε2ah(u − wh, vh) + bh(Π1

h(u − wh), Π1

hvh)

+ ε2

(

(∆2u, Π1

hvh) − ah(u, vh)
)

−
(

(∆u, Π1

hvh) + bh(Π1

hu, Π1

hvh)
)

From the interpolation theory, (3.1) and (3.2),

ε2ah(vh, vh) + bh(Π1

hvh, Π1

hvh) ≤ Ch(ε|u|3,Ω + |u|2,Ω)(ε|vh|2,h + |Π1

hvh|1,Ω).
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Since
ε2‖vh‖

2

2,h + ‖Π1

hvh‖
2

1,Ω ≤ C
(

ε2ah(vh, vh) + bh(Π1

hvh, Π1

hvh)
)

we obtain that

ε‖uh − wh‖2,h + ‖Π1

h(uh − wh)‖1,Ω ≤ Ch(ε|u|3,Ω + |u|2,Ω). (3.7)

The theorem follows from the interpolation theory, (3.6) and (3.7).

Theorem 3.2. If Ω is convex, then there exists a constant C independent of h and ε such that

ε‖u − uh‖2,h + ‖u − Π1

huh‖1,Ω ≤ Ch1/2‖f‖0,Ω. (3.8)

Proof. From the interpolation theory,

‖u − Πhu‖2

2,h ≤ C|u|2,Ω‖u − Πhu‖2,h ≤ Ch|u|2,Ω|u|3,Ω

By lemma 1.1, we have
ε‖u − Πhu‖2,h ≤ Ch1/2‖f‖0,Ω. (3.9)

Similar to (4.4) in [4], we can show that

‖v − Π1

hv‖2

1,Ω ≤ Ch|v|1,Ω|v|2,Ω, ∀v ∈ H2

0 (Ω). (3.10)

Using (3.10), we obtain

‖u − u0 − Π1

h(u − u0)‖2

1,Ω ≤ Ch|u − u0|1,Ω|u − u0|2,Ω

and by the interpolation theory,

‖u0 − Π1

hu0‖1,Ω ≤ Ch|u0|2,Ω.

From lemma 1.1 and the following inequalities

‖u0‖2,Ω ≤ C‖f‖0,Ω

‖u − Π1

hu‖1,Ω ≤ ‖u − u0 − Π1

h(u − u0)‖1,Ω + ‖u0 − Π1

hu0‖1,Ω

we have
‖u − Π1

hu‖1,Ω ≤ Ch1/2‖f‖0,Ω. (3.11)

Set vh = uh − Πhu. Then Π1

hvh ∈ H1
0 (Ω) and

| bh(Π1

hu, Π1

hvh) + (∆u, Π1

hvh)| = | bh(u − Π1

hu, Π1

hvh)|.

From (3.11) and Schwarz inequality,

| bh(Π1

hu, Π1

hvh) + (∆u, Π1

hvh)| ≤ Ch1/2‖f‖0,Ω‖Π
1

hvh‖1,Ω. (3.12)

Now take φ ∈ H1(Ω) and i, j ∈ {1, 2}. From the proof of lemma 3.1, we have
∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

dx
∣

∣

∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ − P 0

F φ‖0,F

∥

∥

∥

∂vh

∂xj
− P 0

F

∂vh

∂xj

∥

∥

∥

0,F
.

Since
‖φ − P 0

F φ‖0,F ≤ 2‖φ‖0,F ≤ 2‖φ‖0,∂T ≤ C‖φ‖
1/2

0,T ‖φ‖
1/2

1,T (3.13)

we have, by the interpolation theory
∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

dx
∣

∣

∣
≤ Ch1/2‖φ‖

1/2

0,Ω‖φ‖
1/2

1,Ω|vh|2,h. (3.14)

If ε ≤ h, then by Green formula
∑

T∈Th

∫

T

∂φ

∂xi

∂(Π1

hvh − vh)

∂xi
dx =

∑

T∈Th

∫

∂T

φ
∂(Π1

hvh − vh)

∂xi
νids



Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem 119

−
∑

T∈Th

∫

T

φ
∂2(Π1

hvh − vh)

∂x2
i

dx

From Schwarz inequality, the interpolation thoery and (3.13), we obtain
∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(Π1

hvh − vh)

∂xi
dx

∣

∣

∣
≤

∑

T∈Th

‖φ‖0,∂T

∥

∥

∥

∂(Π1

hvh − vh)

∂xi

∥

∥

∥

0,∂T

+
∑

T∈Th

‖φ‖0,T |Π
1

hvh − vh|2,T

≤C
(

h1/2‖φ‖
1/2

0,Ω‖φ‖
1/2

1,Ω + ‖φ‖0,Ω

)

|vh|2,h.

Hence when ε ≤ h

ε2

∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(Π1

hvh − vh)

∂xi
dx

∣

∣

∣
≤ Ch1/2

(

ε2‖φ‖
1/2

0,Ω‖φ‖
1/2

1,Ω + ε3/2‖φ‖0,Ω

)

|vh|2,h. (3.15)

When ε > h, by Schwarz inequality and the interpolation theory we have,

ε2

∣

∣

∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(Π1

hvh − vh)

∂xi
dx

∣

∣

∣
≤ Chε2|φ|1,Ω|vh|2,h ≤ Ch1/2ε5/2|φ|1,Ω|vh|2,h. (3.16)

From lemma 1.1, (3.4), (3.14), (3.15) and (3.16) we obtain

ε2| ah(u, vh) − (∆2u, Π1

hvh)| ≤ Cεh1/2‖f‖0,Ω|vh|2,h. (3.17)

Combining (3.9), (3.11), (3.12), (3.17) and the proof of theorem 3.1, we obtain the theorem.

4. Numerical Results

In this section, we will show some numerical results of the modified Morley element methods.
We will use the same example used in [4] for comparison.

Let Ω = [0, 1] × [0, 1] and u(x) =
(

sin(πx1) sin(πx2)
)2

. For ε ≥ 0, set f = ε2∆2u − ∆u.
Then u is the solution of problem (1.1) when ε > 0, and is the solution of problem (1.5) when
ε = 0. For the rectangle Morley element, Ω is divided into h × h squares, and for Morley
element, each square is further divided into two triangles by the diagonal with a negative slash.

Define

‖vh‖ε,h =
(

ε2ah(vh, vh) + bh(Π1

hvh, Π1

hvh)
)1/2

, ∀vh ∈ Vh0.

Different values of ε and h are chosen to demonstrate the behaviors of the following relative
error of two modified Morley element methods,

Eε,h =
‖uI

h − uh‖ε,h

‖uI
h‖ε,h

(4.1)

where uh is the solution of problem (2.4) and uI
h denote the interpolant of u by Morley element

or rectangular Morley element.
Let g = ∆2u, then u is the solution of the following boundary value problem of biharmonic

equation,






∆2u = g, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω

= 0
(4.2)

For comparison, we also consider the error of finite element solution to problem (4.2). Let
ũh ∈ Vh0 be the solution of the following problem,

ah(ũh, vh) = (g, Π1

hvh), ∀vh ∈ Vh0. (4.3)
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In this situation, the relative error Ẽh is presented by

Ẽ2

h =
ah(uI

h − ũh, uI
h − ũh)

ah(uI
h, uI

h)
(4.4)

For the modified Morley element method and the modified rectangular Morley element
method, Eε,h and Ẽh, corresponding some ε and h, are listed in Table 1 and Table 2 respectively.

Table 1. Modified Morley Element Method
ε \ h 2−3 2−4 2−5 2−6

0 0.0576 0.0145 0.0036 0.0009

2−10 0.0577 0.0146 0.0037 0.0009

2−8 0.0586 0.0156 0.0046 0.0017

2−6 0.0713 0.0266 0.0119 0.0057

2−4 0.1653 0.0832 0.0418 0.0210

2−2 0.3404 0.1749 0.0885 0.0451

20 0.3869 0.1979 0.1000 0.0512

Biharmonic 0.3908 0.1998 0.1010 0.0517

Table 2. Modified Rectangular Morley Element Method
ε \ h 2−3 2−4 2−5 2−6

0 0.0205 0.0046 0.0011 0.0002

2−10 0.0205 0.0047 0.0011 0.0003

2−8 0.0211 0.0052 0.0016 0.0006

2−6 0.0285 0.0107 0.0049 0.0024

2−4 0.0757 0.0360 0.0179 0.0091

2−2 0.1568 0.0770 0.0392 0.0211

20 0.1774 0.0875 0.0449 0.0246

Biharmonic 0.1791 0.0884 0.0453 0.0249

From Table 1 we see that the modified Morley element method, unlike Morley element
method (see Table 1 in [4]), converges for all ε ∈ [0, 1]. More precisely, the result shows that
Eε,h tends to E0,h as ε approaches 0, while Eε,h is linear with respect to h as well as Ẽh is when
ε is large. That is, the modified Morley element method behaves in the way that the conforming
linear element does for Poisson equation when ε is small, while it likes Morley element for the
biharmoni equation when ε is large.

We can get the similar discussion about the modified rectangular Morley element method
from Table 2.
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