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Abstract

Convergence properties of trust-region methods for unconstrained nonconvex optimiza-

tion is considered in the case where information on the objective function’s local curvature

is incomplete, in the sense that it may be restricted to a fixed set of “test directions”

and may not be available at every iteration. It is shown that convergence to local “weak”

minimizers can still be obtained under some additional but algorithmically realistic condi-

tions. These theoretical results are then applied to recursive multigrid trust-region meth-

ods, which suggests a new class of algorithms with guaranteed second-order convergence

properties.
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1. Introduction

It is highly desirable that iterative algorithms for solving nonconvex unconstrained opti-
mization problems of the form

min
x∈<n

f(x) (1.1)

converge to solutions that are local minimizers of the objective function f , rather than mere
first-order critical points, or, at least, that the objective function f becomes asymptotically
convex. Trust-region methods (see Conn, Gould and Toint [2] for an extensive coverage) are
well-known for being able to deliver these guarantees under assumptions that are not too re-
strictive in general. In particular, it may be proved that every limit point of the sequence of
iterates satisfies the second-order necessary optimality conditions under the assumption that
the smallest eigenvalue of the objective function’s Hessian is estimated at each iteration. There
exist circumstances, however, where this assumption appears either costly or irrealistic. We are
in particular motivated by multigrid recursive trust-region methods of the type investigated in
[3]: in these methods, gradient smoothing is achieved on a given grid by successive coordinate
minimization, a procedure that only explores curvature along the vectors of the canonical basis.
As a consequence, some negative curvature directions on the current grid may be undetected.
Moreover, these smoothing iterations are intertwined with recursive iterations which only give
information on coarser grids. As a result, information on negative curvature directions at a
given iteration may either be incomplete or simply missing, causing the assumption required
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for second-order convergence to fail. Another interesting example is that of algorithms in which
the computation of the step may require the explicit determination of the smallest eigenvalue
of the objective function’s Hessian in order to take negative curvature into account (see, for
instance, [5]). Because of cost, one might then wish to avoid the eigenvalue calculation at every
iteration, which again jeopardizes the condition ensuring second-order convergence.

Our purpose is therefore to investigate what can be said about second-order convergence
of trust-region methods when negative curvature information is incomplete or missing at some
iterations. We indicate that a weaker form of second-order optimality may still hold at the cost
of imposing a few additional assumptions that are algorithmically realistic. Section 2 introduces
the necessary modifications of the basic trust-region algorithm, whose second-order convergence
properties are then investigated in Section 3. Application to the recursive multigrid trust-region
methods is then discussed in more detail in Section 4. Some conclusions and extensions are
finally proposed in Section 5.

2. A Trust-region Algorithm with Incomplete Curvature Information

We consider the unconstrained optimization problem (1.1), where f is a twice-continu-
ously differentiable objective function which maps <n into < and is bounded below. We are
interested in using a trust-region algorithm for solving (1.1). Methods of this type are iterative
and, given an initial point x0, produce a sequence {xk} of iterates (hopefully) converging to
a local minimizer of the problem, i.e., to a point x∗ where g(x∗)

def= ∇xf(x∗) = 0 (first-order
convergence) and ∇xxf(x∗) is positive semi-definite (second-order convergence). At each iterate
xk, classical trust-region methods build a model mk(xk + s) of f(xk + s). This model is then
assumed to be adequate in a “trust region” Bk, defined as a sphere of radius ∆k > 0 centered
at xk, i.e.,

Bk = {xk + s ∈ <n | ‖s‖ ≤ ∆k},
where ‖ · ‖ is the Euclidean norm. A step sk is then computed that “sufficiently reduces” this
model in this region, which is typically achieved by (approximately) solving the subproblem

min
‖s‖≤∆k

mk(xk + s).

The objective function is then computed at the trial point xk+sk and this trial point is accepted
as the next iterate if and only if the ratio

ρk
def=

f(xk)− f(xk + sk)
mk(xk)−mk(xk + sk)

(2.1)

is larger than a small positive constant η1. The value of the radius is finally updated to ensure
that it is decreased when the trial point cannot be accepted as the next iterate, and is increased
or unchanged if ρk is sufficiently large. In many practical trust-region algorithms, the model
mk(xk + s) is quadratic and takes the form

mk(xk + s) = f(xk) + 〈gk, s〉+ 1
2 〈s,Hks〉, (2.2)

where
gk

def= ∇xmk(xk) = ∇xf(xk), (2.3)

Hk is a symmetric n×n approximation of ∇xxf(xk) and 〈·, ·〉 is the Euclidean inner product. If
the model is not quadratic, it is assumed that it is twice-continuously differentiable and that the
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conditions f(xk) = mk(xk) and (2.3) hold. The symbol Hk then denotes the model’s Hessian
at the current iterate, that is,

Hk = ∇xxmk(xk).

We refer the interested reader to [2] for an extensive description and analysis of trust-region
methods.

A key for the convergence analysis is to clarify what is precisely meant by “sufficient model
reduction”. It is well-known that, if the step sk satisfies the Cauchy condition

mk(xk)−mk(xk + sk) ≥ κred‖gk‖min
[ ‖gk‖
1 + ‖Hk‖ , ∆k

]
(2.4)

for some constant κred ∈ (0, 1), then one can prove first-order convergence, i.e.

lim
k→∞

‖gk‖ = 0, (2.5)

under some very reasonable assumptions (see [2, Theorem 6.4.6]). Thus limit points x∗ of the
sequence of iterates are first-order critical, which is to say that ∇xf(x∗) = 0. Interestingly,
obtaining a step sk satisfying the Cauchy condition does not require the knowledge of the
complete Hessian Hk, as could possibly be inferred from the term ‖Hk‖ in (2.4). In fact,
minimization of the model in the intersection of the steepest descent direction with Bk is
sufficient, which only requires the knowledge of 〈gk,Hkgk〉, that is model curvature along a
single direction.

Under some additional assumptions, it is also possible to prove that every limit point x∗ of
the sequence of iterates is second-order critical in that ∇xxf(x∗) is positive semi-definite. In
particular, and most crucially for our present purpose, one has to assume that, whenever τk,
the smallest eigenvalue of Hk, is negative, the model exploits this information in the sense that

mk(xk)−mk(xk + sk) ≥ κsod|τk|min[τ2
k ,∆2

k] (2.6)

for some constant κsod ∈ (0, 1
2 ) [2, Assumption AA.2, p. 153].

As indicated above, our objective is to weaken (2.6) in two different ways. First, we no
longer assume that the smallest eigenvalue of Hk is available, but merely that we can compute

χk = min
d∈D

〈d,Hkd〉, (2.7)

where D is a fixed (finite or infinite) closed set of normalized test directions d. Moreover, the
value of χk will only be known at a subset of iterations indexed by T (the test iterations). Of
course, as in usual trust-region methods, we expect to use this information when available, and
we therefore impose that, whenever k ∈ T and χk < 0,

mk(xk)−mk(xk + sk) ≥ κwcc|χk|min[χ2
k,∆2

k] (2.8)

for some constant κwcc ∈ (0, 1
2 ), which is a weak version of (2.6). We call this condition the weak

curvature condition. Given this limited curvature information, it is unrealistic to expect con-
vergence to points satisfying the usual second-order necessary optimality conditions. However,
the definition of χk suggests that we may obtain convergence to weakly second-order critical
points (with respect to the directions in D). Such a point x∗ is defined by the property that

∇xf(x∗) = 0 and χ(x∗)
def= min

d∈D
〈d,∇xxf(x∗)d〉 ≥ 0. (2.9)

But what happens when χk is not known (k 6∈ T )? Are we then free to choose just any step
satisfying the Cauchy condition (2.4)? Our analysis shows that the quadratic model decrease
condition

mk(xk)−mk(xk + sk) ≥ κqmd‖sk‖2 (2.10)
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(for some constant κqmd > 0) is all we need to impose for k 6∈ T in order to guarantee convergence
to weakly second-order critical points. As we will show in Lemma 2.1 below, this easily verifiable
condition is automatically satisfied if the model is quadratic and the curvature along the step
sk safely positive. It is related to the step-size rule discussed in the linesearch framework in [4],
[6] and [7], where the step is also restricted to meet a quadratic decrease condition on the value
of the objective function. In practice, the choice of the step sk may be implemented as a two
stage process, as follows. If χk is known at iteration k, one computes a step in the trust region
satisfying both (2.4) and, if χk < 0, (2.8), thus exploiting negative curvature if present. If χk is
unknown, one first computes a step in the trust region satisfying (2.4). If it also satisfies (2.10),
we may then proceed. Otherwise, the value of χk is computed (forcing the inclusion k ∈ T ) and
a new step is recomputed in the trust region, which exploits any detected negative curvature
in that it satisfies both (2.4) and (2.8) (if χk < 0).

We now incorporate all this discussion in the formal statement of our trust-region algorithm
with incomplete curvature information, which is shown as Algorithm 2.1.

Algorithm 2.1. Algorithm with Incomplete Curvature Information
Step 0: Initialization. An initial point x0 and an initial trust-region radius ∆0 are given.

The constants η1, η2, γ1, γ2, γ3 and γ4 are also given and satisfy 0 < η1 ≤ η2 < 1 and 0 <

γ1 ≤ γ2 < 1 ≤ γ3 ≤ γ4. Compute f(x0) and set k = 0.

Step 1: Step calculation. Compute a step sk satisfying the Cauchy condition (2.4) with
‖sk‖ ≤ ∆k and such that either χk is known and the weak curvature condition (2.8) holds
if χk < 0, or the quadratic model decrease condition (2.10) holds.

Step 2: Acceptance of the trial point. Compute f(xk + sk) and define ρk by (2.1). If
ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 3: Trust-region radius update. Set

∆k+1 ∈




[γ3∆k, γ4∆k] if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ [η1, η2),
[γ1∆k, γ2∆k] if ρk < η1.

(2.11)

Increment k by one and go to Step 1.

As is usual with trust-region methods, we say that iteration k is successful when ρk ≥ η1 and
very successful when ρk ≥ η2. The set S is defined as the index set of all successful iterations.

We now clarify the relation between (2.10) and the curvature along the step, and show that
every step with significant curvature automatically satisfies (2.10).

Lemma 2.1. Suppose that the quadratic model (2.2) is used. Suppose also that, for some ε > 0,
〈sk,Hksk〉 ≥ ε‖sk‖2 and that the minimum of mk(xk+αsk) occurs for α = α∗ ≥ 1. Then (2.10)
holds with κqmd = 1

2ε.

Proof. Our assumptions imply that 〈gk, sk〉 < 0 and that mk(xk +αsk) is a convex quadratic
function in the parameter α, with

α∗ =
|〈gk, sk〉|
〈sk,Hksk〉 and mk(xk + α∗sk) = f(xk)− 1

2α∗|〈gk, sk〉|.

Thus,
mk(xk)−mk(xk + α∗sk) = 1

2α∗|〈gk, sk〉| = κk‖α∗sk‖2,
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where κk is given by

κk =
|〈gk, sk〉|
2α∗‖sk‖2 =

〈sk,Hksk〉
2‖sk‖2 ≥ 1

2ε.

As a consequence, the convex quadratic mk(xk + αsk) and the concave quadratic mk(xk) −
κkα2‖sk‖2 coincide at α = 0 and α = α∗. The value of the former is thus smaller than that of
the latter for α = 1 ∈ [0, α∗], giving

mk(xk + sk) ≤ mk(xk)− κk‖sk‖2 ≤ mk(xk)− 1
2ε‖sk‖2.

Hence (2.10) holds with κqmd = 1
2ε, as requested.

Note that the assumption α∗ ≥ 1 simply states that the step sk does not extend beyond
the one-dimensional minimizer in the direction sk/‖sk‖. This is a very reasonable requirement,
which is, for instance, automatically satisfied if the step is computed by a truncated conjugate-
gradient algorithm.

3. Asymptotic Second-order Properties

We investigate in this section the convergence properties of Algorithm 2.1. We first specify
our assumptions, which we separate between assumptions on the objective function of (1.1),
assumptions on the model mk and assumptions on the algorithm.

Our assumptions on the objective function are identical to those in [2, Chapter 6]:

AF.1 f : <n → < is twice continuously differentiable on <n.

AF.2 The objective function is bounded below, that is, f(x) ≥ κlbf for all x ∈ <n and some
constant κlbf.

AF.3 The Hessian of f is uniformly bounded, that is, ‖∇xxf(x)‖ ≤ κuH− 1 for all x ∈ <n and
some constant κuH > 1.

AF.4 The Hessian of f is Lipschitz continuous with constant κLH on <n, that is, there exists
a constant κLH > 0 such that

‖∇xxf(x)−∇xxf(y)‖ ≤ κLH‖x− y‖ for all x, y ∈ <n.

Beyond our requirement that the model and objective function coincide to first-order, our
assumptions on the model reduce to the following conditions:
AM.1 The Hessian of mk is uniformly bounded, that is, ‖∇xxmk(x)‖ ≤ κuH− 1 for all x ∈ Bk

and all k (possibly choosing a larger value of κuH).

AM.2 The Hessian of mk is Lipschitz continuous, that is,

‖∇xxmk(x)−∇xxmk(y)‖ ≤ κLH‖x− y‖ for all x, y ∈ Bk and all k

(possibly choosing a larger value of κLH).

AM.3 The model’s Hessian at xk coincides with the true Hessian along the test directions and
the current step whenever a first-order critical point is approached, that is,

lim
k→∞

[
max

d∈D∪{sk/‖sk‖}
|〈d, [∇xxf(xk)−Hk]d〉|

]
= 0 when lim

k→∞
‖gk‖ = 0.

Note that this condition obvioulsy holds in the frequent case where (2.2) holds and Hk =
∇xxf(xk). Finally, we make the following assumptions on the algorithm:

AA.1 If k ∈ T \ S, then the next successful iteration after k (if any) belongs to T .

This requirement is motivated by our desire to use negative curvature information when avail-
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able. Thus, if negative curvature is detected in the neighbourhood of xk, we impose that it
cannot be ignored when moving to another iterate. If we choose Hk = ∇xxf(xk), then obvi-
ously χk+j = χk as long as iteration k + j − 1 is unsuccessful (j ≥ 1), and AA.1 automatically
holds. This is also the case if we choose not to update Hessian approximations at unsuccessful
iterations, a very common strategy.

AA.2 There are infinitely many test iterations, that is, |T | = +∞.

If AA.2 does not hold, then no information on curvature is known for large enough k, and there
is no reason to expect convergence to a point satisfying second-order necessary conditions.

We start our convergence analysis by noting that the stated assumptions are sufficient
for ensuring first-order convergence. We state the corresponding result (extracted from [2,
Theorem 6.4.6]) for future reference.

Theorem 3.1. Suppose that AF.1–AF.3 and AM.1 hold. Then (2.5) holds.

Note that only the boundedness of the model’s and objective function’s Hessian is needed
for this result. We next provide a slight reformulation of Lemma 6.5.3 in [2], which we explicitly
need below. This lemma states that the iterations must be asymptotically very successful when
the steps are sufficiently small and a quadratic model decrease condition similar to (2.10) holds.

Lemma 3.1. Suppose that AF.1–AF.4 and AM.1–AM.3 hold. Then, for any κ > 0, there
exists a k1(κ) ≥ 0 such that, if k ≥ k1(κ),

mk(xk)−mk(xk + sk) ≥ κ‖sk‖2 (3.1)

and

‖sk‖ ≤ δ1(κ) def=
(1− η2)κ

2κLH

, (3.2)

then ρk ≥ η2.

Proof. We first use Theorem 3.1 and AM.3 to deduce the existence of a k1(κ) ≥ 0 such that

|〈 sk

‖sk‖ , [∇xxf(xk)−Hk]
sk

‖sk‖〉| ≤ (1− η2)κ (3.3)

for k ≥ k1(κ). Assuming now that k ≥ k1(κ) and that (3.1) and (3.2) hold, we obtain from the
mean-value theorem that, for all k ≥ k1(κ) and for some ξk and ζk in the segment [xk, xk + sk],

|ρk − 1| =
∣∣∣∣
f(xk + sk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣
≤ 1

2κ‖sk‖2 |〈sk,∇xxf(ξk)sk〉 − 〈sk,∇xxmk(ζk)sk〉|

=
1

2κ‖sk‖2 |〈sk, [∇xxf(ξk)−∇xxmk(ζk)]sk〉|

≤ 1
2κ

[
‖∇xxf(ξk)−∇xxf(xk)‖+ |〈 sk

‖sk‖ , [∇xxf(xk)−Hk] sk
‖sk‖〉|

+‖∇xxmk(ζk)−Hk‖
]
,

(3.4)

where we also used (3.1), the triangle inequality and the Cauchy-Schwarz inequality. By AF.4,
AM.2 and the bounds ‖ξk − xk‖ ≤ ‖sk‖ and ‖ζk − xk‖ ≤ ‖sk‖, the inequality (3.4) becomes

|ρk − 1| ≤ 1
κ

[
κLH‖sk‖+

1
2
|〈 sk

‖sk‖ , [∇xxf(xk)−Hk]
sk

‖sk‖〉|
]
.
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The conclusion of the lemma then follows from (3.2) and (3.3).
We now prove that an iteration at which the step is sufficiently small must be asymptotically

very successful if the curvature of the objective function along a test direction is negative.

Lemma 3.2. Suppose that AF.1–AF.4 and AM.1–AM.3 hold. Suppose also that the condition
χ(xki

) ≤ χ∗ is satisfied for some infinite subsequence {ki} and some constant χ∗ < 0. Then
there exist a k2(|χ∗|) ≥ 0 and a δ2(|χ∗|) > 0 such that, if ki ≥ k2(|χ∗|) and 0 < ‖ski

‖ ≤ δ2(|χ∗|),
then ρki ≥ η2.

Proof. Observe first that AM.3, Theorem 3.1 and the inequality χ(xki
) ≤ χ∗ ensure that,

for some kc ≥ 0 sufficiently large,
χki

≤ 1
2χ∗ < 0

for ki ≥ kc. Suppose now that
‖ski

‖ ≤ 1
2 |χ∗| (3.5)

and consider first a ki ≥ kc with ki ∈ T . In this case, the algorithm ensures that (2.8) holds at
iteration ki, and therefore that

mki(xki)−mki(xki + ski) ≥ 1
2κwcc|χ∗| min[ 1

4χ
2
∗,∆

2
ki

]
≥ 1

2κwcc|χ∗| min[ 1
4χ

2
∗, ‖ski

‖2]
= 1

2κwcc|χ∗| ‖ski
‖2,

(3.6)

where we used the inequality ‖ski‖ ≤ ∆ki to derive the second inequality and (3.5) to derive
the last. On the other hand, if ki 6∈ T , then (2.10) holds, which, together with (3.6), gives that

mki
(xki

)−mki
(xki

+ ski
) ≥ min[κqmd, 1

2κwcc|χ∗|] ‖ski
‖2.

This inequality now allows us to apply Lemma 3.1 with

κ = min[κqmd, 1
2κwcc|χ∗|] def= κ(|χ∗|)

for each ki ≥ kc such that (3.5) holds. We then deduce that, if

ki ≥ max[kc, k1(κ(|χ∗|))] def= k2(|χ∗|)
and

0 < ‖ski
‖ ≤ min[ 1

2 |χ∗|, δ1(κ(|χ∗|))] def= δ2(|χ∗|),
then ρki

≥ η2, which completes the proof.
We next proceed to examine the nature of the critical points to which Algorithm 2.1 is

converging under our assumptions. In what follows, we essentially adapt the results of [2,
Section 6.6.3] in our context of incomplete curvature information.

We first consider the case where the number of successful iterations is finite.

Theorem 3.2. Suppose that AF.1–AF.4 and AM.1–AM.3 hold. Suppose also that |S| < +∞.
Then the unique limit point x∗ of the sequence of iterates is weakly second-order critical.

Proof. We first note that Theorem 3.1 guarantees that x∗ is a first-order critical point.
Moreover, since |S| is finite, there exists a last successful iteration ks ≥ 0, and therefore xk =
xks+1 = x∗ for all k > ks. But the mechanism of the algorithm then ensures that

lim
k→∞

∆k = 0. (3.7)
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For the purpose of obtaining a contradiction, we now suppose that χ(x∗) < 0. This implies that
χ(xk) = χ(x∗) < 0 for all k > ks. Applying now Lemma 3.2 to the subsequence {k | k > ks}
and taking (3.7) into account, we then deduce that, for k sufficiently large, ρk ≥ η2 and thus
k ∈ S. This is impossible since |S| < +∞. Hence χ(x∗) ≥ 0, and the proof is complete.

Having proved the desired result for |S| < +∞, we now assume, for the rest of this section,
that |S| = +∞. Combining this assumption with AA.1 and AA.2 then yields the following
result.

Lemma 3.3. Suppose that AA.1–AA.2 hold and that |S| = +∞. Then

|S ∩ T | = +∞. (3.8)

Moreover, for any infinite subsequence {ki} ⊆ T , there exists an infinite subsequence {kj} ⊆
S ∩ T such that {xkj

} ⊆ {xki
}.

Proof. If S ∩ T is finite, then, since T is infinite because of AA.2, all test iterations k ∈ T
sufficiently large must be unsuccessful, which is impossible because of AA.1 and the infinite
nature of S. Hence (3.8) holds. Consider now an infinite subsequence {ki} ⊆ T . The fact
that S is infinite ensures that there exists a successful iteration ki + pi (pi ≥ 0) after ki such
that xki+pi

= xki
. Assumption AA.1 then guarantees that ki + pi ∈ S ∩ T . Hence the desired

conclusion follows with {kj} = {ki + pi}.
In this context, we first show that the curvature of the objective function is asymptotically

non-negative along the test directions in D, at least on some subsequence.

Theorem 3.3 (Theorem 6.6.4 in [2]) Suppose that AF.1–AF.4, AM.1–AM.3 and AA.1–
AA.2 hold. Then

lim sup
k→∞

χ(xk) ≥ 0.

Proof. Assume, for the purpose of deriving a contradiction, that there is a constant χ∗ < 0
such that, for all k,

χ(xk) ≤ χ∗. (3.9)

Observe first that this bound, AM.3 and Theorem 3.1 imply together that, for some kχ ≥ 0
sufficiently large,

χk ≤ 1
2χ∗ < 0 (3.10)

for all k ≥ kχ. On the other hand, (3.9), the bound ‖sk‖ ≤ ∆k and Lemma 3.2 applied to the
subsequence {k ≥ kχ} ensure that

ρk ≥ η2 for all k ≥ k∗
def= max[k2(|χ∗|), kχ] such that ∆k ≤ δ2(|χ∗|).

Thus, each iteration k such that these conditions hold must be very successful and the mecha-
nism of the algorithm then ensures that ∆k+1 ≥ ∆k. As a consequence, we obtain that, for all
j ≥ 0,

∆k∗+j ≥ min[γ1δ2(|χ∗|),∆k∗ ]
def= δ∗. (3.11)

Now consider K = {k ∈ S ∩ T | k ≥ k∗}. For each k ∈ K, we then have that

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)] ≥ 1
2η1κwcc|χ∗|min[ 1

4χ
2
∗, δ

2
∗] > 0, (3.12)

where the first inequality results from k ∈ S, and the second from k ∈ T , (2.8), (3.10) and
(3.11). Since |K| is infinite because of (3.8), this is impossible as (3.12) and the non-increasing
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nature of the sequence {f(xk)} imply that f(·) is unbounded below, in contradiction with AF.2.
Hence (3.9) cannot hold and the proof of the theorem is complete.

Observe that this theorem does not make the assumption that the sequence of iterates has
limit points. If we now assume that the sequence of iterates is bounded, then limit points exist
and are finite, and we next show that at least one of them is weakly second-order critical.

Theorem 3.4 (Theorem 6.6.5 in [2]) Suppose that AF.1–AF.4, AM.1–AM.3 and AA.1–
AA.2 hold. Suppose also that the sequence {xk} lies within a closed, bounded domain. Then
there exists at least one limit point x∗ of {xk} which is weakly second-order critical.

Proof. Theorem 3.3 ensures that there is a subsequence of iterates {xki
} such that

lim
i→∞

χ(xki) ≥ 0.

Since this sequence remains in a compact domain, it must have at a limit point x∗. We then
deduce from the continuity of χ(·) that

χ(x∗) ≥ 0 and ∇xf(x∗) = 0,

where the equality follows from Theorem 3.1.
To obtain further useful results, we prove the following technical lemma.

Lemma 3.4 (Lemma 6.6.6 in [2]) Suppose that AF.1–AF.4, AM.1–AM.3 and AA.1–AA.2
hold. Suppose also that x∗ is a limit point of a sequence of iterates and that χ(x∗) < 0. Then,
for every infinite subsequence {xki

} of iterates such that {ki} ⊆ T and χ(xki
) ≤ 1

2χ(x∗), we
have that

lim
i→∞

∆ki = 0. (3.13)

Moreover, (3.13) also holds for any subsequence {xki} of iterates converging to x∗ and such
that {ki} ⊆ T .

Proof. Define χ∗
def= χ(x∗). Consider a subsequence {xki

} such that {ki} ⊆ T and χ(xki
) ≤

1
2χ∗. Because of Lemma 3.3, we may assume without loss of generality that {ki} ⊆ S ∩ T .
Moreover, Theorem 3.1 ensures that ‖gki

‖ converges to zero, which, combined with AM.3,
gives that

χki
≤ 1

2χ(xki
) ≤ 1

4χ∗ < 0 (3.14)

holds for i sufficiently large. Now suppose, for the purpose of deriving a contradiction, that
there exists an ε ∈ (0, 1) such that

∆ki
≥ ε (3.15)

for all i. Successively using the inclusion ki ∈ S ∩ T , (2.8), (3.14) and (3.15), we then obtain
that, for all i sufficiently large,

f(xki
)− f(xki+1) ≥ η1[mk(xki

)−mki
(xki

+ ski
)] ≥ 1

4η1κwcc|χ∗|min[ 1
16χ

2
∗, ε

2] > 0.

Because of (3.8) and because the sequence {f(xk)} is non-increasing, this is impossible since
it would imply that f(·) is unbounded below, in contradiction with AF.2. As a consequence,
we obtain that ∆ki

converges to zero, which is the first conclusion of the lemma. The second
conclusion also holds because, if {xki} converges to x∗, AF.1 and the continuity of χ(·) imply
that χ(xki) converges to χ(x∗) and therefore that χ(xki) ≤ 1

2χ(x∗) for all i sufficiently large.
The limit (3.13) then follows by applying the first part of the lemma.
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In the usual trust-region framework, where every iteration is a test iteration, a variant of
Theorem 3.4 can still be proved if one no longer assumes that the iterates remain in a bounded
set, but rather considers the case of an isolated limit point. This result may be generalized to
our case, at the price of the following additional assumption.

AA.3 There exists an integer m ≥ 0 such that the number of successful iterations between
successive indices in T does not exceed m.

This assumption requires that the set of test iterations at which χk is known and negative
curvature possibly exploited is not too sparse in the set of all iterations. In other words, the
presence of negative curvature should be investigated often enough. Useful consequences of
AA.3 are given by the following lemma.

Lemma 3.5. Suppose that assumptions AF.1–AF.4, AM.1–AM.3 and AA.1–AA.3 hold. Then
there exists a constant κdst > 1 such that, if k ∈ S ∩ T , then

∆k+j ≤ γm
4 ∆k (3.16)

and
‖xk+j − xk‖ ≤ κdst∆k (3.17)

for all 0 ≤ j ≤ p, where k + p is the index immediately following k in S ∩ T .

Proof. We first note that the mechanism of the algorithm imposes that ∆`+ ≤ γ4∆` for
all ` ∈ S, where `+ is the first successful iteration after `. Let k ∈ S ∩ T and k + p be the
index immediately following k in S ∩ T . Hence, if we consider k ≤ ` ≤ k + p and define
q(`) def= |S ∩ {k, . . . , `}|, that is the number of successful iterations from k to ` (including k), we
obtain from AA.3 that

q(`) ≤ m + 1 (3.18)

and thus that
∆` ≤ γ

q(`)−1
4 ∆k ≤ γm

4 ∆k,

which proves (3.16). Now, because the trial point is only accepted at successful iterations, we
have that, for 0 ≤ j ≤ p,

‖xk+j − xk‖ ≤
k+j−1∑

`=k

(S)‖x`+1 − x`‖ ≤
k+j−1∑

`=k

(S)∆`

where the sum superscripted by (S) is restricted to the successful iterations. Using this in-
equality, (3.18) and (3.16), we then obtain (3.17) with κdst = max[1,mγm

4 ].
We are now in position to assess the nature of an isolated limit point of a subsequence of

test iterations.

Theorem 3.5 (Theorem 6.6.7 in [2]) Suppose that AF.1–AF.4, AM.1–AM.3 and AA.1–
AA.3 hold. Suppose also that x∗ is an isolated limit point of the sequence of iterates {xk}
and that there exists a subsequence {ki} ⊆ T such that {xki} converges to x∗. Then x∗ is a
weakly second-order critical point.

Proof. Let x∗ and {xki
} satisfy the theorem’s assumptions, and note that, because of

Lemma 3.3, we may suppose without loss of generality that {ki} ⊆ S ∩ T . Now assume, for
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the purpose of deriving a contradiction, that χ(x∗) < 0. We may then apply the second part
of Lemma 3.4 to the subsequence {ki} and deduce that

lim
i→∞

∆ki
= 0. (3.19)

But, since x∗ is isolated, there must exist a ε > 0 such that any other limit point of the sequence
{xk} is at a distance at least ε from x∗. Moreover, we have that, for each xk with k sufficiently
large, either

‖xk − x∗‖ ≤ 1
8ε or ‖xk − x∗‖ ≥ 1

2ε. (3.20)

In particular,
‖xki − x∗‖ ≤ 1

8ε

for i large enough. Combining this last bound, Lemma 3.5 and (3.19), we see that, for all
0 ≤ j ≤ p,

‖xki+j − x∗‖ ≤ ‖xki − x∗‖+ ‖xki+j − xki‖ ≤ ‖xki − x∗‖+ κdst∆ki ≤ 1
8ε + 1

8ε = 1
4ε

for i sufficiently large, where ki + p is, as above, the index immediately following ki in S ∩ T .
As a consequence, (3.20) implies that

‖xki+j − x∗‖ ≤ 1
8ε

for i sufficiently large and all j between 0 and p. Applying this argument repeatedly, which is
possible because of (3.8), we obtain that the complete sequence {xk} converges to x∗. We may
therefore apply the second part of Lemma 3.4 to the subsequence S ∩ T and deduce that

lim
k→∞

k∈S∩T
∆k = 0.

But the bound (3.16) in Lemma 3.5 then implies that

lim
k→∞

∆k = 0, (3.21)

and thus that
lim

k→∞
‖sk‖ = 0. (3.22)

Moreover, AF.1, Theorem 3.1 and AM.3 ensure that χ(xk) ≤ 1
2χ(x∗) < 0 for all k sufficiently

large. We may now use this bound and the limit (3.22) to apply Lemma 3.2 to the subsequence
of all sufficiently large {k}, which then yields that all iterations are eventually very successful
and hence that the trust-region radii are bounded away from zero. But this is impossible in
view of (3.21). Our initial assumption must therefore be false, and χ(x∗) ≥ 0, which is enough
to conclude the proof because of Theorem 3.1.

Remarkably, introducing an additional but realistic assumption allows us to strengthen these
convergence results. The new assumption simply imposes that the trust-region radius increases
at very successful iterations. This is formally expressed as:

AA.4 γ3 > 1.

We now state our final and strongest convergence result, which avoids the assumption that limit
points are isolated.

Theorem 3.6 (Theorem 6.6.8 in [2]) Suppose that AF.1–AF.4, AM.1–AM.3 and AA.1–
AA.4 hold. Suppose also that x∗ is a limit point of the sequence of iterates {xk} and that
there exists a subsequence {ki} ⊆ T such that {xki

} converges to x∗. Then x∗ is a weakly
second-order critical point.



Second-order Convergence Properties of Trust-region Methods Using Incomplete Curvature Information... 687

Proof. As above, Lemma 3.3 allows us to restrict our attention to subsequences in S ∩ T
without loss of generality. The desired conclusion will then follow if we prove that every limit
point of the iterates indexed by S ∩ T is weakly second-order critical. Let x∗ be any such limit
point and assume, again for the purpose of deriving a contradiction, that χ∗

def= χ(x∗) < 0. We
first note that AF.1 and the continuity of χ(·) imply that, for some δout > 0,

χ(x) ≤ 1
2χ∗ < 0 whenever x ∈ Vout, (3.23)

where Vout
def= {x ∈ <n | ‖x − x∗‖ ≤ δout} is an (outer) neighbourhood of x∗. Now define

Kout = S ∩ T ∩ {k |xk ∈ Vout}. Observe that, because of (3.23),

χ(xk) ≤ 1
2χ∗ < 0 (3.24)

for all k ∈ Kout. We may then apply the first part of Lemma 3.4 to the subsequence Kout and
deduce that

lim
k→∞

k∈Kout

∆k = 0. (3.25)

We now define a smaller (inner) neighbourhood of x∗ by

Vin
def= {x ∈ <n | ‖x− x∗‖ ≤ δin},

where we choose

δin <
δout

1 + κdst

≤ δout

2
, (3.26)

and consider an iterate x` ∈ Vin such that ` ∈ S ∩ T . Then either the subsequence {x`+j}
remains in Vout for all j sufficiently large or it leaves this neighbourhood.

Consider first the case where {x`+j} remains in Vout for all j large enough. Since Kout and
S ∩ T coincide for large enough indices in this case, we obtain from (3.25) that

lim
k→∞

k∈S∩T
∆k = 0.

As above, the bound (3.16) in Lemma 3.5 then gives that

lim
k→∞

∆k = 0, (3.27)

and thus that limk→∞ ‖sk‖ = 0. We may now use this last limit and the bound (3.23) at xk to
apply Lemma 3.2 to the subsequence of all sufficiently large {k}, and deduce that all iterations
are eventually very successful. Hence the trust-region radii are bounded away from zero. But
this is impossible in view of (3.27). The subsequence {x`+j} must therefore leave the outer
neighbourhood Vout. As a consequence, and since x∗ is a limit point of the subsequence of
iterates indexed by S ∩ T , there must exist a subsequence of iterates {xks

} such that for all
s ≥ 0, xks

∈ Vin, ks ∈ S ∩ T ,
∆ks

≤ δin, (3.28)

and there exists an iterate xqs+1 with ks < qs + 1 < ks+1 such that xqs+1 is the first iterate
after xks

not belonging to Vout. (Note that (3.28) is possible because of (3.25) and Vin ⊆ Vout.)
Now let xrs

be the iterate whose index immediately follows ks in the sequence S ∩ T . From
Lemma 3.5 and (3.26), we obtain that

‖xrs
− x∗‖ ≤ ‖xks

− x∗‖+ ‖xrs
− xks

‖ ≤ ‖xks
− x∗‖+ κdst∆ks

≤ δin + κdstδin < δout,
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and thus xrs
must belong to Vout. If we finally define xts

to be the last successful test iterate
before xqs+1, i.e., the largest index not exceeding qs such that ts ∈ S ∩ T , then we must have
that

ks < rs ≤ ts ≤ qs < qs + 1 < ks+1

and xts
∈ Vout. Moreover, Lemma 3.5 applied for k = ts and the definition of ts then ensure

that
∆qs ≤ γm

4 ∆ts . (3.29)

If we let the subsequence K∗ to be defined by

K∗ def= {k | ks ≤ k ≤ qs for all s ≥ 0},
we have that ts ∈ S ∩ T ∩ K∗ and xk ∈ Vout for all k ∈ K∗. Using (3.23), we may then apply
Lemma 3.2 to K∗ and deduce that there exist a k∗

def= k2(|χ∗|) ≥ 0 and a δ∗
def= δ2(|χ∗|) ∈ (0, δout]

such that
ρk ≥ η2 for all k ≥ k∗, k ∈ K∗ with ∆k ≤ δ∗. (3.30)

We may also use Theorem 3.1, AM.3 and (3.23) at xk to obtain that, for some kχ ≥ 0 sufficiently
large,

χk ≤ 1
2χ(xk) ≤ 1

4χ∗ < 0 (3.31)

for all k ∈ K∗ such that k ≥ kχ. We now temporarily fix s such that ks ≥ max[k∗, kχ] and
distinguish two cases. The first is when

∆k ≤ δ∗ (3.32)

for all ks ≤ k ≤ qs. Using the definition of qs, the triangular inequality, the inclusion xks ∈ Vin

and (3.26), we observe that

δout < ‖xqs+1 − x∗‖ ≤ ‖xqs+1 − xks
‖+ ‖xks

− x∗‖ ≤ ‖xqs+1 − xks
‖+ 1

2δout. (3.33)

Hence, since (3.30) and (3.32) imply that all iterations ks to qs must be very successful, we
have that

1
2δout < ‖xqs+1 − xks‖ ≤

qs∑

`=ks

‖x`+1 − x`‖

≤
qs∑

`=ks

∆` ≤
qs∑

`=ks

∆qs

γ`−ks
3

≤ γ3

γ3 − 1
∆qs

,

(3.34)

where we used (3.33) to derive the first inequality and AA.4 to ensure that the last fraction is
well-defined. Gathering (3.34) and (3.29), we obtain that

∆ts
≥ (γ3 − 1)δout

2γ3γm
4

def= δa > 0. (3.35)

Using this bound, the inclusion ts ∈ S ∩ T ∩ K∗, (2.8) and (3.31), we then conclude that

f(xts
)− f(xts+1) ≥ η1[mts

(xts
)−mts

(xts+1)] ≥ 1
4η1κwcc|χ∗|min[ 1

16χ
2
∗, δ

2
a]. (3.36)

The second case is when (3.32) fails. In this case, we deduce that the largest trust-region radius
for iterations from ks to qs is larger than δ∗. Let this maximum radius be attained at iteration
vs (ks ≤ vs ≤ qs). But, since iterations for which ∆k ≤ δ∗ must be very successful because of
(3.30), the mechanism of the algorithm ensures that ∆k ≥ γ1δ∗ for all iterations between vs

and qs. In particular, ∆qs
≥ γ1δ∗, which in turn gives that

∆ts
≥ γ1δ∗

γm
4

def= δb > 0 (3.37)
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because of (3.29). This then yields that

f(xts
)− f(xts+1) ≥ η1[mts

(xts
)−mts

(xts+1)] ≥ 1
4η1κwcc|χ∗|min[ 1

16χ
2
∗, δ

2
b ], (3.38)

where we successively used the inclusion ts ∈ S ∩ T ∩ K∗, (2.8), (3.31) and (3.37).
Combining (3.36), (3.38) and the non-increasing nature of the sequence {f(xk)}, we thus

obtain that

f(xks
)− f(xqs+1) ≥ f(xts

)− f(xts+1) ≥ 1
4η1κwcc|χ∗|min[ 1

16χ
2
∗, δ

2
a, δ2

b ] > 0.

Summing now this last inequality over the subsequence {ks} for ks ≥ max[k∗, kχ], we obtain
that the non-increasing sequence {f(xk)} has to tend to minus infinity, which contradicts our
assumption AF.2 that the objective function is bounded below. Thus the sequence of iterates
can only leave Vout a finite number of times. Since we have shown that it is infinitely often inside
this neighbourhood but cannot remain in it either, we obtain the desired contradiction. Hence
our assumption that χ∗ < 0 must be false and the proof is complete because of Theorem 3.1.

4. Application to Recursive Multigrid Trust-region Methods

As indicated above, we now wish to apply these results to multilevel recursive trust-region
methods of the type investigated in [3]. These methods are applicable to the discretized form
of optimization problems arising in infinite dimensional settings. They use the problem for-
mulation at different discretization levels, from the coarsest (level 0) to the finest (level r),
where each level i involves ni variables. An efficient subclass of recursive trust-region meth-
ods, the multigrid-type V-cycle variant (whose details are discussed in Section 3 of [3]), can be
broadly described as the determination of a starting point for level r, followed by an alternating
succession of smoothing and recursive iterations from level r.

Smoothing iterations at level i (i > 0) consists in one or more cycles during which an (exact)
quadratic model of the objective function at level i is minimized, within the trust region, along
each direction of the coordinate basis in turn. This minimization may be organized (see [3] for
details) to ensure that, if µi,k, the most negative diagonal element of model’s Hessian at the
current iterate, is negative, then

mi,k(xi,k)−mi,k(xi,k + si,k) ≥ 1
2 |µi,k|∆2

i,k, (4.1)

where xi,k is the current iterate at iteration k and level i, mi,k the model for this iteration and
si,k the direction resulting from the smoothing cycle(s) at this iteration. This corresponds, for
level r, to (2.8) with

D = {er,j}nr
j=1

def= Ds, (4.2)

where we denote by ei,j the jth vector of the coordinate basis at level i.
Recursive iterations at level i > 0, on the other hand, use a restriction operator PT

i to
“project” the model of the objective function onto level i− 1. If this level is the coarsest (level
0), the projected model is minimized exactly within the trust region, yielding the inequality
(2.6) at level 0 if τ0,k < 0. If level i − 1 is not the coarsest (i > 1), then the algorithm is
recursively applied in the sense that a smoothing iteration is performed at level i− 1, followed
by a recursive iteration at level i − 1, itself possibly followed by a further smoothing iteration
at level i − 1. This results in an overall step si−1 at level i − 1, which is then prolongated by
interpolation to level i to give a step at level i of the form si = Pisi−1. Recursive iterations at
level r can then be viewed as iterations where negative curvature is tested (and exploited) in
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the subspace corresponding to the coarsest variables, V0, say, as well as along the coordinate
vectors at each level i for i = 1, . . . , r − 1. Translated in terms of finest level variables, this
means that (2.8) holds for recursive iterations if χk < 0 and with

D = {Pr . . . P1v | v ∈ V0 and ‖v‖ = 1} ∪
[

r−1⋃

i=1

{qi,j}ni
j=1

]
def= Dr, (4.3)

where

qi,j =
Pr . . . Pi+1ei,j

‖Pr . . . Pi+1ei,j‖ .

Ignoring the calculation of the starting point, one may therefore see the V-cycle recursive
trust-region algorithm as a succession of iterations where (2.8) holds for χk < 0 either with
D = Ds or D = Dr. If we additionally insist on repeating smoothing or recursive iterations
until they are successful (as to ensure AA.1), we may then ignore unsuccessful iterations (as
above) and deduce that, under the assumptions of Section 3, all limit points of the sequence of
iterates are weakly second-order critical with respect to all directions in Ds ∪ Dr.

One might also try to exploit the initialization phase of the algorithm to approach a (weakly)
second-order critical point. This initialization is usually performed by applying the same algo-
rithm to (possibly approximately) solve the problems at levels 0 to r−1 successively, each time
interpolating the solution at level i to obtain the starting value at level i + 1. In [1], Borzi and
Kunisch propose to use a method ensuring convergence to second-order critical points for the
first step of this procedure, that is for the computation of the initial solution at the coarsest
grid. While this idea is often helpful in practice, it may not be sufficient in general because
there is no guarantee that iterates at finer levels will remain in the “neighbourhood” of the
solution found at the first stage of initialization. Even if they do, second-order criticality at
coarse levels does not imply second-order criticality at higher ones, as is shown by the following
simple example.

Consider the problem of finding the functions x(t) and y(t) on the real interval [0, 1] that
solve the problem

min
x,y

∫ 1

0

f(x(t), y(t), w(t)) dt, (4.4)

where w(t) = [sin(2kπt)]2 ∈ [0, 1] for some positive integer k and

f(x, y, w) = 2w[(x− 0.9)2 + y2 − 1.21]2 + 0.72[(x− 1 + cos(πw))2 + (y − sin(πw))2]. (4.5)

If we discretize the interval into ni
def= 2i equal subintervals of length hi

def= 1/2i and approximate
the integral by using the trapezoidal rule, the discretized problem takes the form

min
xj,yj

j=0,...,ni


 1

2f(x0, y0, w0) +
ni−1∑

j=1

f(xj , yj , wj) + 1
2f(xni

, yni
, wni

)


hi (4.6)

with xj = x(jhi), yj = y(jhi) and wj = w(jhi). An analysis of (4.5) reveals that f admits a
unique minimizer (x∗(w), y∗(w)) for each w ∈ [0, 1]. This minimizer is the origin for w = 0,
the point (2, 0) for w = 1 and a point in the positive orthant for w ∈ (0, 1) (see Figure 4.1).
Moreover, f is a convex quadratic for w = 0 but admits a saddle point at the origin for w = 1,
with a direction of negative curvature (-3.2) along the y-axis.

Now observe that wj = 0 whenever i ≤ k. Hence the only first-order critical point for the
problem is xj = yj = 0 (j = 0, . . . , ni) for i ≤ k, and this point is also second-order critical.
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Fig. 4.1. The contours of f(x, y, w) for w = 0, w = 0.5 and w = 1 (from left to right). A minimum is

indicated by a star and a saddle point by a circle.

If we now consider i = k + 1, we see that wj = 1 for j odd. Hence the unique (second-order
critical) solution of the problem is given, for j = 0, . . . , ni, by

xj =
{

0 for j even ,

2 for j odd ,
and yj = 0. (4.7)

On the other hand, interpolating (linearly) the solution of the problem for i = k to a tentative
solution for the problem with i = k + 1 gives xj = yj = 0 for j = 0, . . . , ni. This tentative
solution is now a first-order critical point, but not a second-order one since the curvature along
the y-axis is equal to -3.2. Thus Borzi and Kunisch’s technique would typically encounter
problems on this example, because nonconvexity occurs at levels that are not the coarsest. On
the other hand, the multilevel recursive trust-region method discussed above detects negative
curvature along the coordinate vectors at high levels, and our result guaranteeing weakly second-
order critical limit points applies. Finally observe that we could have derived the example as
arising from a (one dimensional) partial differential equation problem: such a problem may be
obtained for instance by defining the function w(t) as the solution of the simple differential
problem

1
22k+1π2

d2w

dt2
(t) + w(t) = [cos(2kπt)]2 with w(0) = w(1) = 0 (4.8)

and considering (4.4) and (4.8) as an equality constrained optimization problem in x(t), y(t)
and w(t). The extension of the example to more than one dimension is also possible without
difficulty. Observe finally that any other reasonable interpolation of the solution from level k

to level k + 1 would also yield the same results.

5. Conclusions and Extensions

We have presented a convergence theory for trust-region methods that ensures convergence
to weakly second-order critical points. This theory allows for incomplete curvature information,
in the sense that only some directions of the space are investigated and this investigation is
only carried out for a subset of iterations. Fortunately, the necessary additional assumptions
are algorithmically realistic and suggest minor modifications to existing methods. The concepts
apply well to multilevel recursive trust-region methods, for which they provide new optimality
guarantees. They also provide a framework in which methods requiring the explicit computation
of the most negative eigenvalue of the Hessian can be made less computationally expensive.

Many extensions of the ideas discussed in this paper are possible. Firstly, only the Euclidean
norm has been considered above, but the extension to iteration dependent norms, and hence
iteration dependent trust-region shapes, is not difficult. As in [2], a uniform equivalence as-
sumption is sufficient to directly extend our present results. The assumption that the set D is
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closed can be relaxed by introducing an infimum instead of a minimum in the definition of χk,
provided this can be calculated, and a supremum instead of a maximum in AM.3. A further
generalization may be obtained by observing that the second-order conditions (2.8) and (2.10)
play no role unless a first-order critical point is approached. As a consequence, they only need
to hold for sufficiently small values ‖gk‖ for the theory to apply, as is already the case for AM.3.
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