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Abstract

A mapping f : Zn → Rn is said to possess the direction preserving property if fi(x) > 0

implies fi(y) ≥ 0 for any integer points x and y with ‖x − y‖∞ ≤ 1. In this paper,

a simplicial algorithm is developed for computing an integer zero point of a mapping

with the direction preserving property. We assume that there is an integer point x0 with

c ≤ x0 ≤ d satisfying that max1≤i≤n(xi − x0
i )fi(x) > 0 for any integer point x with

f(x) 6= 0 on the boundary of H = {x ∈ Rn | c − e ≤ x ≤ d + e}, where c and d are two

finite integer points with c ≤ d and e = (1, 1, · · · , 1)⊤ ∈ Rn. This assumption is implied

by one of two conditions for the existence of an integer zero point of a mapping with the

preserving property in van der Laan et al. (2004). Under this assumption, starting at x0,

the algorithm follows a finite simplicial path and terminates at an integer zero point of

the mapping. This result has applications in general economic equilibrium models with

indivisible commodities.
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1. Introduction

The problem we consider in this paper is to compute an integer zero point of a mapping

f : Zn → Rn. The interests in integer zero points or fixed points of a mapping have been

inspired by the work in Iimura (2003) though the statement of the existence of a discrete fixed

point in Iimura (2003) is incorrect and a corrected statement was given in Iimura et al. (2004)

after an application of the integrally convex set defined in Favati and Tardella (1990). A brief

introduction to the applications of discrete fixed points of a mapping in economics can be found

in Iimura (2003) and references therein.

Following the definition in Iimura (2003), we say that f(x) satisfies the direction preserving

property if fi(x) > 0 implies fi(y) ≥ 0 for any integer points x and y with ‖x − y‖∞ ≤ 1. We

assume throughout this paper that f(x) satisfies the direction preserving property. Recently,

under two different conditions, based on the 2n-ray algorithm in van der Laan and Talman

(1981), a constructive proof of the existence of an integer zero point of a mapping with the

direction preserving property was obtained in van der Laan et al. (2004). Those two conditions

can be stated as follows.
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Condition 1.1. There exist integer vectors m, x0, and M with m + e < x0 < M − e and

e = (1, 1, · · · , 1)⊤ such that (x − x0)⊤f(x) > 0 for any integer point x on the boundary of

C = {y ∈ Rn | m ≤ y ≤ M}.

Condition 1.2. There exists an integer vector u with u > e such that fk(x)fk(−y) ≤ 0, k =

1, 2, · · · , n, for any two cell connected integer points x and y on the boundary of U = {z ∈

Rn | − u ≤ z ≤ u}.

Given these two conditions, the following two theorems can be found in van der Laan et al.

(2004).

Theorem 1.1. If Condition 1.1 holds, there exists an integer point x∗ ∈ C such that f(x∗) = 0.

Theorem 1.2. If Condition 1.2 holds, there exists an integer point x∗ ∈ U such that f(x∗) = 0.

In Dang (2005), a new condition for the existence of an integer zero point of the mapping was

introduced, which is as follows.

Condition 1.3. There is an integer point x0 with c ≤ x0 ≤ d satisfying that max1≤i≤n(xi −

x0
i )fi(x) > 0 for any integer point x with f(x) 6= 0 on the boundary of H = {x ∈ Rn | c − e ≤

x ≤ d + e}, where c and d are two finite integer points with c ≤ d and e = (1, 1, · · · , 1)⊤.

For Conditions 1.1, 1.2 and 1.3, the following lemma was proved in Dang (2005).

Lemma 1.1. Condition 1.1 implies Condition 1.3. However, Condition 1.3 implies neither

Condition 1.1 nor Condition 1.2.

Given Condition 3, based on the (n+1)-ray algorithm proposed in van der Laan and Talman

(1979), the following theorem was proved in Dang (2005).

Theorem 1.3. If Condition 1.3 holds, there exists an integer point x∗ ∈ H such that f(x∗) = 0.

In this paper, based on the 2-ray algorithm given in Yamamoto (1984), we will develop a

simplicial algorithm for computing an integer zero point of the mapping satisfying Condition

3. The 2-ray algorithm is one of simplicial methods for computing a fixed point of a continuous

mapping. The simplical methods were originated in Scarf (1967), and have been substantially

developed after Scarf’s seminal work (e.g., Allgower and Georg, 2000; Dang, 1991, 1995; Dang

and Maaren, 1998; Eaves, 1972; Eaves and Saigal, 1972; Forster, 1995; Kojima and Yamamoto,

1982; Kuhn, 1968; van der laan and Talman, 1979, 1981; Merrill, 1972; Scarf, 1973, 1981; Todd,

1976; Yamamoto, 1983; etc.). The basic idea of the algorithm is as follows. It assigns to each

integer point of H an integer label and subdivides H into integer simplices. Starting at x0, the

algorithm follows a finite simplicial path and terminates at an integer zero point of the mapping.

An advantage of the 2-ray algorithm over the (n + 1)-ray algorithm is that some more superior

triangulations of Rn can be its underlying triangulations without any modifications.

The rest of this paper is organized as follows. An integer labeling rule is introduced in

Section 2. The algorithm is given in Section 3.
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2. Integer Labeling

Let N = {1, 2, · · · , n}, N0 = {1, 2, · · · , n + 1}, and ui be the ith unit vector of Rn for

i = 1, 2, · · · , n. Let I(0) = ∅ and I(h) = {1, 2, · · · , h} for any h ∈ N . For α ∈ {−1, 1} and

h ∈ N , let

X(x0, h, α) = {x ∈ Rn | α(xh − x0
h) ≥ 0 and xj = x0

j , j ∈ N\I(h)}.

To obtain a simplicial algorithm for computing an integer zero point of f , we need a trian-

gulation of H that subdivides every integer unit cube contained in H into integer simplices.

Here, an integer unit cube is a unit cube having only integer vertices and an integer simplex is

a simplex having only integer vertices. There are several triangulations suitable for this pur-

pose, which include the K1-triangulation in Freudenthal (1942), the J1-triangulation in Todd

(1976), the D1-triangulation in Dang (1991), etc. A specific choice of a triangulation plays

however no dominant role at all in this paper though efficiency of simplicial methods depends

critically on the underlying triangulation. We will choose the D1-triangulation as an underlying

triangulation of the algorithm. For completeness of the following discussions, we introduce the

D1-triangulation here.

A simplex of the D1-triangulation of Rn is the convex hull of n + 1 integer vectors, y0, y1,

. . . , yn, which are given as follows.

If p = 0, y0 = y and

yk = y + sπ(k)u
π(k), k = 1, 2, . . . , n, and

if p ≥ 1, y0 = y + s,

yk = yk−1 − sπ(k)u
π(k), k = 1, 2, · · · , p − 1, and

yk = y + sπ(k)u
π(k), k = p, p + 1, . . . , n,

where y is an integer point of Rn with every component of y − x0 being an even number,

p an integer with 0 ≤ p ≤ n − 1, π = (π(1), π(2), . . . , π(n)) a permutation of elements of

N = {1, 2, . . . , n}, and s = (s1, s2, · · · , sn)⊤ a sign vector with si ∈ {−1, 1}. Let D1 be the set

of all such simplices. Since a simplex of the D1-triangulation is determined by y, π, s and p,

we use D1(y, π, s, p) to denote it.

We say that two simplices of D1 are adjacent if they have a common facet. We show how to

generate all the adjacent simplices of a simplex of the D1-triangulation of Rn in the following.

For a given simplex σ = D1(y, π, s, p) with vertices y0, y1, . . . , yn, its adjacent simplex opposite

to a vertex, say yi, is given by D1(ȳ, π̄, s̄, p̄), where ȳ, π̄, s̄, p̄ are generated according to the

following table.

Let D1 be the set of faces of simplices of D1. A q-dimensional simplex of D1 with vertices

y0, y1, . . . , yq is denoted by < y0, y1, . . . , yq >. The restriction of D1 on X(x0, h, α) for any

h ∈ N and α ∈ {−1, 1} is given by

D1|X(x0, h, α) = {σ ∈ D1 | σ ⊂ X(x0, h, α) and dim(σ) = h},

where dim(·) stands for the dimension of a set. Obviously, D1|X(x0, h, α) is a triangulation of

X(x0, h, α).
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Pivot Rules of the D1-Triangulation

i ȳ π̄ π̄ p̄

0 n = 1 y + 2sπ(1)u
π(1) s − 2sπ(1)u

π(1) π p

n ≥ 2 p = 0 y s π 1

p = 1 y s π 0

p ≥ 2 y s − 2sπ(1)u
π(1) π p

i ≥ 1 p = 0 y s − 2sπ(i)u
π(i) π p

i < p − 1 y s πa p

i = p − 1 y s π p − 1

i > p − 1 1 ≤ p < n − 1 y s πb p + 1

i = n − 1 1 ≤ p = n − 1 y + 2sπ(n)u
π(n) s − 2sπ(n)u

π(n) π p

i = n 1 ≤ p = n − 1 y + 2sπ(n−1)u
π(n−1) s − 2sπ(n−1)u

π(n−1) π p

πa = (π(1), · · · , π(i + 1), π(i), · · · , π(n))

πb = (π(1), · · · , π(p − 1), π(i), π(p), · · · , π(i − 1), π(i + 1), · · · , π(n))

For σ ∈ D1, let grid(σ) = max{‖x − y‖∞ | x ∈ σ and y ∈ σ}. We define mesh(D1) =

maxσ∈D1
grid(σ). Clearly, grid(σ) = 1 for any σ ∈ D1, and mesh(D1) = 1.

In our simplicial algorithm, we need an integer labeling rule that assigns an integer label to

each integer point of H . Such an integer labeling rule is given in the following definition.

Definition 2.1. For x ∈ Zn, we assign to x an integer label l(x) given by l(x) = 0 if f(x) = 0,

and

l(x) =











min{k | fk(x) > 0} if fj(x) > 0 for some j ∈ N ,

n + 1 if f(x) ≤ 0 and f(x) 6= 0.

Definition 2.2. For h = 0, 1, · · · , n, a simplex σ =< y0, y1, · · · , yh > of D1 is h-complete if σ

carries h + 1 different nonzero integer labels and h of these labels are contained in I(h).

Definition 2.3.

1. A q-dimensional simplex σ =< y0, y1, . . . , yq > of D1 is complete if l(yi) 6= l(yj) for

0 ≤ i < j ≤ q, and l(yk) 6= 0, k = 0, 1, . . . , q.

2. A q-dimensional simplex σ =< y0, y1, . . . , yq > of D1 is 0-complete if l(yi) 6= l(yj) for

0 ≤ i < j ≤ q, and there is some k satisfying that l(yk) = 0.

3. For h = 1, 2, · · · , n, a simplex σ =< y0, y1, · · · , yh > of D1 is almost h-complete if σ

carries either only all the integer labels in I(h), or all the integer labels in I(h − 1), no

integer labels 0 and h, and at least one integer label in N\I(h).

As a direct result of Definition 2.3, we have

Lemma 2.1. Every almost h-complete simplex has exactly two (h − 1)-complete facets.

Let ∂H denote the boundary of H . Then, according to the assumption, for any integer

point x ∈ ∂H with f(x) 6= 0,

max
1≤i≤n

(xi − x0
i )fi(x) > 0.
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Lemma 2.2. For any h ∈ N , there is no complete (h−1)-dimensional simplex in X(x0, h,−1)∩

∂H carrying only integer labels in I(h), and there is no complete (h − 1)-dimensional simplex

in X(x0, h, 1)∩ ∂H carrying all the integer labels in I(h− 1) and one integer label in N0\I(h).

Proof. Suppose that there is a complete (h − 1)-dimensional simplex in X(x0, h,−1) ∩ ∂H

carrying only integer labels in I(h). Let σ =< y1, y2, · · · , yh > be such a complete simplex.

Without loss of generality, we assume that l(yi) = i, i = 1, 2, · · · , h. Since f(x) satisfies

the direction preserving property and grid(σ) = 1, hence, for any i, fk(yi) ≥ 0, k = 1, 2, · · · , h.

From l(yh) = h and Definition 2.1, we derive fk(yh) ≤ 0, k = 1, 2, · · · , h − 1, and fh(yh) > 0.

Then, fk(yh) = 0, k = 1, 2, · · · , h − 1. From the definition of X(x0, h,−1), we obtain that, for

any x ∈ X(x0, h,−1), xh − x0
h ≤ 0, and xi − x0

i = 0, i /∈ I(h). Thus,

(yh
j − x0

j )fj(y
h) ≤ 0, j = 1, 2, · · · , n.

Therefore,

max
1≤j≤n

(yh
j − x0

j)fj(y
h) ≤ 0.

Since yh ∈ ∂H and f(yh) 6= 0, hence,

max
1≤j≤n

(yh
j − x0

j)fj(y
h) > 0.

A contradiction occurs. The first part of the lemma follows.

Suppose that there is a complete (h − 1)-dimensional simplex in X(x0, h, 1) ∩ ∂H carrying

all the integer labels in I(h − 1) and one integer label in N0\I(h). Let σ =< y1, y2, · · · , yh >

be such a complete simplex.

Without loss of generality, we assume that l(yi) = i, i = 1, 2, · · · , h − 1, and l(yh) ∈

N0\I(h). Since f(x) satisfies the direction preserving property and grid(σ) = 1, hence, for

any i, fk(yi) ≥ 0, k = 1, 2, · · · , h − 1. From l(yh) ∈ N0\I(h) and Definition 2.1, we derive

fk(yh) ≤ 0, k = 1, 2, · · · , h. Then, fk(yh) = 0, k = 1, 2, · · · , h − 1. From the definition of

X(x0, h, 1), we obtain that, for any x ∈ X(x0, h, 1), xh − x0
h ≥ 0, and xi − x0

i = 0, i /∈ I(h).

Thus,

(yh
j − x0

j )fj(y
h) ≤ 0, j = 1, 2, · · · , n.

Therefore,

max
1≤j≤n

(yh
j − x0

j)fj(y
h) ≤ 0.

Since yh ∈ ∂H and f(yh) 6= 0, hence,

max
1≤j≤n

(yh
j − x0

j)fj(y
h) > 0.

A contradiction occurs. The second part of the lemma follows.

As a result of the direction preserving property and mesh(D1) = 1, we have

Lemma 2.3. There is no complete n-dimensional simplex contained in H.

Proof. Suppose that there is a complete n-dimensional simplex contained in H . Let σ =<

y0, y1, · · · , yn > be such a complete simplex. Without loss of generality, we assume l(yi) = i,

i = 1, 2, · · · , n, and l(y0) = n + 1. Then,

fi(y
i) > 0, i = 1, 2, · · · , n.
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Since f(x) satisfies the direction preserving property and ‖y0 − yi‖∞ = 1, hence, fi(y
0) ≥ 0,

i = 1, 2, · · · , n. From l(y0) = n + 1, we obtain that f(y0) ≤ 0 and f(y0) 6= 0. A contradiction

occurs. The lemma follows.

3. The Algorithm

In this section, based on the 2-ray algorithm given in Yamamoto (1984), the integer labeling

rule in Definition 2.1, and the results in Lemma 2.2 and Lemma 2.3, a simplicial algorithm for

computing an integer zero point of f is obtained, which is as follows.

Initialization: Let y0 = x0 and compute l(y0). If l(y0) = 0, the algorithm terminates and an

integer zero point of f has been found. Otherwise, let maxK = l(y0), h = 1,

α =











−1 if h = maxK,

1 otherwise,

τ0 =< y0 >, σ0 be the unique h-dimensional simplex in X(x0, h, α) having τ0 as a facet,

y+ be the vertex of σ0 opposite to τ0, and k = 0. Go to Step 1.

Step 1: Compute l(y+). If l(y+) = 0, the algorithm terminates and an integer zero point of f

has been found. If either l(y+) = h and maxK > h or l(y+) > h and maxK = h, then

σk is h-complete and go to Step 3. Otherwise, proceed as follows. Let y− be the unique

vertex of τk such that

l(y−) =











l(y+) if l(y+) ≤ h,

maxK otherwise,

and τk+1 the facet of σk opposite to y−. Let maxK = l(y+) if l(y+) > h, and go to Step

2.

Step 2: If τk+1 ⊂ X(x0, h − 1, α) for some α ∈ {−1, 1}, go to Step 4. Otherwise, proceed as

follows. Let σk+1 be the unique simplex that is adjacent to σk and has τk+1 as a facet.

Let y+ be the vertex of σk+1 opposite to τk+1 and k = k + 1. Go to Step 1.

Step 3: Let maxK = l(y+) if l(y+) > h. Let h = h + 1, τk+1 = σk, and

α =







−1 if h = maxK,

1 otherwise.

Let σk+1 be the unique h-dimensional simplex in X(x0, h, α) having τk+1 as a facet, and

y+ be the vertex of σk+1 opposite to τk+1. Let k = k + 1, and go to Step 1.

Step 4: Let σk+1 = τk+1, y− be the unique vertex of σk+1 such that

l(y−) =







h − 1 if α = 1,

maxK otherwise,

and τk+2 the facet of σk+1 opposite to y−. Let maxK = h − 1 if α = −1. Let h = h − 1

and k = k + 1, and go to Step 2.
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Theorem 3.1. If Condition 1.3 holds, the algorithm will terminate within a finite number of

iterations at an integer point x∗ ∈ H with f(x∗) = 0.

Proof. Lemma 2.2 implies that all the simplices generated by the algorithm are contained

in H. Applying Lemma 2.3 and following an standard argument given in Todd (1976), one can

derive that the algorithm will never cycle. Since H is bounded, hence, there is a finite number

of simplices in H and the algorithm will terminate within a finite number of iterations. From

Lemma 2.3, we know that there is no complete n-dimensional simplex in H . This result implies

that the algorithm will terminate at an integer point x∗ ∈ H with f(x∗) = 0. The theorem

follows.
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