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Abstract

In this paper, an algorithm for unconstrained optimization that employs both trust

region techniques and curvilinear searches is proposed. At every iteration, we solve the

trust region subproblem whose radius is generated adaptively only once. Nonmonotonic

backtracking curvilinear searches are performed when the solution of the subproblem is

unacceptable. The global convergence and fast local convergence rate of the proposed

algorithms are established under some reasonable conditions. The results of numerical

experiments are reported to show the effectiveness of the proposed algorithms.
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1. Introduction

Consider the following unconstrained nonlinear programming problem

min
x∈Rn

f(x), (1.1)

where f(x) is a real-valued continuously differentiable function.

Trust region methods are very popular for solving problem (1.1). Many different versions

have been suggested by using trust region strategy. The idea of combining the optimal path

and the modified gradient path with the trust region strategy to solve (1.1) is originally due to

Bulteau and Vial [2]. The two paths can be expressed by eigenvalues and eigenvectors of the

Hessian matrix of the quadratic model function. However, the calculation of the full eigensystem

of a symmetric matrix is usually time-consuming. To overcome this difficulty, Xu and Zhang

in [14] have employed the stable Bunch-Parlett factorization method to factorize the Hessian

to form a preconditioned optimal path within the trust region for unconstrained optimization.

This idea is extended to the modified gradient path [7] and we call the corresponding path the

preconditioned modified gradient path.

In addition, Nocedal and Yuan [9] suggest a combination of the trust region and line search

methods, and the new algorithm preserves the strong convergence properties of trust region

methods. This algorithm is extended to the nonmonotone case in [16]. Recently, Zhu [18, 19]
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proposes an approximate trust region method and an inexact line search approach, respectively,

with the preconditioned modified gradient path and the optimal path.

Besides, it is well known that the impact of the selection of trust-region radius on com-

putational behavior is quite notable. In [4] [10] [20], a new trust region subproblem, whose

trust region radius is determined automatically by the information of the gradient and the

Hessian or its approximation, is employed. With this new subproblem, an adaptive trust region

method is constructed. Numerical results show that the adaptive trust region algorithm is quite

competitive with the traditional trust region methods.

Motivated by the above ideas, in this paper we combine a new adaptive trust region method

with curvilinear searches to form a new algorithm which is different from the algorithm in [18].

Particularly, the curvilinear path used here is a preconditioned modified gradient path.

This paper is organized as follows. Section 2 describes the adaptive nonmonotonic trust

region algorithm with curvilinear searches. In section 3 we investigate the global convergence

and the superlinear convergence rate. The numerical results of a set of standard test problems

are presented in section 4. Finally, some concluding remarks are addressed in section 5.

2. Adaptive Nonmonotonic Trust Region Algorithm with Curvilinear

Searches

As known, in the algorithms to solve the trust region subproblem approximately along

curvilinear paths, the step is the solution of a subproblem in the form

min qk(δ) = fk + gT
k δ +

1

2
δT Bkδ,

s.t. δ ∈ Γk, ‖δ‖ ≤ ∆k, (2.1)

where fk = f(xk), gk = ∇f(xk), δ = x − xk, Bk is either ∇2f(xk) or its approximation, ∆k

the trust region radius, Γk a curvilinear path in either the full-dimensional space or a lower

dimensional subspace, and ‖ · ‖ is the l2 norm.

At the beginning of this section, we first recall the forming of the preconditioned modified

gradient path and its relative properties.

The Bunch-Parlett factorization method [1] factorizes the matrix Bk into the form

PkBkPT
k = LkDkLT

k , (2.2)

where Pk is a permutation matrix, Lk a unit lower triangular matrix and Dk a block diagonal

matrix with 1×1 and 2×2 diagonal blocks. The matrices Dk and Bk have the same number of

positive, zero and negative eigenvalues. Besides, the elements of Lk and L−1
k are bounded, i.e.,

there exist positive constants c1, c2, c3, c4, which are independent of the matrix Bk, such that

c1 ≤ ‖Lk‖ ≤ c2, c3 ≤ ‖L−1
k ‖ ≤ c4, ∀k. (2.3)

Now we can use Lk and Pk to scale the variables, that is, we use the new variable

δ̂ = LT
k Pkδ,

and take the following trust region subproblem

min q̂k(δ̂) = fk + ĝT
k δ̂ +

1

2
δ̂T Dkδ̂,

s.t. δ̂ ∈ Γk, ‖δ̂‖ ≤ ∆k, (2.4)

where ĝk = L−1
k Pkgk. In the above subproblem, δ̂ is required to be within the trust region

rather than PT
k L−T

k δ̂, which improves the efficiency of calculation of the solution step.
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The modified gradient path Γk in (2.4) can be formulated easily because the full eigensystem

of the block matrix Dk can be calculated easily (see [14]). Let d1 ≤ d2 ≤ · · · ≤ dn be eigenvalues

of Dk and u1, u2, · · · , un be corresponding orthonormal eigenvectors. We partition the set

{1, · · · , n} into I+, I− and N according to di > 0, di < 0 and di = 0 for i ∈ {1, · · · , n}

respectively. Concretely, the preconditioned modified gradient path can be given in a closed

form (see [17]):

Γ(τ) = Γ1(t1(τ)) + Γ2(t2(τ)), τ ∈ [0, +∞). (2.5)

Let ĝi
k = ĝT

k ui, i = 1, · · · , n. If ĝi
k 6= 0 for some i ∈ I− ∪ N, then Γ2(t2(τ)) = 0. For the path

Γ(τ), the definitions of Γ1(t1(τ)) and Γ2(t2(τ)) are as follows:

Γ1(t1(τ)) =
∑

i∈I

e−dit1(τ) − 1

di

ĝi
kui − t1(τ)

∑

i∈N

ĝi
kui,

Γ2(t2(τ)) =

{
t2(τ)u1, if d1 < 0,

0, if d1 ≥ 0,

where

t1(τ) =

{
τ

1−τ
, if 0 < τ < 1,

+∞, if τ ≥ 1,
and t2(τ) = max{τ − 1, 0}.

The path Γ(τ) is continuous. If Dk is positive definite, the path is finite with endpoint which

is called the Newton point or quasi-Newton point. When the point x moves from xk along the

path, the following two properties hold [7]:

(P1) the distance to xk is monotonically increasing;

(P2) the value of q̂k(δ̂) is monotonically decreasing.

As mentioned in the previous section, the choice of the trust region radius in the subproblem

is very important to the efficiency of trust region algorithms. In the subproblem proposed in

[20], ∆k = cp‖gk‖Mk, 0 < c < 1, Mk = ‖B̂−1
k ‖, where p is a nonnegative integer whose initial

value is 0, and B̂k is a safely positive definite matrix based on Schnabel and Eskow’s modified

Cholesky factorization [11]. In this paper, instead of using the modified Cholesky factorization,

we directly use the eigensystem of Dk which is available and a byproduct in finding the gradient

path. It can also make sure that the Newton’s point is in the trust region. Concretely, the trust

region subproblem (2.4) is as follows:

min q̂k(δ̂(τ)) = fk + ĝT
k δ̂(τ) +

1

2
δ̂(τ)T Dk δ̂(τ),

s.t. δ̂(τ) = Γk(τ), ‖δ̂(τ)‖ ≤ ‖ĝk‖‖D̂
−1
k ‖, (2.6)

where D̂k = Udiag{d̂1, d̂2, · · · , d̂n}U
T , d̂i = max{ε, di}(i = 1, · · · , n), ε is a small constant,

di(i = 1, · · · , n) are the eigenvalues of Dk and the matrix U is an orthogonal matrix whose

columns are corresponding orthonormal eigenvectors of Dk. From the properties of the precon-

ditioned modified gradient path, we can get the solution of (2.6) easily.

In order to introduce the nonmonotone technique, let δ̂k(τk) = Γk(τk) be the solution of the

subproblem (2.6) and set

f(xl(k)) = max
0≤j≤m(k)

f(xk−j),

where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, M}, k ≥ 1. We define

Pred(δk) = f(xl(k)) − q̂k(δ̂k(τk)) (2.7)

to be the predicted reduction of f(x),

Ared(δk) = f(xl(k)) − f(xk + δk(τk)) (2.8)
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to be the actual reduction of f(x), and

rk =
Ared(δk)

Pred(δk)
(2.9)

to be a measure of the improvement.

Now we state our adaptive nonmonotonic trust region algorithm with curvilinear searches.

Algorithm 2.1.

Step 0. Given x0 ∈ Rn, η > 0, γ ∈ (0, 1
2 ), α ∈ (0, 1), ǫ > 0, M > 0. Set k = 0, m(k) =

0, and compute f0 = f(x0).

Step 1. Compute gk. If ‖gk‖ ≤ ǫ, stop with the approximate solution xk; otherwise

compute Bk and f(xl(k)).

Step 2. Factorize Bk into the form PkBkPT
k = LkDkLT

k and calculate the eigenval-

ues and orthonormal eigenvectors of Dk. Form the preconditioned modified

gradient path Γk(τ), and set the trust region radius as ∆k = ‖D̂−1
k ‖‖ĝk‖.

Step 3. Solve the subproblem (2.6) for δ̂k(τk), and then set δk(τk) = PT
k L−T

k δ̂k(τk).

Step 4. Compute Pred(δk), Ared(δk) and rk.

Step 5. If rk ≥ η, set xk+1 = xk + δk(τk); otherwise select τ∗
k , which is the largest

number in {τk, ατk, α2τk, · · · } such that

f(xk + δk(τ∗
k )) ≤ f(xl(k)) + γ(1 − e−τ∗

k )gT
k δ′k(0), (2.10)

where δ′k(0) is the derivative of δk(τk) at τk = 0. Then set xk+1 = xk+δk(τ∗
k ).

Step 6. Set m(k + 1) = min[m(k) + 1, M ], k = k + 1 and go to Step 1.

Remark 2.2. 1) In Step 3, the solution δ̂k(τk) is obtained as follows. If Dk is positive definite,

then the endpoint with τk = ∞, which is the Newton point or quasi-Newton point, is the

solution of the subproblem. Otherwise, the nonlinear equation ‖Γk(τ)‖ = ∆k is solved to get

τk. By the properties of the preconditioned modified gradient path, the equation ‖Γk(τ)‖ = ∆k

has a solution and can be solved easily by the Newton-Raphson scheme or bisection method.

2) From Step 5 of the algorithm, we know that only when rk < η, we search along the

gradient path with the initial search factor τk which is just supplied by solving subproblem

(2.6). When the solution of the trust region subproblem is good enough, i.e. rk ≥ η, we will

not perform the curvilinear searches. In this sense the new algorithm allows a larger degree of

non-monotonicity.

3. Convergence Analysis

In this section, we investigate the convergence properties of Algorithm 2.1. The following

assumption is required.

Assumption 3.1. (i) The function f : Rn → R is twice continuously differentiable.

(ii) The level set L(x0) = {x | f(x) ≤ f(x0)} is bounded and f(x) is continuously differen-

tiable in L(x0) for any given x0 ∈ Rn.

(iii) Matrices {Bk} are uniformly bounded.
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The following inequalities, obtained from the definitions of ĝk, Dk and inequality (2.3), hold:

‖gk‖/c2 ≤ ‖gk‖/‖Lk‖ ≤ ‖ĝk‖ ≤ ‖L−1
k ‖‖gk‖ ≤ c4‖gk‖, (3.1)

‖Bk‖/c2
2 ≤ ‖Bk‖/‖Lk‖

2 ≤ ‖Dk‖ ≤ ‖L−1
k ‖2‖Bk‖ ≤ c2

4‖Bk‖, (3.2)

‖δk‖/c4 ≤ ‖δk‖/‖L
−1
k ‖ ≤ ‖δ̂k‖. (3.3)

Assumption 3.1 and (3.2) imply that there exists a positive number M > 0 such that

‖Dk‖ ≤ M, ∀k.

Moreover, from the formulation of D̂k, there exists a positive scalar Λ ≥ ε such that

0 < ε ≤ λi(D̂k) ≤ Λ, k = 1, 2, · · · ,

from which we know that

1/Λ ≤ ‖D̂−1
k ‖ ≤ 1/ε, ∀k. (3.4)

Lemma 3.2. If Assumption 3.1 holds and {xk} is generated by Algorithm 2.1, then the se-

quence {xk} remains in L(x0) and {f(xl(k))} is nonincreasing and convergent.

Proof. The proof is similar to that of the theorem in [5].

Lemma 3.3. If there exists a constant σ > 0 such that ‖gk‖ ≥ σ for all k, then ∆k ≥ ǫ1, ∀k,

where ǫ1 = σ
Λc2

.

Proof. From the definition of ∆k, (3.1) and (3.4), we have

∆k = ‖D̂−1
k ‖‖ĝk‖ ≥

1

c2
‖D̂−1

k ‖‖gk‖ ≥
1

Λc2
‖gk‖ ≥

σ

Λc2

∆
= ǫ1,

which establishes the lemma.

Similar to Lemma 2.1 in [19], we give the following lemma without proof.

Lemma 3.4. Let the step δ̂k(τ) in the trust region subproblem be obtained from the precondi-

tioned modified gradient path. Then we have the norm function ‖Γ(τ)‖ of the path is monoton-

ically increasing for τ ∈ (0, +∞), and the predicted reduction Pred(δk) satisfies the following

sufficient descent condition:

Pred(δk) = f(xl(k)) − q̂k(δ̂k(τk)) ≥ w1‖ĝk‖min{∆k,
‖ĝk‖

‖Dk‖
}, (3.5)

where w1 is a constant independent of k.

Before introducing the following lemma, we denote NCS = {k : rk ≥ η}, CS = {0, 1, 2, · · · }\

NCS. It is obvious that when k ∈ CS, curvilinear searches are needed to perform.

Lemma 3.5. If there exists a constant σ > 0 such that ‖gk‖ ≥ σ for all k, then there exists a

constant τ > 0 such that τ∗
k ≥ τ, k ∈ CS.

Proof. When k ∈ CS, by Taylor’s theorem, gT
k δ′k(0) = −‖ĝk‖

2 < 0 and 1 − e−τ < τ , we

have

f(xk + δk(τ)) − f(xl(k)) − γ(1 − e−τ )gT
k δ′k(0)

≤ f(xk + δk(τ)) − f(xk) − γ(1 − e−τ )gT
k δ′k(0)

≤ f(xk) + τgT
k δ′k(0) + o(τ) − f(xk) − γτgT

k δ′k(0)

= (1 − γ)τgT
k δ′k(0) + o(τ)

= (γ − 1)τ‖ĝk‖
2 + o(τ)

≤ (γ − 1)τ‖gk‖
2/c2

2 + o(τ)

≤ (γ − 1)τσ2/c2
2 + o(τ). (3.6)
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It is easy to know that when τ is sufficiently small, (γ − 1)τσ2/c2
2 + o(τ) < 0 which means that

when k ∈ CS, τ∗
k always can be found.

Suppose that the conclusion of this lemma is not true, then there exists an infinite subset

K ⊆ CS such that

lim
k→∞, k∈K

τ∗
k = 0.

From the algorithm, we have that for large enough k ∈ K,

f(xk + δk(
τ∗
k

ω
)) − f(xk) ≥ f(xk + δk(

τ∗
k

ω
)) − f(xl(k)) > γ(1 − e−

τ
∗

k

ω )gT
k δ′k(0).

(3.7)

For the composite function f(xk + δk(
τ∗

k

ω
)), we have

f(xk + δk(
τ∗
k

ω
)) = f(xk) +

τ∗
k

ω
gT

k δ′k(0) + o(
τ∗
k

ω
). (3.8)

By (3.7) and (3.8), from gT
k δ′k(0) ≤ 0 and 1 − e−

τ
∗

k

ω <
τ∗

k

ω
, we have that

(1 − γ)
τ∗
k

ω
gT

k δ′k(0) + o(
τ∗
k

ω
) ≥ [

τ∗
k

ω
− γ(1 − e−

τ
∗

k

ω )]gT
k δ′k(0) + o(

τ∗
k

ω
) > 0. (3.9)

Dividing (3.9) by
τ∗

k

ω
and noting that 1 − γ > 0, and gT

k δ′k(0) ≤ 0, we can obtain

lim
k→∞, k∈K

gT
k δ′k(0) = 0. (3.10)

By (3.10) and τ∗
k → 0 as k → ∞, k ∈ K, we have

− lim
k→∞, k∈K

‖ĝk‖
2 = lim

k→∞, k∈K
gT

k δ′k(0) = 0,

which implies lim
k→∞, k∈K

‖gk‖ = 0. It contradicts ‖gk‖ ≥ σ for all k. So, the conclusion is true.

Theorem 3.6. If Assumption 3.1 holds and {xk} is generated by Algorithm 2.1, then

lim inf
k→∞

‖gk‖ = 0. (3.11)

Proof. Suppose, by contradiction, that the conclusion is not true, then there exists a positive

constant σ > 0 such that for all k, ‖gk‖ ≥ σ. From Lemma 3.3, Lemma 3.4 and Lemma 3.5,

we know that when k ∈ NCS,

f(xl(k)) − f(xk+1) ≥ ηw1‖ĝk‖min{∆k,
‖ĝk‖

‖Dk‖
}

≥ ηw1
σ

c2
min{ǫ1,

σ

c2M
}

∆
= z1; (3.12)

when k ∈ CS,

f(xl(k)) − f(xk+1) ≥ −γ(1 − e−τ∗

k )gT
k δ′(0)

≥ −γ(1 − e−τ )gT
k δ′(0)

= γ(1 − e−τ )‖ĝk‖
2

≥ γ(1 − e−τ )σ2/c2
2

∆
= z2. (3.13)

Denote z0 = min{z1, z2}, then from (3.12) and (3.13) we have

f(xl(k)) ≥ f(xk+1) + z0,

f(xl(k+1)) ≥ f(xk+2) + z0,

...

f(xl(k+M)) ≥ f(xk+M+1) + z0.
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Taking the maximal values of the two sides, we have that for all k,

f(xl(k)) ≥ max{f(xk+1), f(xk+2), · · · , f(xk+M+1)} + z0. (3.14)

On the other hand, f(xl(k+M+1)) ≤ max{f(xk+1), f(xk+2), · · · , f(xk+M+1)}, ∀k. Therefore,

from (3.14), we have

f(xl(k)) ≥ f(xl(k+M+1)) + z0, ∀k.

By Lemma 3.2 and the above inequalities, when k → ∞, we have 0 ≥ z0 > 0, which is a

contradiction. So, we complete the proof.

In the following, we establish the superlinear convergence.

Theorem 3.7. Suppose that Assumption 3.1 holds and that Algorithm 2.1 produces an infinite

sequence {xk} which converges to x∗ where ∇2f(x∗) is positive definite. If Bk is positive definite

for k sufficiently large and the following condition holds

lim
k→∞

‖g(xk + δk(τk))‖

‖δk(τk)‖
= 0, (3.15)

then xk converges to x∗ superlinearly.

Proof. By the assumption, D̂k = Dk when k is sufficiently large. Moreover, δ̂k = −D−1
k ĝk

is the solution of the following subproblem

min fk + ĝT
k δ̂(τ) +

1

2
δ̂(τ)T Dkδ̂(τ),

s.t. δ̂(τ) = Γk(τ), ‖δ̂(τ)‖ ≤ ‖ĝk‖‖D̂
−1
k ‖. (3.16)

In the following, we first prove that for k sufficiently large, we have

f(xl(k)) − f(xk + δk(τk))

f(xl(k)) − qk(δk(τk))
> η. (3.17)

By use of (3.15), we have

gk + ∇2f(xk)δk(τk) = o(‖δk(τk)‖).

Since xk → x∗, then when k → ∞,

gk + ∇2f(x∗)δk(τk) = o(‖δk(τk)‖),

which implies

δk(τk) = −(∇2f(x∗))
−1gk + o(‖δk(τk)‖).

Then

‖δk(τk)‖ ≤ ‖(∇2f(x∗))
−1‖‖gk‖ + o(‖δk(τk)‖).

Because ∇2f(x∗) is positive definite, we have ‖δk(τk)‖ = O(‖gk‖), further,

‖δk(τk)‖ = O(‖ĝk‖). (3.18)

From Theorem 3.6 and the convergence of {xk}, we have that gk → 0, which implies that

δk(τk) → 0. From (3.15) and δk(τk) = PT
k L−T

k δ̂k(τk) = −B−1
k gk as k → ∞, we obtain

δk(τk)T (g(xk + δk(τk)) − gk − Bkδk(τk)) = o(‖δk(τk)‖2).

This equation together with xk → x∗ as k → ∞ implies that

δk(τk)T∇2f(x∗)δk(τk) − δk(τk)T Bkδk(τk) = o(‖δk(τk)‖2).

The above equation induces

f(xk + δk(τk)) − qk(δk(τk)) = o(‖δk(τk)‖2). (3.19)
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From (3.19), Lemma 3.4 and (3.14) we obtain that when k → ∞,
∣∣∣∣
f(xl(k)) − f(xk + δk(τk))

f(xl(k)) − qk(δk(τk))
− 1

∣∣∣∣ =

∣∣∣∣
f(xk + δk(τk)) − qk(δk(τk))

f(xl(k)) − qk(δk(τk))

∣∣∣∣

≤
o(‖δk(τk)‖2)

w1‖ĝk‖min{∆k, ‖bgk‖
M

}
→ 0.

Therefore, when k is sufficiently large, we obtain

f(xl(k)) − f(xk + δk(τk))

f(xl(k)) − qk(δk(τk))
> η.

So, from the definition of the algorithm, we have that, when k is sufficiently large, xk+1 =

xk+δk(τk), where δk(τk) = −B−1
k gk. It says that, when k is sufficiently large, our nonmonotonic

adaptive trust region method with curvilinear searches is equivalent to the standard Newton or

quasi-Newton method. Therefore, the sequence {xk} converges to x∗ superlinearly.

4. Numerical Results

In this section, the nonmonotonic adaptive trust region method with curvilinear searches is

tested on a set of standard test problems from [3] [6] and [8]. Table 1 lists the function names

we used in the numerical experiment.

A MATLAB program is coded to perform the experiments. The stopping rule in the ex-

periment is ‖gk‖ ≤ 10−5. In addition, we assume Bk = ∇2f(xk). The other parameters are as

follows : M = 10, η = 0.1, α = 0.5, γ = 0.0001, ε = 10−5.

Table 1 Test Functions

No. Function Name No. Function Name

1 Helical Valley 2 Gaussian

3 Powell Badly Scaled 4 Box 3-Dimensional

5 Variably Dimensioned 6 Watson

7 Penalty I 8 Penalty II

9 Brown Badly Scaled 10 Brown and Dennis

11 Gulf Res. and Dev. 12 Extended Rosenbrock

13 Extended Powell Singular 14 Beale

15 Wood 16 Chebyquad

17 Cube 18 Sc. Rosenbrock(c = 104)

19 Sc. Rosenbrock(c = 106) 20 Cliff

We compare the new algorithm(ANTRCS) with the nonmonotone curvilinear search method

(NCS) and the usual nonmonotone trust region method with the preconditioned modified gra-

dient path (NTR). It is not difficult to find that when Bk is positive definite, the path is the

same when τk is set as any value in the interval [1, +∞]. Thus, for nonmonotone curvilinear

search method in our experiment, if Dk is positive definite, we set the initial value τ0
k of τk as 1.

In addition, from Assumption 3.1, we know that τk can’t be +∞ whenever Bk is not positive

definite. Therefore, in order to make the algorithm more effective, we select τ0
k according to

the following simple adaptive rule. If ‖Γk(0.8)‖ ≤ 100, we set µ = 0.8, otherwise µ = 0.2.

Then we distinguish two cases. If Γ2(t2(τ)) is relevant, τ0
k = µ−n, otherwise τ0

k = µ. Besides,

when we solve the trust region subproblem, the bisection method is used to solve the equation

‖Γk(τ)‖ = ∆k.
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The numerical results are listed in Table 2. We denote the size of problems by N, the number

of function evaluations by F, the number of gradient evaluations by G, and the final function

value by FVAL. In the list, ’fail’ means that when the iteration number exceeds 500, we stop

the algorithm. From the table we can see that for most problems, the numbers F and G of the

new algorithm are in general smaller than those of the other two algorithms, especially for the

ill-conditioned problems. For thirty tests on the twenty functions, the new algorithm performs

better than others in 12 tests and almost the same as the other algorithms in 14 tests. This

means the new adaptive nonmonotonic trust region algorithm with curvilinear searches is more

effective.

Table 2 Numerical Results of New Algorithm

NCS NTR ANTRCS

No. N F-G FVAL F-G FVAL F-G FVAL

1 3 28-16 2.4211e-023 70-41 4.0945e-020 22-20 2.0269e-021

2 2 2-2 1.1293e-008 2-2 1.1293e-008 2-2 1.1293e-008

3 2 176-24 2.0534e-006 37-22 1.4554e-006 40-22 1.3276e-006

4 3 16-12 8.3244e-012 15-14 1.1557e-012 16-14 5.4090e-017

5 10 30-15 2.3734e-016 15-15 1.7471e-026 15-15 1.7471e-026

6 12-12 2.2877e-003 12-12 2.2877e-003 12-12 2.2877e-003

6 9 13-13 1.3998e-006 13-13 1.3998e-006 13-13 1.3998e-006

12 13-13 4.7224e-010 fail - 13-13 4.7224e-010

4 17-17 2.2513e-005 17-17 2.2513e-005 17-17 2.2513e-005

7 10 24-24 7.0877e-005 24-24 7.0877e-005 24-24 7.0877e-005

4 7-7 2.6917e-006 7-7 2.6917e-006 7-7 2.6917e-006

8 10 19-19 8.8147e-006 19-19 8.8147e-006 19-19 8.8147e-006

9 2 29-6 0 fail - 31-6 0

10 4 17-9 8.5822e+004 9-9 8.5822e+004 9-9 8.5822e+004

11 3 73-64 2.5811e-013 59-54 4.6277e-012 73-64 2.5811e-013

2 18-12 7.6258e-016 22-12 6.9300e-017 18-12 7.6258e-016

12 10 18-12 3.8129e-015 19-12 1.8044e-015 18-12 3.8129e-015

20 18-12 7.6258e-015 20-14 4.0244e-024 18-12 7.6258e-015

13 4 16-16 4.3788e-009 16-16 4.3788e-009 16-16 4.3788e-009

16 17-17 3.4598e-009 17-17 3.4598e-009 17-17 3.4598e-009

14 2 13-12 8.4347e-020 9-7 4.8175e-014 12-12 8.4347e-020

15 4 28-28 1.2554e-013 29-29 2.0129e-016 28-28 1.2554e-013

7 12-8 1.9371e-014 28-10 1.1938e-019 14-8 1.9371e-014

16 8 23-13 3.5169e-003 121-23 3.5169e-003 29-18 3.5169e-003

9 24-16 3.4525e-016 147-31 6.8752e-015 20-13 5.3879e-015

10 22-12 4.7727e-003 64-15 4.7727e-003 30-19 4.7727e-003

17 2 18-13 9.6635e-028 20-13 8.0643e-028 16-13 9.6635e-028

18 2 29-12 0 22-12 0 17-12 0

19 2 61-10 1.7820e-012 20-10 1.0445e-012 15-10 1.7820e-012

20 2 145-28 1.9979e-001 28-28 1.9979e-001 28-28 1.9979e-001

5. Conclusions

We have combined the preconditioned modified gradient path trust region method with

nonmonotone curvilinear search methods to form a new effective algorithm. From the compu-

tational results we can know that the new algorithm has some merits. On one hand, it uses
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the adaptive trust region method supplying an effective initial τk for the curvilinear search. On

the other hand, curvilinear searches avoid solving the trust region subproblems many times.

The idea and approach in this paper can be extended to other curvilinear paths, such as the

preconditioned optimal path and the preconditioned conjugate path.
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