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Abstract

It has been observed that the residual polynomials resulted from successive restarting
cycles of GMRES(m) may differ from one another meaningfully. In this paper, it is further
shown that the polynomials can complement one another harmoniously in reducing the
iterative residual. This characterization of GMRES(m) is exploited to formulate an efficient
hybrid iterative scheme, which can be widely applied to existing hybrid algorithms for
solving large nonsymmetric systems of linear equations. In particular, a variant of the
hybrid GMRES algorithm of Nachtigal, Reichel and Trefethen (1992) is presented. It is
described how the new algorithm may offer significant performance improvements over the
original one.

Mathematics subject classification: 65F10.
Key words: Nonsymmetric linear systems, Iterative methods, GMRES, Hybrid, Harmonic
Ritz values, Residual polynomials.

1. Introduction

We are interested in the polynomial methods (sometimes loosely referred to as Krylov sub-
space methods [11]) for solving linear systems of the form

Ax = b, A ∈ Rn×n; x, b ∈ Rn.

Starting from an initial guess, x0, the methods generate a sequence of iterates {xi} whose
residuals {ri = b − Axi} satisfy

ri = pi(A)r0.

Here {pi(z)}, known as residual polynomials, satisfy that deg pi ≤ i and pi(0) = 1.
By requiring pi be optimal in the sense that

‖ri‖ = ‖pi(A)r0‖ = min
deg p≤i,p(0)=1

‖p(A)r0‖, (1)

the GMRES algorithm [10] is defined. Here and throughout ‖ ·‖ is used to refer to the standard
2-norm. To limit the average work per iteration, GMRES is often restarted every steps, leading
to the GMRES(m) algorithm:

rkm = pm,k(A)r(k−1)m, pm,k selected by (1) based on r(k−1)m (k = 1, 2, · · · ). (2)

The average work per iteration for GMRES(m) applied to general matrices is proportional to
mn; large values of m generally improve convergence but also increase the work per iteration.

Considerably cheaper algorithms are the hybrid iterative algorithms. These algorithms typ-
ically run GMRES until sufficient information is extracted from A, then construct a polynomial
of degree m and re-apply it by means of a basic one-step iterative method; namely,

rkm = [pm(A)]kr0, k = 1, 2, · · · , (3)
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which requires only order n work per iteration, independent of m. For a survey of the hybrid
algorithms, see [7].

In order to minimize the risk of convergence failure, Joubert [5] proposed an adaptive hybrid
algorithm. By the algorithm, the results from cycles of GMRES(m) are used to form an effective
polynomial, which approximates the ideal GMRES polynomial [12] p∗(z), i.e., the minimizer of
the problem

min
deg p≤m,p(0)=1

‖p(A)‖.

The performance of p∗(z) is in some sense the best possible for the existing hybrid algorithms.
However, the implementation of Joubert’s algorithm is quite complicated. A much more eco-
nomical algorithm to explore the ideal GMRES polynomial was studied by Zhong [16]. In
Zhong’s algorithm, the polynomial to be used by (3) is simply chosen from a few residual poly-
nomials of GMRES(m). Since successive restarting cycles of GMRES(m) always differ from
one another meaningfully, the flexibility in choosing the polynomial can improve convergence
significantly in many cases.

On the other hand, the results of [1, 12] indicate that for nonsymmetric problems, using
hybrid iteration for the sake of increased speed may mean sacrificing robustness. It is now
known that matrices exist for which GMRES(m) converges but the iteration (3) with every
polynomial of degree m(< n) does not. Furthermore, we note that even in the case where the
two methods both converge, the hybrid iteration may perform much more disappointingly than
GMRES(m). For a trivial example, consider the following 2 × 2 linear system Ax = b with

A =

(

λ
cλ

)

, b =

(

1
1

)

, x0 =

(

0
0

)

, (4)

where λ 6= 0 and c � 1. Since here n = 2, we take m = 1. The iteration (3) can yield rapid
convergence only if the used polynomial p1(z) = 1 + αz satisfies that |p1(λ)| and |p1(cλ)| both
lie well enough below 1. However, when |p1(cλ)| ≤ 1 is imposed, we have −2 ≤ αcλ ≤ 0, which
gives that |p1(λ)| ≥ 1 − 2/c. Inevitably, the iteration (3) will be very slowly convergent for a
large c, e.g., 100. On the other hand, the convergence rate of GMRES(1) applied to the same
problem is about ‖rkm‖/‖r(k−1)m‖ =

√
2/2 per cycle.

The example is contrived, but similar phenomena occur frequently in scientific computing,
especially when A has some extremely small eigenvalues. This problem appears to be an inherent
limitation of the existing hybrid algorithms.

In this paper we propose a new hybrid iterative scheme, referred to as product hybrid scheme.
When an existing hybrid algorithm is implemented with this scheme, the way of how the
polynomial is constructed and how it is applied is maintained, but the iteration (3) now is based
on a product of several polynomials, rather than a single polynomial of degree m. In particular,
in Section 2 we introduce a product variant of the hybrid GMRES algorithm of Nachtigal,
Reichel and Trefethen [7]. In Section 3 we derive an explicit polynomial characterization of
GMRES(m), which provides the main motivation for developing the product hybrid scheme.
In Section 4 we consider some implementation issues of the product hybrid GMRES algorithm.
In Section 5 we present some numerical examples to illustrate the remarkable superiority of the
new algorithm. Finally, in Section 6 we conclude the paper.

2. The Product Hybrid GMRES Algorithm

Unlike other hybrid algorithms, which first estimate eigenvalues and then apply this knowl-
edge in further iterations, the hybrid GMRES algorithm proposed in [7] avoids eigenvalue
estimates. Instead, it runs GMRES until the residual norm drops by a certain factor, and
then re-applies the polynomial implicitly constructed by GMRES via a Richardson iteration.
Correspondingly, its product variant can be schematically shown as:
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Product hybrid GMRES algorithm

Phase I Run GMRES(m) until ‖rkm‖ drops by a suitable amount. Set s = k and construct
the GMRES residual polynomials {pm,k(z)}s

k=1, which satisfy (2).

Phase II Re-apply the product polynomial

πs(z) = pm,s(z)pm,s−1(z) · · · pm,1(z)

cyclically until convergence:

rksm = [πs(A)]kr0, k = 2, 3, · · · .

The structure of the algorithm is practically appealing. In Phase I the GMRES iteration
produces iterates as by-product, and its cost is only slightly greater (about m2/3n SAXPY
operation per step) than a standard GMRES(m) iteration, due to the calculation of πs(z).

Throughout this paper it is assumed that r0 contains components in all eigenvector directions
of the matrix A. In fact, if r0 is deficient in some eigenvector components, then we may remove
the corresponding eigenvalue from A and reduce the system Ax = b to an equivalent one, which
has a lower dimension. The product hybrid GMRES algorithm has the first advantage over
the original one in that its convergence behavior is well understood, as stated in the following
theorem.
Theorem 1. The product hybrid GMRES algorithm converges if GMRES(m) converges.

Proof. If GMRES(m) converges, it holds that

lim
s→+∞

‖πs(A)r0‖ = 0.

Then with a suitable s, we must have ‖πs(A)‖ < 1, which leads to convergence of the Richardson
iteration in Phase II.

Since we may take sm ≥ n, it can be easily proved that the product variants of other hybrid
algorithms also have the same convergence bound as GMRES(m). This makes a significant
breakthrough in the application of hybrid iteration as a technique, see [1].

The remainder of this paper is devoted to show that the product hybrid GMRES algorithm
(essentially, the product hybrid scheme) is mathematically feasible, practical, and computa-
tionally superior to its original one. The subject is related to the asymptotic convergence rate
of the Richardson iteration, in terms of the quantity

υ = max
λ∈σ(A)

{|πs(λ)|},

where σ(A) = {λ1, λ2, · · · , λn} is the spectrum of A. Note that a large υ will hinder or preclude
the convergence of the Richardson iteration, even though the modulus of πs(z) is very small on
all the other eigenvalues of A.

In the next section we show theoretically that if GMRES(m) converges steadily, then πs(z)
can seek a kind of equilibrium in residual reduction among all the eigenvector components, in
some sense that

|πs(λ1)| ≈ |πs(λ2)| ≈ · · · ≈ |πs(λn)|. (5)

Such an equilibrium is of great significance: the Richardson iteration with this product polyno-
mial will then yield a convergence rate, in an asymptotic sense, as good as that of the previous
GMRES(m) iteration, resulting in greatly decreased work requirements. The theoretical results
are numerically illustrated in Section 5.

3. A Polynomial Characterization of GMRES(m)

Harmonic Ritz values are employed to study GMRES(m). Let Vm = [v1, v2, · · · , vm] be an
orthonomal basis of Km(r0, A), where Km(r0, A) = span{Air0}m−1

i=0 is the Krylov subspace.
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Define Gm = (V T
m AT Vm)−1V T

m AT AVm. The harmonic Ritz values of A are the eigenvalues of
Gm [6]. The following lemma reveals a fundamental relation between GMRES and the harmonic
Ritz values, see [2, 3].

Lemma 2. Denote by {λ(m)
i }m

i=1 the m harmonic Ritz values of A. The GMRES polynomial
pm(z) satisfies

pm(z) =
(λ

(m)
1 − z)(λ

(m)
2 − z) · · · (λ(m)

m − z)

λ
(m)
1 λ

(m)
2 · · ·λ(m)

m

.

Here it is assumed that GMRES(m) converges, so that λ
(m)
i 6= ∞(i = 1, 2, · · · , m) [17].

Otherwise we have pm(z) ≡ 1. Assume for simplicity that the eigenvalues of A and Gm are
all simple. Denote by Pm the orthogonal projector onto Km(r0, A), and Qm the oblique pro-
jector onto Km(r0, A) and orthogonal to AKm(r0, A). The following lemma is established as a
generalization of Theorem 3.7 of [4], see [16].

Lemma 3. Let S−1
m GmSm = diag(λ

(m)
1 , · · · , λ

(m)
m ) and cond(Sm) = ‖Sm‖‖S−1

m ‖. Denote by
ϕi(i = 1, 2, · · · , m) the ith normalized eigenvector of A. There exists a harmonic Ritz value

λ
(m)
i such that

|λ(m)
i − λi| ≤ 2γm,icond(Sm)

‖(I − Pm)ϕi‖
‖Pmϕi‖

,

in which γm,i = ‖Qm(A − λiI)(I − Pm)‖.
Write the initial vector r0 as r0 =

∑n
j=1 αjϕj . The following result is established in [8].

Lemma 4. Assume that αi 6= 0 and let ξi =
∑n

j=1,j 6=i |αj |/|αi|. Then

‖(I − Pm)ϕi‖ ≤ ξi min
deg p≤m−1;p(λi)=1

max
j=1,2,··· ,n;j 6=i

|p(λj)|
def
= ξiε

(m)
i .

With the previous preliminaries, we now give the main result below, which is an explicit
polynomial characterization of GMRES(m).
Theorem 5. Assuming GMRES(m) starts with r0 =

∑n
j=1 αjϕj and αi 6= 0, with a proper

order of {λi}n
i=1 we will have

|πs(λi)| ≤ Fm,i

∑n
j=1,j 6=i |αjπs−1(λj)|

|αi|
(6)

with

Fm,i = 2

∏m
j=1,j 6=i |λ

(m)
j − λi|

∏m
j=1 |λ

(m)
j |

γm,icond(Sm)
ε
(m)
i

‖Pmϕi‖
,

where the scalars with the subscript or superscript (m), except ε
(m)
i , are all associated to the

sth restarting cycle of GMRES(m).
Proof. It follows from r(s−1)m = πs−1(A)r0 that

r(s−1)m =

n
∑

j=1

αjπs−1(λj)ϕj .

Then
|πs(λi)| = |pm,s(λi)πs−1(λi)|

Lemma 2
=

∏

m
j=1,j 6=i |λ

(m)
j

−λi|
∏

m
j=1 |λ

(m)
j

|
|λ(m)

i − λi||πs−1(λi)|

Lemma 3
≤ 2

∏

m
j=1,j 6=i

|λ
(m)
j

−λi|
∏

m
j=1 |λ

(m)
j

|
γm,icond(Sm)‖(I−Pm)ϕi‖

‖Pmϕi‖
|πs−1(λi)|
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Lemma 4
≤ 2

∏

m
j=1,j 6=i

|λ
(m)
j

−λi|
∏

m
j=1 |λ

(m)
j

|
γm,icond(Sm)

· ε
(m)
i

‖Pmϕi‖

∑n
j=1,j 6=i

|αjπs−1(λj)|

|αiπs−1(λi)|
|πs−1(λi)|

= Fm,i

∑

n
j=1,j 6=i

|αjπs−1(λj )|

|αi|
.

The superiority of the product hybrid GMRES algorithm is interpreted by the following two
remarks of Theorem 5.
Remark 1. When s = 1, we have

|pm,1(λi)| ≤ Fm,i

∑n
j=1,j 6=i |αj |

|αi|
.

If r0 is nearly deficient in the ith eigenvector component, i.e., |αi| � |αj | for j 6= i, then
|pm,1(λi)| is likely to be considerably large, which is fatal to the Richardson iteration. On the
other hand, since rm becomes rich in this component, |pm,2(λi)| will be correspondingly small
in the next GMRES cycle. Then pm,2(z) can act as an equilibrium to pm,1(z), and a product
of the two polynomials will improve the performance of the Richardson iteration significantly.
Remark 2. If r0 is (nearly) equally rich in all the eigenvector components, i.e., |α1| = |α2| =
· · · = |αn|, then it is obtained from (6) that

|πs(λi)| ≤ Fm,i

n
∑

j=1,j 6=i

|πs−1(λj)| (i = 1, 2, · · · , n),

which implies that the product polynomial πs(z) will be simultaneously reduced on the spec-
trum of A. On the other hand, it is well observed that a single polynomial pm(z) always has
little reduction on extremely small eigenvalues. This comparison motivates the product hybrid
GMRES algorithm.

4. Implementation Issues of the Product Hybrid GMRES Algorithm

The crucial element for successful application of the product hybrid GMRES algorithm
revolves around the choices of m and s. The same strategy for choosing m for the hybrid
GMRES algorithm is suggested here:

Goal : equal amounts of work in Phase I and Phase II, (7)

where the work is measured by vector operations and a vector operation is defined to be the
cost of an “axpy” operation ax + y involving a scalar a and n-vector x and y.

The condition (7) has some solid justifications. In particular, we have the following theorem,
which is an immediate generalization of Theorem 1 of [7].
Theorem 6. Assume that the GMRES(m) iteration of Phase I converges steadily, and the
Richardson iteration of Phase II converges at exactly the same rate as in Phase I, i.e.,

‖rksm‖
‖r0‖

=

(‖rsm‖
‖r0‖

)k

for all k ≥ 0. (8)

Let m be determined by the condition (7). Then the product hybrid GMRES algorithm converges,
and no other choice of m could have reduced the computing time by more than a factor of two.

Proof. See [7].
So long as the assumptions made in Theorem 6 hold, this strategy for choosing m is actually

optimal with respect to work requirement in the sense that any other choice might lead to a
penalty of a factor greater than two, see [7].

Now we work out the algebra requirement to implementation (7). Suppose in Phase I
the residual has been reduced by the factor of ‖rsm‖/‖r0‖ = τs and our desired accuracy is
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‖rfinal‖/‖r0‖ = ε. Assume that one matrix-vector multiplication costs δ vector operations for
some δ ≥ 0. According to estimates in [10], the work performed so far is

Phase I work : sm(m + 3 + δ) vector operations.

In the Richardson iteration of Phase II the work per step will be 1 + δ vector operations.
By (8), the total number of steps to convergence will be m log ε/ log τ , hence in Phase II,
sm[log ε/(s log τ) − 1]. This implies that

Phase II work : sm(1 + δ)[log ε/(s log τ) − 1] vector operations.

The condition (7) can be realized by equating the work of Phase I and Phase II:

m + 3 + δ = (1 + δ)[log ε/(s log τ) − 1]. (9)

To summarize, here is how we decide when to restart GMRES. During the first GMRES cycle
the left-hand side of (9) increases monotonically and the right-hand side decreases monotonically
(because τ is decreasing). We restart GMRES as soon as the left-hand side exceeds the right-
hand side.

Note that the optimal choice of m for the product hybrid algorithm depends on the choice of
s. Then we need to choose s beforehand. This is a mater of experience. It is well observed that
if GMRES(m) converges steadily, in most cases only a couple of GMRES cycles are required
in order for an effective product polynomial. Generally, we take s = 2. The effect of such a
decision is numerically illustrated in the next Section.

The choices of m and s presented above are based on some idealized assumptions which do
not always hold in practice. For ill-conditioned problems both m and s should be larger. To
a certain extent users of the product hybrid GMRES algorithm will inevitably have to make
some decisions themselves, just as in using GMRES(m) or some other iterative methods. More
fundamentally, since there are no definite rules governing such choices, we suggest an adaptive
procedure be developed to make decisions automatically. The mechanism of the procedure is
that if the residual decrease of the Phase II iteration is not adequate, a decision should be made
to return to Phase I and restart a new GMRES cycle from the current best available solution,
maybe with an increased m.

The structure of the practical variant is shown below. The details of how to compute the
GMRES residual polynomials and how to apply them via the Richardson iteration can be seen
in [7]. For a more stable way to implement GMRES(m) and construct the residual polynomials,
see [15].

(1) Initialize. Take s = 2 and let m be decided by (9). Set L=TURE, which is used to decide
whether GMRES should be restarted with the same m or an increased m.

(2) Run GMRES(m) within two cycles and compute the GMRES polynomials.

(3) Reapply the computed product polynomial via the Richardson iteration and perform stop-
ping test.

(4) If the convergence proves unsatisfactory and L=TURE, restart GMRES another couple
of cycles from the current best available solution with the same m. Set L=FALSE and
GOTO (3).

(5) If the convergence proves unsatisfactory and L=FALSE, restart GMRES another couple of
cycles from the current best available solution with an increased m. Set L=TURE and
GOTO (3).
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λi −10 −1 −0.1 0.1 1 10

|p4,1(λi)| 9.898E-7 9.997E-3 0.9898 0.9898 9.997E-3 9.898E-7

|p4,2(λi)| 3.300E+5 32.67 0.3300 0.3300 32.67 3.300E+5

|π2(λi)| 0.3266 0.3266 0.3266 0.3266 0.3266 0.3266

Table 1: Example 1

5. Numerical Experiments

The product hybrid GMRES algorithm is tested and compared with other iterative methods.
The first experiment is designed to illustrate the theoretical results of Sections 3. The other
experiments are designed to compare the product hybrid GMRES algorithm (PH-GMRES(s,
m)) with the hybrid GMRES algorithm (H-GMRES(m)), GMRES(m), and for a special choice,
GMRESR(m) (using GMRES(m) as the inner iteration method) [14], which is known as another
hybrid variant of GMRES. In each experiment the right-hand side is chosen as b = (1, 1, · · · , 1)T

and the initial guess x0 is taken to be zero. Except the first example, the convergence tolerance
is ε = 10−10 and for each example we present a plot shows log10 ‖rsm‖ as a function of work
measured by vector operations, defined in Section 4.
Example 1. Take A = diag(−10,−1,−0.1, 0.1, 1, 10) and run GMRES(4) within two cycles. In

the first cycle {λ(4)
i }4

i=1 = {−9.999,−0.995, 0.995, 9.999}, which are far form the small eigenval-
ues {−0.1, 0.1} but well close to the large eigenvalues {−10,−1, 1, 10}. Correspondingly, p4,1(z)
has little reduction on the eigenvalues {−0.1, 0.1}(see Table 1), which will yield very slow con-
vergence in the Richardson iteration if used. In the second GMRES cycle, since r4 becomes
very rich in the eigenvector components of {−0.1, 0.1} but nearly deficient in the direction of

{−10,−1, 1, 10}, we get {λ(4)
i }4

i=1 = {−1.4089,−0.1223, 0.1223, 1.4089}, which do a good job
in locating the small eigenvalues {−0.1, 0.1}. Correspondingly, p4,2(z) is significantly reduced
on {−0.1, 0.1} but becomes considerable large on {−10,−1, 1, 10}(see Remark 1 of Theorem
5). As a result, the product polynomial π2(z) is (nearly) equally reduced in all the eigenvector
components, which takes advantage of an equilibrium between p4,1(z) and p4,2(z)(see Remark 2
of Theorem 5). Using π2(z) can then yield a convergence rate as good as GMRES(4), however,
at significantly less cost.

Note that the same observation was made in solving the problem (4) of Section 1: PH-
GMRES(2,1) can converge rapidly at the same rate as GMRES(1).
Example 2. This problem is taken from [13], for which GMRES is superlinear convergent
[13, 18]. The matrix is of the form A = SBS−1 with S, B ∈ R1000×1000 selected to be

S =













1 0.1

1
. . .

. . . 0.1
1













; B =











1
2

. . .

1000











.

Since A has so many different eigenvalues, H-GMRES(20) goes to considerable trouble in making
its iteration polynomial, to some extent, be equally small on σ(A). Nevertheless, it beats GM-
RES(20) by a small factor. Meanwhile, a surprising improvement is offered by PH-GMRES(2,
20), see Figure 1. This illustrates the remarkable superiority of the product hybrid scheme.

We consider in a little more detail the performance of GMRESR(20), which is fastest among
the four algorithms. As a sophisticated hybrid variant of GMRES, GMRESR(m) constructs a
different polynomial preconditioner in each iteration step. Furthermore, because this method
does not restart, it tends to be superlinear convergent [14]. This appealing property appears to
play an important role in the rapid convergence of GMRESR(m) here.
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Figure 1: Example 2

Example 3. This problem is taken from [7]. Let A be a large upper-triangular Toeplitz matrix
of the form

A =











1 1 0.5
1 1 0.5

1 1 0.5
. . .

. . .
. . .











(1000× 1000).

This matrix has just the single eigenvalue {1}. However, for practical purposes it behaves much
more nearly as if its spectrum were σ(A)practical = f(D), where D is the closed unit disk and
f(z) = 1 + z + 0.5z2 is the symbol of this Toeplitz matrix.

We see in Figure 2 that H-GMRES(5) performs ideally well, but PH-GMRES(5) is still
further ahead. The observation indicates that the product hybrid scheme can also improve
convergence for matrices whose effective spectrum are quite different from their exact spectrum.
This time GMRESR(5) lags behind GMRES(5) due to the additional cost of its inner iteration
process.
Example 4. Finally, we consider a realistic test problem taken from the Harwell-Boeing
collection. The matrix (GRE115) was produced from runs of the package QNAP written by
CII-HB for simulation modeling of computer systems and used as a test bed for ordering codes.

It is observed that H-GMRES(m) diverges for all possible choices of m, whereas PH-
GMRES(s,20) converges rapidly when s ≥ 5. The behavior of H-GMRES(33) and PH-GMRES
(5,20) is shown in Figure 3. GMRESR(20) is superlinear convergent and does much better.
However, by choosing another set of the parameters m and s, we see PH-GMRES(2,33) is the
fastest.

6. Concluding Remarks

We have given some insights into the convergence characteristics of GMRES(m), and as a
natural outgrowth, defined an effective hybrid iterative scheme which appears quite promising
for solving large nonsymmetric linear systems of equations.

The most general hybrid algorithms are based on Arnoldi eigenvalue estimates. Since both
the Arnoldi and GMRES iterations make use of a Hessenberg matrix obtained by the or-
thogonalization of a sequence of Krylov vectors, these computations are usually carried out
simultaneously. However, the Arnoldi eigenvalue estimates are likely to be far from small eigen-
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Figure 2: Example 3

-8 

-11 

-5 

-2 

 1 

 4 

6000 12000 18000 240000 30000 

dot:  GMRES(20) 

solid: PH-GMRES(2,33) 

long dash: H-GMRES(33) 

short dash: PH-GMRES(5,20) 
dash and dot: GMRESR(20) 

Log. residual norm vs. work 

 
 
 

Figure 3: Example 4

values for the first “Arnoldi/GMRES” cycle. Consequently, the resulted polynomial may be
considerably large on the small eigenvalues. With this consideration, we suggest hybrid algo-
rithms of the “Arnoldi/GMRES” type also be implemented with the product hybrid scheme.
According to our theoretical results presented above, polynomials resulted from the following
“Arnoldi/GMRES” cycles will contain enough information on the location of the small eigen-
values, so that a product of these polynomials will also be potentially advantageous.

Acknowledgments. The author wishes to thank Professor Dai Hua for many helpful com-
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