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Abstract

There exists a strong connection between numerical methods for the integration of
ordinary differential equations and optimization problems. In this paper, we try to discover
further their links. And we transform unconstrained problems to the equivalent ordinary
differential equations and construct the LRKOPT method to solve them by combining the
second order singly diagonally implicit Runge-Kutta formulas and line search techniques.
Moreover we analyze the global convergence and the local convergence of the LRKOPT
method. Promising numerical results are also reported.
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1. Introduction

In this paper, we mainly consider numerical methods for the following unconstrained opti-
mization problem

min
x∈Rn

f(x), (1.1)

where f is a continuously differentiable function. The main idea of solving the unconstrained
optimization problem (1.1) is that we search for the next iteration point

xk+1 = xk + αkdk

via choosing the descent direction dk and the step length αk based on the current iteration point
xk such that f(xk+1) satisfies some descent criteria, such as the Armijo line search criterion
[13, 27, 35].

It has been extensively studied for choosing the descent direction dk based on the Newton
direction (see [1, 2, 4, 6, 9]), the conjugate gradient direction (see [10, 14, 15]) and the negative
gradient direction (see [3, 5, 6, 16, 18, 30]) last decades, where ∇f(xk) and ∇2f(xk) are the
gradient and the Hessian matrix of the function f at the current point xk, respectively. But
there are few researches for other descent directions. In the next section, we will consider
search directions other than the negative gradient direction or the Newton direction. And we
construct the LRKOPT method that has the superlinear convergence and global convergence
by discretizing the following initial value problem of ordinary differential equations

dx

dt
= −∇f(x), (1.2)

x(0) = x0, (1.3)
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where x0 is an any given initial value. It is well-known that the solution x(t) of differential
equations (1.2)-(1.3) converges to the stable point x? of the function f as t tends to infinity,
namely limt→∞ ‖∇f(x(t))‖ = 0 (see [18, 22]).

There are some discussions on numerical methods for solving (1.2)-(1.3) in [30], which point
out the importance of studying this class of numerical methods. Schropp [32] applied linear
multistep methods to the gradient system (1.2)-(1.3) and studied the qualitative properties
of discrete solutions of (1.2)-(1.3). In [23], we give a reasonable explanation that Backward
Difference Formulas (BDFs) which are popular methods for solving stiff ordinary differential
equations are low efficient for the gradient system (1.2)-(1.3) on the view of unconstrained
optimization and we will restate the explanation in Section 2. Thus we mainly consider Runge-
Kutta methods for solving the gradient system (1.2)-(1.3).

This paper is organized as follows. In the next section we consider the second order Singly
Diagonally Implicit Runge-Kutta methods (SDIRK) for solving the gradient system (1.2)-(1.3)
and construct the LRKOPT method with the superlinear convergence for the unconstrained
optimization problem (1.1). In Section 3 we analyze the global convergence and the local
convergence of the LRKOPT method. Finally, we report some numerical results of the LRKOPT
method and the IMPBOT method which is given by Brown and Bartholomew-Biggs (see [6]) in
Section 4. Throughout the paper ‖ · ‖ denotes the Euclidean vector norm or its induced norm.

2. The LRKOPT Method

We know that the class of methods for solving the gradient system (1.2)-(1.3) need satisfy
the L stability via studying the linear test ordinary differential equation if those methods have
the good local behavior (see [23]). Because linear multistep methods except for the backward
Euler method do not satisfy the L stability, we focus on Runge-Kutta methods for solving the
gradient system (1.2)-(1.3).

Runge-Kutta methods for solving the gradient system (1.2)-(1.3) have the following general
form

Ki = h · g(xk +

s
∑

j=1

aijKj), i = 1, 2, · · · , s, (2.1)

xk+1 = xk +

s
∑

i=1

biKi, (2.2)

where g(x) = −∇f(x), h > 0 is the time step, aij and bi are constants. It is favorable for stiff
ordinary differential equations if the numerical method has the A stability. Because the highly
nonlinear problem (1.1) can introduce stiff ordinary differential equations (1.2)-(1.3). Thus we
consider implicit Runge-Kutta methods for solving the gradient system (1.2)-(1.3).

Before introducing the particular scheme for solving the gradient system (1.2)-(1.3) we give
some short descriptions of A-stable, L-stable and B-stable. A numerical method is called A-
stable if, for the linear test equation dx/dt = µx with Re(µ) ≤ 0 and for all time steps h ≥ 0,
the stability function R(z) = 1 + zbT (I − zA)−1e satisfies |R(z)| ≤ 1, where z = µh, the
elements of the matrix A are aij(i, j = 1, 2, · · · , s), the vector b equals to [b1, b2, · · · , bs]

T and
all elements of e are one (see [17, 34]). The step length h does not have the stable restriction if
the numerical method is A-stable. Furthermore the numerical method is A-stable and satisfies
limz→−∞ R(z) = 0 then it is called L-stable (see [17, 34]).

Let two sequences {xk} and {zk} of approximation computed by a Runge-Kutta method for
the same following autonomous differential equations

dx

dt
= g(x), g : Rn → Rn. (2.3)
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The method is called B-stable if the contractive condition

〈g(x) − g(z), x − z〉 ≤ 0 (2.4)

implies ‖xk − zk‖ ≤ ‖xk−1 − zk−1‖ for all h ≥ 0 (see [7, 17]). Clearly, the B-stability is the
expansion of the A-stability. We define the matrix

M = BA + AT B − bbT , (2.5)

where the vector b and the matrix A are defined by (2.1)-(2.2) and the diagonal matrix B
equals to diag(b1, · · · , bs). We only state the following sufficient condition for the B stability of
Runge-Kutta methods and its proof can be found in [8].

Theorem 2.1. (Burrage and Butcher (1979) [8]) Runge-Kutta methods are B-stable if (2.1)-
(2.2) are such that the matrices B and M are positive semi-definite.

It is not difficult to verify that explicit Runge-Kutta methods are not A-stable. Furthermore
we only need coarse approximation solutions xk in the middle points as we solve the gradient
system (1.2)-(1.3) by employing Runge-Kutta methods. Therefore we consider the low order
implicit Runge-Kutta methods for solving the gradient system (1.2)-(1.3). In particular, we
consider the following second order singly diagonally implicit Runge-Kutta methods at Table
1.

r r 0
1 − r 1 − 2r r

1
2

1
2

Table 1: The second order diagonally implicit Runge-Kutta Methods.

The iterative formulas solving ordinary differential equations (1.2)-(1.3) which use the co-
efficients of Table 1 are

K1 = h · g(xk + rK1), (2.6)

K2 = h · g(xk + (1 − 2r)K1 + rK2), (2.7)

xk+1 = xk +
1

2
(K1 + K2), (2.8)

where g(x) = −∇f(x) and h > 0 is the time step. We can verify that the formulas (2.6)-(2.8)

are the third order if the coefficient r = 3+
√

3
6 or r = 3−

√
3

6 and other cases are the second order
by Taylor series expansion.

We study the B stability of singly diagonally implicit Runge-Kutta methods (2.6)-(2.8) in
order to determine the parameter r in (2.6)-(2.8). As r ≥ 1

4 , we have

M = BA + AT B − bbT

=

[

1
2r 0

1
2 − r 1

2r

]

+

[

1
2r 1

2 − r
0 1

2r

]

−
[

1
4

1
4

1
4

1
4

]

= (r − 1

4
)

[

1 −1
−1 1

]

≥ 0, (2.9)

where B = diag( 1
2 , 1

2 ) is a diagonal matrix, which is composed of b = [ 12 , 1
2 ]T , and the matrix

A = (aij) is composed of the right upper coefficients at Table 1. Namely the matrix M is
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semi-positive definite. Thus Runge-Kutta formulas (2.6)-(2.8) are B-stable as r ≥ 1
4 . Therefore

the third order Runge-Kutta formula (2.6)-(2.8) satisfies the B stability as r = 3+
√

3
6 .

Furthermore we require that Runge-Kutta methods (2.6)-(2.8) have the L stability accord-
ing to the above introductions. If the coefficients of Runge-Kutta methods (2.6)-(2.8) satisfy
bT A−1e = 1 the methods are L-stable (see [17, 34]). From

bT A−1e =
1

2
(
1

r
+

2r − 1

r2
+

1

r
) = 1

we obtain r = 1 +
√

2/2 or r = 1−
√

2/2. Namely the numerical method (2.6)-(2.8) is B-stable
and L-stable as r = 1 +

√
2/2 or r = 1 −

√
2/2.

Because Runge-Kutta methods (2.6)-(2.8) require solving the system of nonlinear equations
every iteration. Thus we consider the following linear model

dx

dt
= −∇f(xk) −∇2f(xk)(x − xk), (2.10)

x(0) = xk. (2.11)

The solution of differential equations (2.10)-(2.11) is

x(t) = xk − [∇2f(xk)]−1 ∇f(xk) + exp(−∇2f(xk)t) [∇2f(xk)]−1 ∇f(xk) (2.12)

if ∇2f(xk) is nonsingular. From (2.12) we get

lim
t→∞

x(t) = xk − [∇2f(xk)]−1 ∇f(xk), (2.13)

namely the solution of (2.10)-(2.11) tends to the Newton step as t → ∞, if ∇2f(xk) is a positive
definite matrix.

Applying Runge-Kutta methods (2.6)-(2.8) to the linear model (2.10)-(2.11) we obtain fol-
lowing iteration formulas

(λkI + r Gk)K1 = −∇f(xk), (2.14)

(λkI + r Gk)K2 = −∇f(xk) − (1 − 2r)GkK1, (2.15)

sk =
1

2
(K1 + K2), (2.16)

xk+1 = xk + sk, (2.17)

where λk = 1/h and Gk = ∇2f(xk). Thus we obtain the curvilinear search direction sk in
(2.14)-(2.17) and it requires to determine the step size parameter λk. We choose the parameter
λk such that sk satisfies the Armijo line search criterion [13, 27, 35]

f(xk + sk) ≤ f(xk) + αsT
k ∇f(xk), 0 < α < 1. (2.18)

According to the above analysis we can give the following algorithm for solving the uncon-
strained optimization problem (1.1).

Algorithm 2.2. The LRKOPT Method

Step 0: Give initial parameters. Give an initial point x1. The constants λ1 = min {‖∇
f(xk)‖, 10}, α = 10−4, r = 1 +

√
2

2 or r = 1−
√

2
2 and the tolerable error Tol = 10−6 are

also given.

Step 1: Test the terminal criterion. Compute ∇f(xk) and Gk = ∇2f(xk). If ∇f(xk)
satisfies the terminal criterion

‖∇f(xk)‖ ≤ Tol, (2.19)

then stop. Otherwise go to Step 2.
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Step 2: Solve the subproblem. Solve (2.14)-(2.17). If λkI + r Gk � 0 and sk satisfies the
Armijo line search criterion (2.18), then set

xk+1 = xk + sk, (2.20)

λk+1 =
1

2
λk. (2.21)

Otherwise set

xk+1 = xk , (2.22)

λk+1 = 4λk. (2.23)

Step 3: Continue iterations. Increase the index k by one and go to Step 1.

Brown and Bartholomew-Biggs (see [6]) gave the following IMPBOT method. It requires
to solve linear equations

(λkI + ∇2f(xk))sk = −∇f(xk), (2.24)

xk+1 = xk + sk, (2.25)

such that

f(xk+1) < f(xk) (2.26)

holds. The IMBOT method is the essentially same as the Levenberg-Marquardt method (see
[13, 21, 24, 19, 27, 35]). And it obtains the search direction sk by applying the backward Euler
method to the linear model (2.10)-(2.11). However the LRKOPT method obtains the search
direction sk by applying the second order singly diagonally implicit Runge-Kutta method to the
linear model (2.10)-(2.11). Thus the LRKOPT method approximates the linear model (2.10)-
(2.11) better than the IMPBOT method. Namely the search direction of the LRKOPT method
tends to the Newton step better than the search direction of the IMPBOT method and this
property is desirable for solving the unconstrained optimization. It is worth noting that the
sequence {xk} which is generated by the IMPBOT method (2.24)-(2.26) may not converge to
the local minimizer of the function f (see [23]).

3. Analysis of the LRKOPT Method

In this section, we will analyze the convergence of the LRKOPT method. First, we discuss
some properties of the LRKOPT method. From (2.14)-(2.16) we obtain

sk(λk) =
1

2
(K1 + K2)

= −(λkI + rGk)−1∇f(xk) +
1 − 2r

2
(λkI + rGk)−1Gk(λkI + rGk)−1∇f(xk). (3.1)

Therefore, sk(λk) moves towards the negative gradient direction as λk → ∞. If the Hessian
matrix Gk is nonsingular, we let λk = 0 in (3.1) and obtain

sk(0) = −(
1

r
− 1 − 2r

2r2
)G−1

k ∇f(xk)

= −G−1
k ∇f(xk). (3.2)

Namely the search direction sk(λk) moves towards the Newton step as λk → 0.

Lemma 3.1. The function d(λ) = ‖sk(λ)‖ decreases monotonically and it has the maximizer

‖G−1
k ∇f(xk)‖ as r = 1+

√
2

2 , λ ≥ 0 and Gk is a symmetric positive definite matrix, where sk(λ)

is defined by (3.1). And d(λ) decreases monotonically as r = 1 −
√

2
2 and λ ≥ (1 − 3r)µmax,

where Gk is a symmetric positive definite matrix and µmax is the maximum eigenvalue of Gk.
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Proof. Because the matrix Gk is symmetric it exists an orthogonal matrix Qk such that
QT

k GkQk = diag(µ1, µ2, · · · , µn), where µi are the eigenvalues of Gk. We define

z = QT
k ∇f(xk). (3.3)

From (3.1) and (3.3) we have

d(λ) = ‖sk(λ)‖
= ‖QT

k sk(λ)‖

=

√

√

√

√

n
∑

i=1

[
1

λ + rµi

− 1 − 2r

2

µi

(λ + rµi)2
]2z2

i . (3.4)

We define

ϕ(λ, µ) =
1

λ + rµ
− 1 − 2r

2

µ

(λ + rµ)2

=
2λ + (4r − 1)µ

2(λ + rµ)2
. (3.5)

And we have 4r − 1 > 0 as r = 1 +
√

2/2 or r = 1−
√

2/2. Therefore ϕ(λ, µ) > 0 as λ ≥ 0 and
µ > 0. From (3.5) we have

ϕλ(λ, µ) = −λ + (3r − 1)µ

(λ + rµ)3
≤ 0, (3.6)

as λ ≥ (1 − 3r)µ. Thus ϕ(λ, µ) decreases monotonically on the variable λ as r = 1 +
√

2/2,
µ > 0 and λ ≥ 0, namely d(λ) decreases monotonically and it has the maximizer ‖G−1

k ∇f(xk)‖
as λ = 0. And ϕ(λ, µ) also decreases monotonically on λ as r = 1 −

√
2/2, λ ≥ (1 − 3r)µ and

µ > 0. Therefore we also get the second part of the lemma.

Lemma 3.2. The function φ(λ) = −∇T f(xk)sk(λ) is greater than zero and decreases mono-

tonically as Gk is a symmetric positive definite matrix and r = 1 +
√

2
2 , λ ≥ 0 or r = 1 −

√
2

2 ,
λ ≥ (1− 3r)µmax, where µmax is the maximum eigenvalue of Gk and sk(λ) is defined by (3.1).

Furthermore limλ→∞ − ∇T f(xk)sk(λ)
‖sk(λ)‖·‖∇f(xk)‖ = 1, namely the search direction sk(λ) moves towards

the negative gradient direction as λ → ∞.

Proof. From (3.1) we obtain

φ(λ) = −sT
k (λ)∇f(xk)

=

n
∑

i=1

[
1

λ + rµi

− (1 − 2r)µi

2(λ + rµi)2
]z2

i

=
n

∑

i=1

2λ + (4r − 1)µi

2(λ + rµi)2
z2

i

> 0, (3.7)

where the vector z is defined by (3.3) and µi are the eigenvalues of the positive matrix Gk.
Therefore, from (3.5)-(3.7) we know that φ(λ) decreases monotonically and φ(λ) > 0 as r =

1 +
√

2
2 , λ ≥ 0 or r = 1−

√
2

2 , λ ≥ (1− 3r)µmax, where µmax is the maximum eigenvalue of Gk.
From (3.5) we have

ϕµ(λ, µ) = −λ + r(4r − 1)µ

2(λ + rµ)3

≤ 0, (3.8)
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as µ > 0, λ ≥ 0 and r = 1 +
√

2/2 or r = 1 −
√

2/2. Thus ϕ(λ, µ) decreases monotonically on
µ. Combining (3.4) and (3.7)-(3.8) we obtain

− sT
k (λ)∇f(xk)

‖∇f(xk)‖ · ‖sk(λ)‖ =

n
∑

i=1

2λ + (4r − 1)µi

2(λ + rµi)2
z2

i / [‖z‖

√

√

√

√

n
∑

i=1

(
2λ + (4r − 1)µi

2(λ + rµi)2
)2z2

i ]

≥ [
2λ + (4r − 1)µmax

2(λ + rµmax)2
‖z‖2]/ [

2λ + (4r − 1)µmin

2(λ + rµmin)2
‖z‖2]

= [
2λ + (4r − 1)µmax

2(λ + rµmax)2
]/ [

2λ + (4r − 1)µmin

2(λ + rµmin)2
] (3.9)

by using the monotonically decreasing property of ϕ(λ, µ) on µ, where µmax and µmin are the
maximum and minimum eigenvalues of Gk, respectively. Thus, from (3.9) we have

lim
λ→∞

− sT
k (λ)∇f(xk)

‖∇f(xk)‖ · ‖sk(λ)‖ ≥ 1. (3.10)

Furthermore we get

− sT
k (λ)∇f(xk)

‖∇f(xk)‖ · ‖sk(λ)‖ ≤ 1 (3.11)

by the Cauchy-Schwartz inequality. (3.10) and (3.11) yield limλ→∞ − sT

k
(λ)∇f(xk)

‖∇f(xk)‖·‖sk(λ)‖ = 1.

Using the above lemmas, we give the following global convergence analysis of the LRKOPT
method.

Theorem 3.3. Assume that f is twice continuously differentiable and has the lower bound. And
suppose that the sequence xk is generated by Algorithm 2.2 such that xk ∈ B and ∇f(xk) 6= 0 for
all k, where B is a closed convex set in Rn. If Gk are symmetric positive definite matrices. Then
{xk} converges to the local minimizer or the stable point of f(x), namely infk→∞ ‖∇f(xk)‖ = 0.

Proof. It is convenient to distinguish between two cases:

(i) sup λk = ∞, (ii) sup λk ≤ W for some constant W. (3.12)

Case (i). From (2.21) and (2.23), there must be an infinite subsequence whose indices form
a set S1 such that (2.23) is satisfied, namely sk does not satisfy the Armijo line search criterion
(2.18) or λkI + Gk � 0 for k ∈ S1. Also, using the bounds of Gk and ∇f(xk), from (3.1) we
have

lim
k→∞

‖sk‖ = 0, k ∈ S1, (3.13)

because limk→∞ λk = ∞ for k ∈ S1. In the following proof we will proceed it by contradiction.
If the conclusion were not true there would exist a positive constant δ such that

‖∇f(xk)‖ ≥ δ > 0, (3.14)

holds for all k. Then we get

lim
k→∞

f(xk + sk) − f(xk)

sT
k ∇f(xk)

= 1, k ∈ S1, (3.15)

which gives

f(xk + sk) − f(xk)

sT
k ∇f(xk)

≥ α (3.16)

for the sufficiently large k ∈ S1. From (3.7) we have sT
k ∇f(xk) < 0. Combining (3.16) we

obtain

f(xk + sk) ≤ f(xk) + αsT
k ∇f(xk), (3.17)
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and λkI + Gk � 0 for sufficiently large k ∈ S1, which contradict the definition of S1.
Case (ii). From (2.21) there must be an infinite subsequence whose indices form a set S2

such that sk satisfies the Armijo line search criterion (2.18) for k ∈ S2. Thus we have

∑

k∈S2

[−αsT
k ∇f(xk)] ≤

∑

k∈S2

[f(xk) − f(xk+1)] ≤
∞
∑

k=1

[f(xk) − f(xk+1)]. (3.18)

In the following proof we will proceed it by contradiction. If the conclusion were not true
there would exist a positive constant δ such that (3.14) holds for all k. From (3.7) we have
sT

k ∇f(xk) < 0. Thus {f(xk)} is a decreasing sequence. Moreover the sequence {f(xk)} has the
lower bound we get

∑

k∈S2

[−sT
k ∇f(xk)] < ∞, (3.19)

which gives

lim
k→∞

−sT
k ∇f(xk) = 0, k ∈ S2. (3.20)

From Lemma 3.1 and Lemma 3.2 we know that ϕ(λ, µ) is a monotonically decreasing function
on variables λ and µ respectively, where ϕ(λ, µ) is defined by (3.5). Therefore we have

−sT
k ∇f(xk) =

n
∑

i=1

2λk + (4r − 1)µi

2(λk + rµi)2
z2

i

≥
n

∑

i=1

2W + (4r − 1)M

2(W + rM)2
z2

i

=
2W + (4r − 1)M

2(W + rM)2
‖QT

k ∇f(xk)‖

=
2W + (4r − 1)M

2(W + rM)2
‖∇f(xk)‖, (3.21)

where the vector z is defined by (3.3), µi are the eigenvalues of Gk and M is a constant such
that ‖Gk‖ ≤ M . From (3.20) and (3.21) we also get infk→∞ ‖∇f(xk)‖ = 0 which contradicts
the assumption (3.14).

It is a natural conjecture that the LRKOPT method has the local superlinear convergence
from (3.2). First, we state the characters of the superlinear convergence before we give the
analysis of local convergence for the LRKOPT method.

Theorem 3.4. (Moré and Dennis (1974) [11]) Let f : Rn → R be twice continuously dif-
ferentiable in an open convex set D, and assume that ∇2f(x) is Lipschitz continuous in D.
Consider a sequence {xk} generated by xk+1 = xk + λkpk, where ∇f(xk)T pk < 0 for all k and

λk is chosen to satisfy f(xk+1) ≤ f(xk) + α∇f(xk)T (xk+1 −xk) and ∇f(xk+1)
T
(xk+1 − xk) ≥

β∇f(xk)T (xk+1 −xk), where 0 < α < 1
2 < β < 1. If {xk} converges to a point x? ∈ D at which

∇2f(x?) is positive definite, and if

lim
k→∞

‖∇f(xk) + ∇2f(xk)pk‖
‖pk‖

= 0, (3.22)

then there is an index k0 such that for all k ≥ k0, λk = 1 is admissible. Furthermore, ∇f(x?) =
0, and if λk = 1 for all k ≥ k0, then xk converges q-superlinearly to x?.

Using Theorem 3.4 we obtain the following the local convergence of the LRKOPT method.

Theorem 3.5. Let f : Rn → R be twice continuously differentiable in an open convex set D
and assume that G(x) = ∇2f(x) is Lipschitz continuous in D. If the sequence {xk} is generated
by Algorithm 2.2 and converges to a point x? ∈ D at which ∇2f(x?) is positive definite, then
xk converges q-superlinearly to x?.
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Proof. Because {xk} converges to x? we have limk→∞ ‖sk‖ = 0. By ∇2f(x?) � 0, we get

m‖x‖2 ≤ xT∇2f(xk)x ≤ M‖x‖2, ∀x ∈ Rn, (3.23)

for sufficiently large k.

Because the matrix Gk is symmetric positive definite for sufficiently large k it exists an
orthogonal matrix Qk such that QT

k GkQk = diag(µ1, · · · , µn), where ui are the eigenvalues of
Gk. We denote

s̄ = QT
k sk, z = QT

k ∇f(xk). (3.24)

Thus, from (3.1) and (3.24) we have

zi = − (λk + rµi)
2

λk + (2r − 1
2 )µi

s̄i. (3.25)

Therefore (3.24) and (3.25) yield

−sT
k ∇f(xk) − 1

2
sT

k Gksk = −2−
√

2

4
sT

k ∇f(xk) − 2 +
√

2

4
sT

k ∇f(xk) − 1

2
sT

k Gksk

= −2−
√

2

4
sT

k ∇f(xk) +

n
∑

i=1

2+
√

2
4 λ2

k + ( 2+
√

2
2 r − 1

2 )λkµi + ( 2+
√

2
4 r2 − r + 1

4 )µ2
i

λk + (2r − 1
2 )µi

s̄2
i

≥ −2−
√

2

4
sT

k ∇f(xk)

=
2 −

√
2

4

n
∑

i=1

(λk + rµi)
2

λk + (2r − 1
2 )µi

s̄2
i ≥ 0, (3.26)

where r = 1 +
√

2
2 or r = 1 −

√
2

2 . Thus we obtain

f(xk) − f(xk + sk)

−sT
k ∇f(xk)

=
−sT

k ∇f(xk) − 1
2sT

k Gksk + o(‖sk‖2)

−sT
k ∇f(xk)

>
2 −

√
2

4
+

o(‖sk‖2)

−sT
k ∇f(xk)

=
2 −

√
2

8
+

2 −
√

2

8
+

o(‖sk‖2)

−sT
k ∇f(xk)

>
2 −

√
2

8
(3.27)

for sufficiently large k, because

o(‖sk‖2)

−sT
k ∇f(xk)

≤ o(‖sk‖2)
1
2sT

k Gksk

≤ 1

2

o(‖sk‖2)

m‖sk‖2
→ 0, as k → ∞. (3.28)

In the above the inequality −sT
k ∇f(xk) ≥ 1

2sT
k Gksk is derived from (3.26). Therefore we have

f(xk) − f(xk + sk)

−sT
k ∇f(xk)

≥ α (3.29)

for sufficiently large k, because 0 < α = 10−4 < 2−
√

2
8 from Step 0 of Algorithm 2.2. From

(3.26) and (3.29) we get

f(xk + sk) ≤ f(xk) + αsT
k ∇f(xk), (3.30)

namely sk satisfies the Armijo line search criterion for sufficiently large k. Therefore, from
(2.21) we have limk→∞ λk = 0.
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From Theorem 3.4, we need only verify ‖sk − sN
k ‖/‖sk‖ → 0 as k → ∞ when we analyze

the local convergence of the LRKOPT method, where sN
k = −G−1

k ∇f(xk) is the Newton step.
From (3.1) we have

sk − sN
k = (λkI + Gk)−1[(r − 1)I + λkG−1

k +
1 − 2r

2
Gk(λkI + rGk)−1]∇f(xk)

= (λkI + Gk)−1[(2r − 1)λkI + λ2
kG−1

k ](λkI + Gk)−1∇f(xk), (3.31)

where the constant r = 1 +
√

2/2 or r = 1 −
√

2/2. Therefore, from (3.31) and limk→∞ λk =
0 we have limk→∞ ‖sk − sN

k ‖/‖sk‖ = 0, namely the LRKOPT method has the superlinear
convergence.

It requires to solve the systems of linear equations for K1 and K2 in (2.14) and (2.15). The
computational complexity of K1 is O(n3), but the computational complexity of K2 is O(n2)
because (2.14) and (2.15) have the same coefficient matrix, we need only factor the matrix once
and perform two back-substitutions, one for each right-hand side. It is worth noting that we
can update the matrices Gk of Algorithm 2.2 by quasi-Newton formulas, particularly the BFGS
update formula

Gk+1 = Gk − GksksT
k Gk

sT
k Gksk

+
ykyT

k

yT
k sk

, (3.32)

if the curvature condition sT
k yk > 0 holds, where sk = xk+1 −xk and yk = ∇f(xk+1)−∇f(xk).

4. Numerical Tests

We have implemented Algorithm 2.2 (i.e. the LRKOPT method) and compared it with the
IMPBOT method (2.24)-(2.26) given in [6]. They require to give an initial parameter λ1 for the
LRKOPT method and the IMPBOT method. As the initial parameter λ1 is very small, these
methods behave like the Newton method and may require more iteration steps such that the
search direction s1 satisfies the Armijo line search criterion. On the other hand, these methods
behave like the negative gradient method as the initial parameter λ1 is very large. Thus we
choose an initial parameter λ1 = 0.1, 1, 10, 100 for small problems.

Our test problems are from [25] and they are least square problems f(x) =
∑m

i=1 f2
i (x).

And we give the following test functions in reason for convenience.

1. Rosenbrock function: f(x) = (10(x2 − x2
1))

2 + (1 − x1)
2, x0 = (−1.2, 1).

2. Powell badly scaled function: f(x) = (104x1x2−1)2 +(e−x1 +e−x2 −1.0001)2, x0 = (0, 1).

3. Brown badly scaled function: f(x) = (x1−106)2+(x2−2·10−6)2+(x1x2−2)2, x0 = (1, 1).

4. Wood function: f(x) = (10(x2−x2
1))

2+(1−x1)
2+(

√
90(x4−x2

3))
2+(1−x3)

2+(
√

10(x2+
x4 − 2))2 + ( 1√

10
(x2 − x4))

2, x0 = (−3,−1,−3,−1).

5. Helical valley function: f(x) = (10(x3 − 10θ(x1, x2)))
2 +(10(

√

x2
1 + x2

2 − 1))2 +x2
3, where

θ(x1, x2) =

{

1
2π

arctan(x2

x1

), if x1 > 0,
1
2π

arctan(x2

x1

) + 0.5, if x1 < 0,

and x0 = (−1, 0, 0).

We use analytical expressions of test functions and their gradient functions as we implement
the LRKOPT method or the IMPBOT method. But we obtain the second order derivatives of
test functions by using the difference method. We choose the parameters r = 1−

√
2/2 for the
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LRKOPT method and α = 1.0× 10−4 for the Armijo line search criterion (2.18). The iterative
termination criterion is

‖∇f(x)‖2 ≤ 1.0 × 10−6.

Numerical results are given at Table 2. ANITR denotes average iterations for different initial
parameters λ1 and AEFE denotes the average number of the equivalent evaluation number of
f(x) for different initial parameters λ1. We observe that the LRKOPT method performed
better than the IMPBOT method from Table 2, in terms of function evaluations. Therefore
methods based on ordinary differential equations are worth further exploration.

Table 2: Numerical results of the IMPBOT
method and the LRKOPT method

PRB ANITR AEFE

1 LRKOPT 21.25 201.75
IMPBOT 21.75 206.75

2 LRKOPT 91.5 881
IMPBOT 97.75 940.75

3 LRKOPT 17.25 157.75
IMPBOT 16 146.25

4 LRKOPT 38.75 917.5
IMPBOT 41 968.25

5 LRKOPT 17 255
IMPBOT 20 300
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