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Abstract

In this paper, finite volume method on unstructured meshes is studied for a parabolic
convection-diffusion problem on an open bounded set of R* (d = 2 or 3) with Robin
boundary condition. Upwinding approximations are adapted to treat both the convection
term and Robin boundary condition. By directly getting start from the formulation of
the finite volume scheme, numerical analysis is done. By using several discrete functional
analysis techniques such as summation by parts, discrete norm inequality, et al, the stability
and error estimates on the approximate solution are established, existence and uniqueness
of the approximate solution and the 1st order temporal norm and L? and H' spacial norm
convergence properties are obtained.

Mathematics subject classification: 65M12, T6M12.
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1. Introduction

Finite Volume Methods are known to be well applicable to the numerical simulation of many
problems, particularly in the presence of convection terms, with irregular geometry domain or
unstructed meshes partition. Many works have been done on their construction and applica-
tion, as well as some theoretical studies [1]-[3]. Two main directions are usually followed to
obtain their convergence properties. One is to write the finite volume as a finite element or
mixed finite element method by some numerical integration, and follow the general finite ele-
ment framework to prove the convergence (see, for instance, [3], where they come forward as
generalized difference methods, and the citations of [1]). The second (see, for example, [1][2][4])
is to establish the convergence by using the direct formulation of the finite volume scheme
together with appropriate discrete functional analysis techniques; following which, for elliptic
equation, general boundary condition problems are studied in [1][2]; for parabolic equation, L?
and H! error estimate only for Dirichlet boundary problem is considered respectively in [1][2]
and [4].

In this paper, the finite volume discrete method on unstructured meshes including Vorono?
or triangular meshes for parabolic convection-diffusion problem with a general Robin boundary
condition is studied. The second approach, which is natural and direct to the original problem,
is applied for numerical analysis. An “s” points (where s is the number of sides of each cell)
finite volume scheme and an upstream scheme is adapted for the diffusion and the convection
term respectively. An artificial upwinding is introduced in the treatment of the Robin boundary
condition in order for the scheme to be well defined with no additional restriction on the mesh.
But it brings difficulties and requires additional work for numerical analysis compared to that
of the Dirichlet or Neumann case, which appears more evident for time involved parabolic
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problem compared with stationary elliptic problem. To solve this question, several discrete
functional analysis techniques including summation-by-parts formula, discrete norm inequality,
et al, are used. The stability and error estimates on the approximate solution are established.
The existence and uniqueness of the approximate solution are shown. If the exact solution is
at least in L°°(0,7; H?*(Q)), then the 1st order L°°(0,T; L*(Q2)) and L°°(0,T; H*(2)) norm
convergence of the scheme are obtained.

Consider the parabolic problem with a Robin boundary condition:

ug + V- (aVu) + div(vu) +bu=f, x€Q, teJ,
aVu-n+ Au =g, r eI, te,
u(z,0) = uo(x), x €, (1.1)

where  is an open bounded subset of R? (d = 2, or 3) which is a polygonal for d = 2 and
polyhedral for d = 3 with 99 its boundary, n is the unit normal to I outward to Q. J = [0,T],
with T a positive constant. v = v(x,t) is a given vector function, a = a(x,t),b = b(x,t), f =
flx,t),\ = Az,t),g = g(z,t) are given functions. Herein we study problem (1.1) with the
following assumptions.

Assumption 1. For t € J, f(-,t) € L*(Q), b(-,t) € L>=(Q) and v(-,t) € C1(Q) such that
div(v)/2 + b > 0 almost everywhere (a.e.) on €.

Assumption 2. For t € J, g(-,t) € Hz(dQ), A(-,t) € L>®(Q) such that v-n/2+ A >
0a.e.on 9. Furthermore, if v-1/2 4+ X = 0 a.e. on 92, then one assumes the existence of OC ()
such that its d-dimensional measure m(0O) # 0 and such that div(v)/2 4+ b # 0a.e.on O.

Assumption 3. For t € J, a(-,t) is a piecewise C! function from Q to R, and there exists
positive constant a, such that a(z,t) > a, for a.e. (z,t) € Q x J.

Assumption 4. The functions a,b, A\,v and div(v) are Lipschitz continuous with respect to
t.

The outline of the paper is as follows. Section 2 introduces the restricted admissible meshes
needed for the discretization, formulates the finite volume approximation and gives the def-
inition of related spacial norms. Section 3 demonstrates corresponding numerical analysis,
which includes the statement of stability and convergence properties and necessary reasoning
procedure.

2. Finite Volume Discretization

2.1 Mesh Partition

Define the restricted admissible meshes as in [1], which includes meshes made with triangles
and rectangles in two space dimensions, and Vorono# meshes.
Definition 1 (Restricted Admissible Meshes). A finite volume mesh of 2, denoted by T,
is given by a family of “control volumes”, which are open polygonal (if d = 2) or polyhedral
(if d = 3) convex subsets of Q0 (with positive measure), a family of subsets of Q contained in
hyperplanes of R, denoted by e (these are the edges (if d = 2) or sides (if d = 3) of the control
volumes), with strictly positive (d — 1)-dimensional measure and a family of points of Q denoted
by P. The finite volume mesh is called to be restricted admissible, if the properties (i) to (v)
are satisfied.

(i) The closure of the union of all the control volume is Q.

(ii) For any K € T, there exists a subset ex of & such that 0K = K/K = Uyce, 0. Let
e =UkeTEK.

(i) For any (K, L) € T? with K # L, either the (d — 1)-dimensional Lebesque measure of
KNLis0or KNL=a& for some o € ¢, which will then be denoted by K|L.

(iv) The family P = (vx)ker is such that v € K ( for all K € T) and, if o = K|L, it is
assumed that xx # 1, and that the straight line D 1, going through xx and zp, is orthogonal
to K|L.
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(v) For any o € e such that o C 0%, let K be the control volume such that o € ex. If
xx € o (let Di o be the straight line going through xx and orthogonal to o), then the condition
Dk o No # 0 is assumed; let yo» = Di s No.

Define the mesh size by h = size(7) = sup{diam(K), K € T}, where diam(K) is the
diameter of K € 7. For any K € T and o € ¢, m(K) is the d-dimensional Lebesgue measure
of K (i.e. area if d = 2, volume if d = 3), m(o) is the (d — 1)-dimensional measure of o, and
NK,o denotes the unit normal vector to o outward to K.

Denote et = {0 € ;0 ¢ 00N}, et = {0 € 50 C 0N}, For K € T, let Vi, =
{azkg + (1 — a)z,x € 0, € [0,1]}. For 0 € €y, let Vo, = Vi o NV, », where K and L are the
control volumes such that o = K|L. For 0 € € Neeyy, let V, = Vi ,. Denote

¢ = min min
KeT ocek

dK,a‘
diam(K) "

Denote by d K|L the Euclidean distance between xx and z, (which is positive) and by d K,o
the distance from zx to 0. If 0 = K|L € &, let d, = dg|r = dx,oc +dro; if o € ex Necwt,
let d, = di -

For any o € ¢, the “transmissibility” through o is defined by 7, = m(”) ifd, #0and 7, =0
if d, = 0. In the results and proofs given below, o # 0 for all o € ¢ is assumed for simplicity.

Let 7 be an restricted admissible mesh in the sense of Definition 1. Let k € (0,T), be a
constant time step, Ny, = maz{n € N, nk < T}, e.g., divide [0, T] into Ni + 1 interval. Denote

tn = nk for n € {0,1,--- , Ni + 1}. Denote ¢" = ¢(t,), dyg™ = £—=2"

2.2 Finite Volume Approximation
Integrating (1.1) on each cell of the mesh at time ¢ = ¢,y yields

Jreut T @) dae — [ la™ (@) Vu (@) — 0" (@)u" T (@) - ni(2)dy (z)
+ [ 0" (2)u "+1( ydz = [, " (z)dz, (2.1)
[La" (@)Vu" T (2) - i o (x)dy(z) + [ AT (@)u" T (z)dy(z) = [ g™ (2)dvy(z). (2.2)

Using an “s-points” finite volume scheme for the diffusion terms and an upstream scheme
for the convection terms, using an implicit time discretization, one gets, a discretization of (1.1),
with unknowns (Up™) ger U (U2 ) oeenn, n = 0,1, , Ni, such that

m(K)d U + 35 (Fgl + vl Up i) + b m(K)UR = m(K) fz,

OCEK
VK €T, (2.3)
FRE ()N 4 U U = mlo)gt,
Vo € ek N Eext, (2.4)

where, for n =0,1,--- | Ny + 1,

Fp, = -m(K|Lap =% if o = K]|L,
Fi oo = —m(o)a ?( Up —Ug), if o€ ek Neeat,
’U%a = f ( tn) 77K 0( )dv(m), (2.5)
b5 = O.(b( ) dy(z), for¢=a,\g;
Ok f n)dz, for ¢ =b,f;

and for ¢ = U,
n >
" {¢K’ if Vo 20, if o = K|L;

ot 7. otherwise,



168 X. CUI

n {sb}z, if Vi, >0,

ot " otherwise,

if 0 €Eeg Neeyt. (2.6)

The upstream value Ugil is involved in the discretization (2.4) of the Robin boundary
relation in order for the scheme to be well defined with no additional condition on the mesh [1].
Using (2.6) and (2.4), one can eliminate U ! for all o € ex N ey in (2.4) and obtain

max{vi"}, 0}dk o + m(o)ap T URT + di om(o)gn™

m(o)ag™ 4+ [m(o) A2 + U"+1 - min{v}?;l, 0}dk o

Unrtt = : (2.7)

thus the numerical unknowns in (2.3) are (U™ ger.

2.3 Discrete Norm Definition
Definition 2 (Discrete Norm). Let ¢ be a function which is a constant on each control
volume of T and on each edge on the boundary with ¢r(x) = ¢ox if x € K, K € T and
d7 (1) = ¢o if T € 0,0 € Eexr. One defines the discrete L? norm, L*(0Q) norm and H*
semi-norm by

lorll = llé7ll L2 = [Kng(K)(%)Q]%a o7l L200) = [ 6; m(o)(6.))2,
677 =2 70 (Ds9)?]2,

ogce
where Dy = |px — ¢r| if 0 = K|L € eint and Dy = |di — ¢o| if 0 €E g NEeat, K € T.
Noting this definition, by a similar reasoning procedure as in [1], one has
Lemma 1 (Discrete Norm Inequality). Let ¢ = ¢ and its discrete norms be defined as in
Definition 2. Let T C 99Q such that its (d — 1)-dimensional measure m(I') # 0 and OC Q such
that its d-dimensional measure m(QO)# 0. Then there exists C, only depending on ), such that

I1ll720) < ClSR 7 + 6l T2, 10l 7200) < ClOR 7 + 1811720y

Some useful relations are listed here.

1, 1

ala —b) = 54 —%b2+§(a—b)2, (2.8)
N N
k Z ¢n+1dt,¢)n —_ ¢N+11/)N+1 o ¢O7/)0 o kZ(dt(ﬁn)wn, (29)
n=0 n=0
N
kz¢n+11/)n+1dt1/)n
n=0
1
= VTN =" (W) + 4 Z¢"“ ")’ kZd oW, (210)
n=0 n=0
N 1 N
[ HHP < (@017 + ak Y [lde™|1* + sk D™+ 16mH1P), (2.11)
n=0 n=0
n—1
6" 1% < 2016°(1* + 2Tk Y [l degt']|?, (2.12)
=0
2 1 2 . /. .
ab < ea” + Eb , (Holder's inequality)

|dio" (z)| < C, ¢ =a,b,\,v,div(v); z € Q. (2.13)
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3. Numerical Properties

3.1 Statements of Numerical Properties

Let e (z) = % = u(zk,tn) —Up for x € K, K € T; e(z) = e = u(yo,tn) — UZ for
T € 0,0 € €ezr. Under Assumptions 1-3, the L? norm estimates are listed below.
Theorem 1 (L? Norm Stability). For finite volume scheme (2.3), (2.4), there is

N N
lUZ 1% + & P U7 + & Z IO 12 o) + 42 > U1

< C|UzlP+Ck Z 1£7H1 + Ck Z 97 17200

n=0 n=0

hence the linear algebraic system (2.3) and (2.4) is uniquely solvable.
Theorem 2 (L? Norm Error Estimates). For |[e%| = O(h + k), there is

N[

n n 1 N n 1
llez 1l + (k Z e R )7 + [k Z ez 17200 2 +/€(§_:O|\dt67||2)2 = O(h + k),
where N =0,1,---, Nj.
Let Condition (A) stand for: v?‘al > 0 and v , > 0; Condition (B) stand for: v?ﬁ; <0
and vj , < 0. Under Assumptions 1-4, and Condition (A) or (B), one has the following H*

semi-norm properties.
Theorem 3 (H! Semi-Norm Stability). For finite volume scheme (2.3), (2.4), there is

N N
k 20 U2 + U3 Tt ||U’§’V+1||L2 o) T k? E—:o d: U213 1
2 2 2 X g1y
< CllUzI? + 1071 7 + U7 200y + Ck Z:o 17l
N Nl
+Ck 20 ||dt93'|| 1200 Cllgr || r2000) t C||gTHL2(6Q)

Theorem 4 (H' Semi-Norm Error Estimates). For ||e%|+|e% |1, 7+€% | 2(00) = O(h+k),
there is

N N

(k2 ldeet|2)2 + g iz + llef 2 gon) + K 2 |det3.7)? = O(h + k),
where N =0,1,---, Ng.
Remark 1. It is easy to choose perfect initial evaluation to satisfy the condition ||| =
O(h + k) in Theorem 2 and |[e%|| + e |1, 7 + [|€% || L2(90) = O(h + k) in Theorem 4. A natural
choice is UY = ﬁ Sy wo(z)dz, UY = még) [, uo(z)dx
Remark 2. Theorems 1-4 show that Scheme (2.3), (2.4) has unique solution and 1 order
convergence in both temporal norm and spacial L? norm and H' semi-norm to the original
problem (1.1).
Remark 3. Multiplying (2.4) with U?*! (or U?*! — U instead) and summing for all o €
€1 N Eext, multiplying (2.3) with Upt! (or Upt! — UR), and summing these two equalities for
all K € T, one can prove Theorem 1 (or Theorem 3). Since the proofs of Theorems 1 and 3
are similar to but easier than those of Theorems 2 and 4 respectively, they are omitted in this

paper.
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3.2 Error Equation
Replace ¢ with e in (2.6) to define e ,, and define 7} | as

no _ ) rr, if vk, 20, ) KL
Yot = { xrr, otherwise, if o =K|L;
n T, if vk, >0, )
N wi : 1
Fout { Yo, Otherwise, if 0 €exNecat (3.1)

Then ey | = u(zy ,tn) —UY

U)

4 for o € e, K € T. Denote

m(o)R , = Teajlu(ar,tn) —u(rk,ta)] — [, a(z, ta)Vu(z, tn) - niody(z),
o= K|L € Eint,
m(o)R , = Toaplu(Ye,tn) —u(r, tn)] — [, alz, ta)Vu(z, tn) - nrcody(z),
O € ex MNEeyxt,
m(o) , = [ov@tn) nolul@ te) — (@l tn))dy(z), (3.2)
m(a)R’}(J = fg[)‘(x tn) + U(I t ) nK,U][u(ma tn) - u(yaa tn)]dq/(x)v
Pk = m(lK) fK (ma tn)[ (ma tn) - u(ajKa tn)]dxv

Sptl = m(lK) [t (2) = dyu™ (2 )]da.

For t € J, if uy(-,t) is a piecewise C'* function from Q to R, then one has || < Cy(h+k).
Similarly as in [1], one may prove the following estimates are satisfied.
Lemma 2 (Discrete Coefficient Estimates). Under Assumptions 1, 2 and 3, assume that
w s the unique variational solution to (1.1).

(1) If u(-,t) € C*(Q), t € J, then there exists a positive constant C only depending on
w,a,b and v such that for any K € T and o € ¢k,

|Rcol + 1R o| + 1o | + o] < Chs
moreover, if u(-,t) € C*(Q), t € J, then
|di Ry | + |di R | + |dere .| < Ch.
(2) Ifu(-,t) € H?(Q),t € J, then there exist C1 only depending on d, a and ¢, Co only
v

depending on d,v,( and p, and C3 only depending on d,\,v,{ and p such that for any K € T
and o € €k,

ol < Crhlm(@)dy] = [l to)llmeqra,
ol < Calfn(o)dr] Hlulto)lwrcey
Biegl < Cahlm(@)do] [l ta)llwoscra,
Pl < " ok (EO) ™ (e ) o

moreover, if u(-,t) € H*(Q), t € J, then

iR} .| < Cih[m(o)do] 3| fy we(c, Btass + (1= B)ta)dBl 2 (v, ),
_1 1
dir | < Cohlm(o)ds] "7 | fo ue(s Btusr + (1= B)tn)dBllwrs(v,),
~ _1 1
|diRY, ,| < Cshlm(o)do]™ 7| [y wi(:, Btns1 + (1= B)tn)dBllwrr(v,),

for all p > d and such that p < +oco if d=2 and p <6 if d = 3.
Denote

G?(U:ngaZ(eZ—e?(), vI{E,]dvU:I{|L€€Km€inty
G”}(,O’ = 77_00‘2(62 - e?{)ﬂ VK € Ta 0 € ekMNEegt.
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Subtracting (2.3) and (2.4) from (2.1) and (2.2) respectively, one obtains

K)diel+ ) Gily + D vico ey +m(K)bi e
o +

oEEK OEEK

= = > me)(BE) + i) = m(E) (i - SiY), VK €T,

oEEK

Oy —vigg e+ I\ i ler ™

= m(a)(R}‘:; R}?Ul + r"+1) Vo € ex NeEegt-

3.3 L2 Norm Error Estimate - Proof of Theorem 2

Multiplying (3.4) with e?™! and summing for all o € € Necyt, multiplying (3.3) with el

and summing these two equahtles for all K € 7, one knows

5
S AY = 3 m(K)(deef)er
i=1

KeT

n+1 n+1 n+1 _n+1 n+1 n+1
+[ > > GK, + > > (GK,aeK GKa o
KeT ocexNeint KeT o€egNeext
n+1 n+1 n+1 1, n+1 _n+1 n+1 n+1
+H > X Vg oCot € T > > (QUKo'eU ~VK,o €0+
KeT o€ek KeT o€egNeegt

+ 3 mEE )+ Y 2 [m(o)AT + v (e )?

KeT KeT o€egMNeeat
= E T T mUER e
OCeEKEint
—KZT _ Zr; m(o)(RiT + i) (e —epth)
€l ocerMNeeat
- X mRE et = 3 m(K) (i - SEthe™
KeT o€egNeeat KeT
3
= Y B
=1

Now estimate relation (3.5) term by term. From (2.8), one deduces

|| 7O = g ller I? + Sldee |,

4y = Za2+1Ta(Daen+1) 2 s |€n+1 %T-

ogce

Note that v , = —v} ., K € T, KN L =0, let vj = [v} .| = [v} ],

er {eK’ if Uiy <0, if o = K|L;

. .
e}, otherwise,

n ; n
e if v <0 .
n { Ko 1 Vg ’ if 0 €ex N Eent;

. .
er, otherwise,

Jeg ]

171

(3.3)

(3.4)

n+1
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and notice (2.8), one derives

A= S gt e
oEekNEint
TS el (uitlentt — vttt ]
L KETGEEKﬂ€ezt+1 1 1 1o
= 5 X vt es —er )+ 3 X X oR(eR)?
7<Eint +17 n+1 _n+1 KETUnEf{( n+1 +1 +1\2
+ Z Z ’U?(a[ea-l-el( 7§(€K ) 760-{- Z + 35 (n )] (39)
KeT ocegNeext 1 1 1
= 5 2wt er —en )P+ 5 o div(v(z, tag)) e ()P de
CEin
+i Zt: U"Jrl(e"":_l —enthy?
o,—
O€Eeqt
= UXE:EU”Jrl( ent! — "‘H 24 1 [ div(v(z, teyr))[er (z)) 2 da.
It is obvious that
Al = [ob(x, tny1)[er (2)])da, (3.10)
A = oo @ tngr) + 50(@, tagr) - ()]s () da. (3.11)
Recall that R"+1 = —thl, }?01 = —’I“Z+1 for K € €jnt, K N L = o, hence from Holder’s
inequality and Lemma 2,
3
S B} <C(1+ 3+ 1)+ k) +0ler™ [ 7 + elles |72 00y + Cller™ 1. (3.12)

i=1
Combining (3.5)-(3.12) leads to
arlle "HHQ = opllefl? + §lldee|* + (ax = O)ler™ ?7
¥ I Biv (0. ) + b, o @Pdo + 1 3 vt (ent? — ent1)?

1 2 gee (3.13)
+f69[)‘($’tn+1)+ U(I tn+1) 77(37)][ er ( )] dx
<O+ 3+ )2 + 12) + Cllelt |2+ el 72 00)-

Obviously the last term on the left hand of (3.13) is nonnegative. Multiplying (3.13) with
2k and summing for n =0,1,2,--- , N leads to

lez ¥ 11 + 2(ax — 8)k Z e + K Z ez ||* + Ef + B3

n—O
< Clleg |2 +CU+ &+ 102 + k%) + Ck z e 12 + ek z e+ 12 00):
where Ny
BY = 2k 5 [ol3din (o, tun)) + b, s e (@) 2de,
N
BY = 2k 3 [oal\@tug) + 5o togs) - n@)[ef (o) de.

For v-n/2+ X > 0 a.e. on 9L, one sees B > 0, EY > ¢k Z ||e"+1||L2(6Q), forv-n/2+X =0
a.e. on 99, one sees EY = 0 and div(v)/2+b > 0 a.e. on O, hence EI¥ > Cek Z ||e"+1|\L2(O),

with Lemma 1, ek Z ||e"+1|\L2(6Q) < EN +Cek Z et 1 7> hence with properly chosen ¢, d,
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under Assumptions 1 and 2, there is

N N N
lez M2 + & X e 7 + K2 2 ldee > < C(lle%1? + 1 + k) + Ck 3 [lez |1,

n=0 n=0

using Gronwall’s inequality to the above inequality, one gets for ||e%|| = O(h+ k), the left hand
of the above relation can be bounded by C(h? + k?), N =0, 1,--- , Ni; another use of Lemma
1 shows Theorem 2 is valid.

3.4 H' Semi-norm Error Estimate - Proof of Theorem 4
Multiplying (3.4) with e?*! — e” and summing for all 0 € ex N €eyt, multiplying (3.3) with
e’}jl — €', and summing these two relations for all K € 7 and n = 0,1,--- , N, rewriting the

deduced relation as

M=

DN = DN + DY + (1) + QY + PN) + DY
1

~.
Il

h
M=

[m(K)def (€5 — ef)]

n=0 KeT
N
XY X G —ep) - X Y Gt —e)]
n=0 Ke7 o€ek KeT ocexNeext
N
+{ Z Z Z ’U"+16n+1(6n+1 o en )
n=0KeT o€egNeint Koo Zot V7K K
N
+X X Y v et et —entt) = (ek —ep)]
n:](i[KETUEEKﬂewt (314)

t3 X X Y v et (ertt —en)}
n=0 Ke€7T c€exNeext
N

HX KZTm(K)b?fle??l(e’%“ —ek)
n= €
N

+ ZO KXE:’T EEZHE (@) A5+ + guilylept (ed ™ —ep)}
n= OCEK ext

= - T E IR )+ mE) (i — SR~ o)

n=0oc€ek

N - 2
+2 XX me) (RS - RS A (et —ep) = 3 OF.

n=0 Ke7 c€egMNeext i=1

Estimating its terms one by one, one derives

N
DY = kZOHdte’}HQ, (3.15)
N Al 1 +1 +1 +1 +1
Dy = ZO{ GZ Toay ™ (ef —er e —ef™) — (e —ep)]
n= OCEint
+ XY meapt(eRT — et (e —ent) — (ek —ep)l}
KeT o€egNeext
— % Z Tgaév+1(DUeN+1)2 _ % Z Taag(Dan)2
ogce oce (316)
N N
+%k2 S S eat (Dydie™)? — %kz S 1.dia(Dye™)?

n=0o¢€e n=0oc€e

N N
2 %a*|e¥+1|§j - C|€OT|%,T + %a*kQ Zo |dt€7%|%,7 - Ck Eo |€7%|%,Ta
n= n=

where (2.8) has been used for the second equality in (3.16).
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Now pay attention to the estimate of D. First, let sign(¢) stand for the function sign(¢) =
1 for ¢ > 0, sign(¢) = 0 for ¢ = 0, sign(¢) = —1 for ¢ < 0; for v , = 0, take supplemental

n+41
Ko ) = szgn(v?(H) Using the summation-by-parts formula (2.9), one obtains
K,o

definition sign( Z

N _ N+1_N+1_N+1 0 0 0
Iy = > > VKo €o+ €Kk > > VK, oo +CK
KeT o€egNeint KeT o€exgNeint

N
EE S S (g )k
n=0KeT oc€exNeint ' '
N
- ZOKEG:T € z;w U%Jr;(eg’il . +)e’}(+1
n= oc€egNein
N ® ' n+1

v
T ot et - e lent! - enth) — sign(e)(en e )]

n 0 a€smt

(3.17)
= Z LY+ EO GZ vptegly —ep ey —ep i) — (ent —ep )]
n g Emt
= E L ZO GZ vt (dpelt , — dyelt_)?
=1 n OC€Eint
+1k2 Z Jo div(v(z, tyir))[deer(z)]2da
N 7
—3 X X X vg (e —eg)? = Y LY,
n=0 Ke7 o€ekgNeezt i=1
N N N
Q= X X vghetiex —el ) - > Uk oCot(ek —e€g)
KeT o€ekNeeat KeT ocegNeext
N
—k ZO KZT Zﬂ (dv o )eq o (ke — eg)
]7\1[— €T ocexMNeext B B B 1 (3.18)
+ ZOKZT _ Zﬂ vile oy —eq e —eg™) — (ek —eq)]
n= €7 ocekMNeext
N 5
- Z paa EEZHE Vi (el —ep (e —epth) = Z
n=0 o K ext i=1
N
Bl= 3> X oghedt)y—3 > vko(es)?
KeT o€egNeext KeT ocegNeeat
N

5k Y X (dwk,)enen (3.19)

n=0 K€T oc€egNeeat

N 4
X Y X vt —eper =3 P,

n=0K€cT c€ecxNeext =1

where the second and the third equalities in (3.17) hold for sign(iff“) =1or0, eg. for
K

Condition (A) or (B). Then notice that

QY= S X % et - et +en)

n=0 Ke€7 o€ekgMNeext

N+1 N+1,N+1 _ 0 0,0
- > > ko ¢k Co > > VK, 0€KCo
KeT o€egNeext KGTUEEKQEEIt
N

thy > > (dwk)ekes Z SHE

n=0 KeT ocexNeext

N
BY4PY= 1Y T %N ol —en? =T,
n=0 K€T c€ckgNeeat

Finally, treating the related terms similarly as in the former subsection 3.3 (especially as in
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(3.9)), and combining these estimates means

DY = I +QY +PY = (% ZIN> + (3 ZSN+ ZQN) + (TN + 3 ZPN)

%(IfV+Q{V+P1) (I5 +[%V+Q4 +T1)+ I + (12 +Q2 +P2)
+%[(1§V+Q§V+PN)+S4 (IN+I4+SN)+SN+SN]
1
1

=) o e T — el 4+ 1 [ div(v(x, tn ) [ef T (2)]2d
o€e
N
FH2 S S o dyepy — del )+ 182 S Jodin (o, i) e (o) da
n=0oc¢€e

—Clllez | + €713 1 + leT 122 (o0)) — 0k Z ldeet > = eller 17 o0
1 RS 2
—C(1+35)k Z e = C(1+ 3)k E_:O e 13 7

-C(1+ )k Z ||€T||L2(a§z) C%”ngAHQ-

(3.20)
Other terms are easy to deal with. In fact, denote

V= 3 [z tN+1 + div(v(x, ty11))][ed T (@) 2da
+5 Lg2 Z fQ ZTytnt1) + ldiv(v(x,tn+1))][dteg(x)]2dz,
zfag z,ty 1) + 30(x, tng) - n()][ed T (@) 2de

+3k? XZ:O Joa Mz, tni1) + 30(2, tng) - n(x)][deel (z))?da,

FyY

using summation-by-parts process (2.10), one shows

DY = FN+FN - é be x to)[eOT(:c)]def =k E fQ dib"(z)[e(x)]?dz
gfag x,to) + 3v(z, to) - n(x)][e5 (x )]de
1 n 1 (]2 (3.21)
b 32 [oaldo(0) + oo™ (@) - n@lfe @)

N
> PN+ FY = Cllefl” + lle7 )22 o0)) — Ck ZO[H#II2 + e 12200
n—=
using Lemma 2,

N
1
oY < C=(W*+ k) + 0k > [ldeeir|?, (3.22)
n=0

(9]

O = ¥ % mlo) By - REL +rihed ™!

KeT ocegNeeat

- E E m(o-)(R?(,a - R(;(,a + TK,J)e(()T

KeT o€egNeeat
N

kY S S m(o)(deRY, — diRY , + dyrlk el

n=0 Ke7T c€ekgNeext

< OO+ 02+ k) + Cllefliaon) + elleg T 72(00) + Ck Z 1122 50

(3.23)

where summation by parts (2.9) has been used to get (3.23).
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Combine (3.14)-(3.16) and (3.20)-(3.23), and manipulate the derived relation, one knows

(1= 260k 5 et | + Las el 1 7 + Saok? z dre2 7 + Y + B

n=0
A DR AR CAR A R Vs Z > vgtH(diey | — dieg _)?
oce n=0oc¢€e
ClH? + I . + b o] + L+ § + 0 + 1)
+C(1+ 3k Z e ]|* +C1 + 5)k Z ezl +CA+ 3k Z e 1172 (a0)

N
+C1Llle THHQ + 26”67’+1”L2(6(2)'

IN

Apply (2.11) and (2.12) for ¢ = e, and notice that for v-n/2 + X > 0 a.e. on 9Q, F{¥ >0,
N

FyY > eok? 3 ||die |72 00, + eo||e7+1||L2(aQ), for v-n/24+ X =0ae. on dQx J, Ff =0,
n=0

N
FN > eok? Zo Hdte?H%z o)t 60||€T+1HL2(O then, for proper positive constants e, d, o, €g, the
n—=

above expressions may also be written as

N
O L e PR z den?
< Cllled) + ey - + ||eT||L2(6m +h i

N n
Ck ;(kz ldeei[1?) + Ck Z e [T 7

using Lemma 1 and Gronwall’s inequality, one comes to the conclusion of Theorem 4.
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