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Abstract

New estimates are provided for singular values of a matrix in this paper. These results
generalize and improve corresponding estimates for singular values in [4]-[6].
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1. Introduction and Denotations

In terms of matrix entries, Gerschgorin’s theorem, Brauer’s theorem and Brualdi’s theorem
provide useful estimates for eigenvalues of a matrix ([9],[10]). Using these theorems, some
researchers made many corresponding estimates for singular values of a matrix (see [1]-[8]). In
this paper, several new estimates for singular values of a matrix are presented. These results
generalize and improve corresponding estimates in [4]-[6].

The set of all n x n complex matrices is denoted by C"*". Let A = (a;;) € C™*™, o(A) be
the set of all singular values of A, and

ri(A) = lail, @A) = laul,  ai=laul, i€ n)={1,2,.,n}
J#i J#i
Suppose the partition N; C (n), j € (m). Then it satisfies that |J N; = (n), and for V ¢ # j,
Jje(m)
N;NN; = ¢. For all i € (n) ,denote i € N,,, 0; € (m), and let (o1, ...,0.,) be a permutation
of (1,...,m). For the sake of convenient, we also use the following denotations:

LW = 5 layl, W= T el
' JENS\{i} , deNo iy
P = i)~ (4), oy (A) = ei(A) = ) (A);

S\ (A) = max{r}) (4), &) (1)}, S{ (4) = max{7{) (4), &) (4)}.

Let T'(A) be the directed graph of A with vertex set V = (n) and E = {(i,7) : a;; # 0}.
The sets of out-neighbors and in-neighbors of i in I'(4) are denoted by '/ (4) and I'; (A),
respectively, namely,

IHA) ={j e V\{i}: (i,j) e B}, T;(A)={jeV\{i}:(j,i) € E}.
For a given A = (a;;) € C™*", we define the undirected graph G(A) = (V, E) with vertex
set V = (n) and edge set £ = {{i,5} : aij # Ooraj; #0,1 <i #j <
Gi(A) =TH(A)UT; (A), E, ={{i,j} € E: i€ N,,, j € N,,, 0; # 0j}.

n}, and denote

2. Main Results

In this section we give an improved Brauer-type estimate for singular values .

* Received August 25, 2003; final revised November 6, 2003.



200 M.X. PANG

Lemma 2.1. Let A = (a;5) € C™*™ and give a partition (n) = |J N;, NiNN; = ¢, i,j €

j€(m)
(m), i #j. If Gi(A) # ¢, Vi € (n) and G;(A)N Ny, 2 Gj(A)ﬂNgjj, Vi € Gi(A)\Ny,, Vi € (n).
Then
s C (Y piayu U Dy, (1)

i€(n) i€Ng;, jENG

) {i,j}€E,
where _

Di(A)={z20: |z—a;| <SY (A)},  Vie (n),

for alli # j,

o; o

K J

Dij(A) = {20 : (|2~ ai| = S§. (A)(Iz - aj] = SF) (4)) < 55) (HSY. (A)}.

Proof. For Vo € o(A), there are two nonzero vectors = (z1,- -+ ,2,) andy = (y1, -+ ,yn)T
such that
ox = Ay, oy = A*zx. (2)

We denote z; = max{|z;|, |y:|},Vi € (n), 2zp = m?x>{zj}, p € Ny,. Without loss of generality,
JE(N

we assume that z, = |y,| > |zp|. Then the p—th equality in (2) implies

0Zp — QpplYp = Z apjYj + Z ApjYj (3)
JETYF (A)NN,, JETF (A)\No,,
TYp — AppTp = Z ajpTj + Z AjpTj- (4)
J€Ty (A)NN,, J€rp (A)\No,,
Write n =, /yp. If Gp(A) € Ny, or 2; =0, Vj € Gp(A)\Ns,, then (3) and (4) imply
jon — apy| <7 (4) (5)
and
o = | < <) (A) (6)
o —nagp| < cy, (A),

respectively . That || < 1. So, if o < ap, then |0 —a,| < |n||o —ap| < |on—app|, and if 0 > a,
then |0 — ap| < |0 — |n]ap| < |o — nayp|. Therefore, from (5) and (6) it can be deduced that

o — ap| < S (A),

ie., 0 € Dy(A).
If o ¢ U Di(A), by the above discussions we have G(,(A)\N,, # ¢ and z, =  max
ietn) JEGH (AN,
{#;} > 0 (otherwise (5) and (6) imply ¢ € D,(A)). Thus equalities (3) and (4) imply

Zq

o —ay| < SR (4) + 53 (4)7* (7)

For ¢ € No, C Gp(A)\N,,, we have G4(A) # ¢ (otherwise we can deduce o = ag, that is,
o € Dy(A)). Similarly, if z, = |y4| > |x4],then it is easy to derive the following formula from
the g—th equality in (2):
o~ aq] < S (4) + 5 (A)2. ®)
7q Tq Zq

Note that o ¢ |J D;(A), we have |0 — a,| > S](\],DZ (A) and |0 — aq| > Sj(gj (A). Thus, from

i€(n)
(7) and (8) we get
(o = apl = S§) (A)(lo = agl = S (A) < S (A)SH) (A). 9)

Since ¢ € Gp(A)\Ngy, # ¢, it holds that {p, ¢} € E,.
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Theorem 2.2. Let A = (a;;) € C™*" and give a partition (n) = |J Nj, NiNN; =¢, i,j €
je(m)

(m), i # j. Denote ag = {i € (n) : Gi(A) = ¢} and G;(A) N Ny, 2 G;(A) N Ny, Vj €

Gi(A)\NU“ Vi € ag.. Then

o(A) Cai icatu(| Di(A)u( |J Di(4). (10)

i€do i€No; \ag
JeNaj \ag
{i,j}€E,

Proof. Without loss of generality, we assume that «g = {1,--- ,k}, k € (n). Then A has
the form
ari
A= o,
akk
0 An—k

where A,_; € C("~F)*x("=k) i5 the principal submatrix of A with orders n — k at least. Thus
o(A)={a; : i € ap} Uo(Ap—_k). Tt follows from Lemma 2.1 that

o(Ani) C (| Di(A)U( | Dij(A).
1€QQ i€Ng; \ag
jeNaj \eg
{i.j}€E,
This completes the proof.
Remark 1. Take m = 2. Then from Lemma 2.1, Theorem 1 of [5] can be deduced. Hence
Theorem 2.2 of this paper is a generalization of the corresponding results in [4]-[6].
In the following, we will discuss the Brualdi-type estimate for singular values.
Theorem 2.3. Let A = (a;;) € C™*™ and give a partition (n) = |J N;, NNOAN; =¢, i,j €

JE(m)
(m), i # j. If Gi(A) # ¢, ¥i € (n), and

Gl(A) M Ngj D GJ(A) M Ngj, Vj S Gi(A)\NU“ Vi € (n), (11)
then
o(A) S (| Diapu( |J Dy(A)), (12)
ic(n) ~EC(A)
where

Dy(A) ={2>0: [[(1z = asl = S (4) < T[SV ()}, ¥y € C(4)

i€y 1€y

and the set of nontrivial circuits, with length 2 at least, is denoted by C(A) in G(A).

Proof. Following the notations in Lemma 2.1, we let z, = ma&:u%{zj} = lyp| > |zpl, z; =
Jen
max{z;, y;}, j € (n), n = xp/yp. Moreover, denote z,, = jEGf(lg))ing{Zj}' From equalities
(3) and (4) we can deduce
o — apgl < 7iE) (A) + AR () (13)
Ip Ip Zp
o = G| < ) (A) +2) (A (14)
P P D

If 2, = 0 or G,(A)\Ny, = ¢, then (13) and (14) imply
o= ap| < S (A),
that is o € D,(A).
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Let 0 ¢ |J Di(A). Then G,(A)\Nys, # ¢ and z,, > 0. Let z,, = |2p,| > |yp,| and
i€(n)
Zpy = jerln(lj))iNam {#;}. Similarly, we can prove that G, (4)\No

o€ U D;(A)). Denote by £ = yp, /zp,. Then, we have
i€(n)

|U_£GP1P1| < Z |aplj||yj|/|xpll + Z |aP1j||yj|/|m;01|a (15)

J€G,, (A)NN, JEG,, (AN\N.

# ¢ and zp, > 0 (otherwise

Pl

opy Pl

|08 = @pipi| < Yoo lallzl/lzel+ D (@l o - (16)

JEGp, (A)NNg JEGp, (A\Nop,,

Note that G,(A)\Ny,, = U (Gp(A)N Ny, ), we see that (11) implies z,, > jerI(Iia)L%(Nam {z;} >

J#p
max zi}. On the other hand, it is clear that || < 1. If 0 < a,, then |0 — a,, | <
jerl((A))mNc,pl{ i} €] p1 | p

|ol¢] —ap, | < |o€ —ap,p, |, and if 0 > ay, then |o —ap, || < |o—ap, [§]| < |0 —&ap,p, |- Therefore,
from (13)-(16), the following formulae are derived:

o —apl < S (A)+ S (A)z, /2, (17)
o — ap,] < ST (A) + 5 (A)zpa /2, (18)

Moreover, since o ¢ D;(A) implies |0 — a;| > 51(\2 (A), Vie(n), (17) and (18) are equivalent
to '

o — ap| = S§) (A) < 5K (A)zp /2, (19)

o —ap | = S <SR (A)zpa /21 (20)

Under similar discussions, by replacing p; by p2 we have z,, = max {#;} > 0 and
jEsz(A)\Napz

Gp,(A)\No,, # ¢. Therefore,
o — apal = SY2(A) < ST 2, /2, (21)

holds. Since o ¢ D;(A) and G;(p) # ¢, Vi € (n), the above process can be proceed continu-
ously. Thus, in G(A), the undirected edges {p,p1}, {p1,p2}, {p2,p3}, -+ can be constituted.
Because n is finite, there exists s < t such that p, = p¢, i.e., there exists a circuit g in

G(A) : {qlaan}a {Q2aQ3}7 {q33q4}a e 7{%;%-{-1} - {Qtafh} with Zq3+1 = . max {Z_]} >
JE€Gq; (A)\No,
0, zq, >0, s € (t). From the above process we have
o — aq | = SN (A) < S (Dzgp /20, Vs € (1), (22)
Take product of the inequalities in (22) over all s, we obtain
t t
100 —anl - 5%, () <[ 5%, (4.
s=1 s=1
that is _ »
[T o = a5 = 55 () < ] 5% (A, (23)
J€Y0 J€Y0

Thus, o € D,,(4).
Lemma 2.4. Let A = (a;;) € C™*" satisfy all assumptions in Theorem 2.8. Then

U pv@ac U DA, (24)
yeC(A) i€Ng,

jENoj

{i.j}€E,
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Proof. For every v € C(A), denote v : {i1,i2}, {iz,i3}, -+, {ik,iksr1} = {ix,?1} and the
length of v by |y| = k. When k = 2, the result holds obviously.
When k > 3, if the result does not hold, then for any z € D,.(A) we have

(12— ail = S8 ()1 = a5 = S§) (4) > S (A)SF) (4), Vi, 5} €.
Moreover, l ' l '
(L (1= = al - S, (AN = (12— aq| = 55! (A)(1z — ai| = 537 (A4)
(2 = aiy| = S§2) (A)) -+ (|z = @i, | = SN2 (4))
(2 = ai| = SN2 ()12 = ai,| = 55! (4))
> S\ (SR (SR (4)-- SR ()5 (SR ()
= (I SR, ()2,

1€y
that is, [](|z — ai| — S](\Z,Z (A) > 11 5”1(\;-) (A). This contradicts with z € D, (A).
i€y ‘ iey 7

From Theorem 2.3 and Lemma 2.4 we can obtain the following theorem immediately.
Theorem 2.5. Let A = (ai;) € C™*" satisfy all assumptions in Theorem 2.3. Then

o)<l Diyu J pyapccl biyu |J Di(a). (25)

i€(n) yeC(A) i€(n) {i,j}€~

veC(A)

In general, we have the following result.
Theorem 2.6. Let A = (a;;) € C™ " satisfy all assumptions in Theorem 2.2 and &y =
(n)\ao # ¢. If A satisfies Gi(A) N (No, \ao) 2 G5(A) N (Ny;\w0), Vj € Gi(A)\(No,; \o), Vi €
Qg, then

o(A) C{aisicaotU (| Di(A)u( | Dy(A). (26)

1€aQq yeC(A)

The proof is similar to Theorem 2.2 and is thus omitted.
Remark 2. In [8] the authors gave an interval of Brualdi-type for singular values under the
assumptions T'} (4) # ¢, I'T(A) D I'; (A), Vi € (n). But Theorem 2.3 is obtained under the
assumptions G(A) # ¢, Gi(A) N Ny, 2 Gj(A) N Ny, Vi € (n), Vj € Gi(A)\Ny, which are
different from the assumptions in [8].

3. Example

By elementary calculations, [4] give the following result. Let 0 < a < b and g > 0. Set
c=(a+b)/2,d=(b—a)/2. Then
{z20:|z—allz=b] < g} = [(c—(d*+9)"/*)1, e~ ((d*~9)+) *|Ule+((d—g)4)"/?, e+ (d*+9) 7,
(29)
where u, = maz{0,u},u € R.
We shall arrange the singular values in decreasing order.
Example is the following: consider

1 01 01 O
0 2 01 0.1
A= 0 0 3 04
0 0 0 4

Apply Theorem 2.2 and (29). Let Ny = {1}, No = {2,3}, N3 = {4}. It can be verified that
Sy, =0, Sy, =01, Sy,® =01, Sy, =0,
Sv V=02, 5w, =01, 55 =01, 55" =02,
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and Dy (A) = {1}, Dy(A) =[1.9, 2.1], D3(A) = [2.9, 3.1], D4(A) = {4},

D12(A) =1[0.9783, 1.0228] U [1.8772, 2.1179)],
D13(A) = [0.9895, 1.0106] U [2.8894, 3],

Dyy(A) = [2.0895, 2.1106] U [3.9894, 4.0105],
D34(A) = [2.8821, 3.1228] U [3.9772, 4.0217).

Thus by Theorem 6 in [4] the singular values of A satisfy

o1 € [3.9772, 4.0217], o9 € [2.8821, 3.1228],
o3 € [1.8772, 2.1179], o4 € [0.9783, 1.0228].
Applying the techniques in [4],we obtain
{2>0:]z—1[|z — 2| < 0.04} = [0.9615, 1.0417] U [1.9583, 2.0385
{2>0:]z— 1|z — 3] < 0.04) = [0.9802, 1.0202] U [2.9798, 3.0198
{2>0:]z—2||]z — 3] < 0.04) = [1.9615, 2.0417] U [2.9583, 3.0385
[ JUI
[ JUl

)

)

{2>0:|z—2||z — 4] < 0.04} = [1.9802, 2.0202] U [3.9798, 4.0198
{2>0:|z—3|]z— 4] < 0.04} = [2.9615, 3.0417] U [3.9798, 4.0198
Therefore, the singular values of A satisfy
o1 € [3.9583, 4.0385], o9 € [2.9615, 3.0417], (31)
o3 € [1.9583, 2.0385], o4 € [0.9615, 1.0417].
The bounds of o1 and o4 in (30) are batter than those in (31).
Clearly A satisfies all assumptions in Theorem 2.3 and there exist three circuits in G(A): y1: 1-
2-3-1, v9: 1-2-3-4-1, y3: 2-3-4-2. Moreover, we can obtain:
Dy (A)={2>0:|z—1|(]z—2| = 0.1)(]z — 3| — 0.1) < 0.002},
Doy (A)={z>0:]z—1|(|]z— 2| — 0.1)(]z — 3| — 0.1)|z — 4] < 0.0004},
Dy, (A)={2>0:(z—2|-0.1)(]z — 3| = 0.1)|z — 4] < 0.002}.
Thus by Theorem 2.3 ,it can be verified that
a(A) C (| Di(A)u (| Dy, (A4)) =[0.9988, 4.0012]. (32)
i€(4) JE(3)
The upper bound of o7 and the lower bound of o4 in (32) are better than those in (30)and (31).

)
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