NEW ESTIMATES FOR SINGULAR VALUES OF A MATRIX *

Ming-xian Pang (Normal Faculty of Science, Jilin Beihua University, Jilin 132013, China)

Abstract

New estimates are provided for singular values of a matrix in this paper. These results generalize and improve corresponding estimates for singular values in [4]-[6].

Mathematics subject classification: 15A18, 65F20. Key words: Singular value, Directed graph, Circuit.

1. Introduction and Denotations

In terms of matrix entries, Gerschgorin's theorem, Brauer's theorem and Brualdi's theorem provide useful estimates for eigenvalues of a matrix ([9],[10]). Using these theorems, some researchers made many corresponding estimates for singular values of a matrix (see [1]-[8]). In this paper, several new estimates for singular values of a matrix are presented. These results generalize and improve corresponding estimates in [4]-[6].

The set of all $n \times n$ complex matrices is denoted by $C^{n \times n}$. Let $A = (a_{ij}) \in C^{n \times n}$, $\sigma(A)$ be the set of all singular values of A, and

the set of an singular values of
$$I$$
, and $r_i(A) = \sum_{j \neq i} |a_{ij}|, \qquad c_i(A) = \sum_{j \neq i} |a_{ji}|, \qquad a_i = |a_{ii}|, \qquad i \in \langle n \rangle = \{1, 2, ..., n\}.$ Suppose the partition $N_j \subseteq \langle n \rangle$, $j \in \langle m \rangle$. Then it satisfies that $\bigcup_{j \in \langle m \rangle} N_j = \langle n \rangle$, and for $\forall i \neq j$,

 $N_i \cap N_j = \phi$. For all $i \in \langle n \rangle$, denote $i \in N_{\sigma_i}, \ \sigma_i \in \langle m \rangle$, and let $(\sigma_1, ..., \sigma_m)$ be a permutation of (1, ..., m). For the sake of convenient, we also use the following denotations:

$$\begin{split} r_{N_{\sigma_{i}}}^{(i)}(A) &= \sum_{j \in N_{\sigma_{i}} \setminus \{i\}} |a_{ij}|, & c_{N_{\sigma_{i}}}^{(i)}(A) &= \sum_{j \in N_{\sigma_{i}} \setminus \{i\}} |a_{ji}|; \\ \bar{r}_{N_{\sigma_{i}}(A)}^{(i)} &= r_{i}(A) - r_{N_{\sigma_{i}}}^{(i)}(A), & \bar{c}_{N_{\sigma_{i}}}^{(i)}(A) &= c_{i}(A) - c_{N_{\sigma_{i}}}^{(i)}(A); \\ S_{N_{\sigma_{i}}}^{(i)}(A) &= \max\{r_{N_{\sigma_{i}}}^{(i)}(A), c_{N_{\sigma_{i}}}^{(i)}(A)\}, & \bar{S}_{N_{\sigma_{i}}}^{(i)}(A) &= \max\{\bar{r}_{N_{\sigma_{i}}}^{(i)}(A), \bar{c}_{N_{\sigma_{i}}}^{(i)}(A)\}. \end{split}$$

Let $\Gamma(A)$ be the directed graph of A with vertex set $V = \langle n \rangle$ and $E = \{(i,j) : a_{ij} \neq 0\}$. The sets of out-neighbors and in-neighbors of i in $\Gamma(A)$ are denoted by $\Gamma_i^+(A)$ and $\Gamma_i^-(A)$, respectively, namely,

$$\Gamma_i^+(A) = \{ j \in V \setminus \{i\} : (i,j) \in E \}, \quad \Gamma_i^-(A) = \{ j \in V \setminus \{i\} : (j,i) \in E \}.$$

For a given $A = (a_{ij}) \in C^{n \times n}$, we define the undirected graph $G(A) = (\tilde{V}, \tilde{E})$ with vertex set $\tilde{V}=\langle n\rangle$ and edge set $\tilde{E}=\{\{i,j\}: a_{ij}\neq 0 \text{ or } a_{ji}\neq 0,\ 1\leq i\neq j\leq n\}$, and denote $G_i(A) = \Gamma_i^+(A) \cup \Gamma_i^-(A), \ E_{\sigma} = \{\{i, j\} \in \tilde{E} : i \in N_{\sigma_i}, \ j \in N_{\sigma_i}, \ \sigma_i \neq \sigma_j\}.$

2. Main Results

In this section we give an improved Brauer-type estimate for singular values.

^{*} Received August 25, 2003; final revised November 6, 2003.

200 M.X. PANG

Lemma 2.1. Let $A=(a_{ij})\in C^{n\times n}$ and give a partition $\langle n\rangle=\bigcup_{j\in\langle m\rangle}N_j,\ N_i\cap N_j=\phi,\ i,j\in\langle m\rangle$ $\langle m \rangle, i \neq j. \text{ If } G_i(A) \neq \phi, \ \forall i \in \langle n \rangle \text{ and } G_i(A) \cap N_{\sigma_j} \supseteq G_j(A) \cap N_{\sigma_j}, \ \forall j \in G_i(A) \setminus N_{\sigma_i}, \ \forall i \in \langle n \rangle.$ Then

$$\sigma(A) \subseteq (\bigcup_{i \in \langle n \rangle} D_i(A)) \cup (\bigcup_{\substack{i \in N_{\sigma_i}, j \in N_{\sigma_j} \\ \{i,j\} \in E_{\sigma}}} D_{ij}(A)), \tag{1}$$

where

$$D_i(A) = \{ z \ge 0 : |z - a_i| \le S_{N_{\sigma_i}}^{(i)}(A) \}, \qquad \forall i \in \langle n \rangle,$$

for all $i \neq j$,

$$D_{ij}(A) = \{ z \ge 0 : (|z - a_i| - S_{N_{\sigma_i}}^{(i)}(A))(|z - a_j| - S_{N_{\sigma_i}}^{(j)}(A)) \le \bar{S}_{N_{\sigma_i}}^{(i)}(A)\bar{S}_{N_{\sigma_i}}^{(j)}(A) \}.$$

Proof. For $\forall \sigma \in \sigma(A)$, there are two nonzero vectors $x = (x_1, \dots, x_n)^T$ and $y = (y_1, \dots, y_n)^T$ such that

$$\sigma x = Ay, \qquad \sigma y = A^*x.$$
 (2)

We denote $z_i = \max\{|x_i|, |y_i|\}, \forall i \in \langle n \rangle, \ z_p = \max_{j \in \langle n \rangle} \{z_j\}, \ p \in N_{\sigma_p}$. Without loss of generality, we assume that $z_p = |y_p| \ge |x_p|$. Then the p-th equality in (2) implies

$$\sigma x_p - a_{pp} y_p = \sum_{j \in \Gamma_p^+(A) \cap N_{\sigma_p}} a_{pj} y_j + \sum_{j \in \Gamma_p^+(A) \setminus N_{\sigma_p}} a_{pj} y_j \tag{3}$$

$$\sigma y_p - \bar{a}_{pp} x_p = \sum_{j \in \Gamma_p^-(A) \cap N_{\sigma_p}} \bar{a}_{jp} x_j + \sum_{j \in \Gamma_p^-(A) \setminus N_{\sigma_p}} \bar{a}_{jp} x_j. \tag{4}$$

Write $\eta = x_p/y_p$. If $G_p(A) \subseteq N_{\sigma_p}$ or $z_j = 0$, $\forall j \in G_p(A) \setminus N_{\sigma_p}$, then (3) and (4) imply

$$|\sigma \eta - a_{pp}| \le r_{N_{\sigma_p}}^{(p)}(A) \tag{5}$$

and

$$|\sigma - \eta \bar{a}_{pp}| \le c_{N_{\sigma_n}}^{(p)}(A),\tag{6}$$

respectively . That $|\eta| \le 1$. So, if $\sigma \le a_p$, then $|\sigma - a_p| \le |\eta| |\sigma - a_p| \le |\sigma \eta - a_{pp}|$, and if $\sigma \ge a_p$ then $|\sigma - a_p| \le |\sigma - |\eta| a_p| \le |\sigma - \eta \bar{a}_{pp}|$. Therefore, from (5) and (6) it can be deduced that

$$|\sigma - a_p| \le S_{N_{\sigma_p}}^{(p)}(A),$$

i.e., $\sigma \in D_p(A)$.

If $\sigma \notin \bigcup D_i(A)$, by the above discussions we have $G_p(A) \setminus N_{\sigma_p} \neq \phi$ and $z_q = \max_{j \in G_p(A) \setminus N_{\sigma_p}} \sum_{j \in G_p(A)} \sum_{j$ $\{z_j\} > 0$ (otherwise (5) and (6) imply $\sigma \in D_p(A)$). Thus equalities (3) and (4) imply

$$|\sigma - a_p| \le S_{N_{\sigma_p}}^{(p)}(A) + \bar{S}_{N_{\sigma_p}}^{(p)}(A) \frac{z_q}{z_p}.$$
 (7)

For $q \in N_{\sigma_q} \subset G_p(A) \backslash N_{\sigma_p}$, we have $G_q(A) \neq \phi$ (otherwise we can deduce $\sigma = a_q$, that is, $\sigma \in D_q(A)$). Similarly, if $z_q = |y_q| \geq |x_q|$, then it is easy to derive the following formula from the q-th equality in (2):

$$|\sigma - a_q| \le S_{N_{\sigma_q}}^{(q)}(A) + \bar{S}_{N_{\sigma_q}}^{(q)}(A) \frac{z_p}{z_q}.$$
 (8)

Note that $\sigma \notin \bigcup_{i \in \langle n \rangle} D_i(A)$, we have $|\sigma - a_p| > S_{N_{\sigma_p}}^{(p)}(A)$ and $|\sigma - a_q| > S_{N_{\sigma_q}}^{(q)}(A)$. Thus, from (7) and (8) we get

$$(|\sigma - a_p| - S_{N_{\sigma_p}}^{(p)}(A))(|\sigma - a_q| - S_{N_{\sigma_q}}^{(q)}(A)) \le \bar{S}_{N_{\sigma_p}}^{(p)}(A)\bar{S}_{N_{\sigma_q}}^{(q)}(A). \tag{9}$$

Since $q \in G_p(A) \setminus N_{\sigma_p} \neq \phi$, it holds that $\{p, q\} \in E_{\sigma}$.

Theorem 2.2. Let $A = (a_{ij}) \in C^{n \times n}$ and give a partition $\langle n \rangle = \bigcup_{j \in \langle m \rangle} N_j$, $N_i \cap N_j = \phi$, $i, j \in \langle m \rangle$, $i \neq j$. Denote $\alpha_0 = \{i \in \langle n \rangle : G_i(A) = \phi\}$ and $G_i(A) \cap N_{\sigma_j} \supseteq G_j(A) \cap N_{\sigma_j}, \forall j \in G_i(A) \setminus N_{\sigma_i}, \forall i \in \bar{\alpha}_0$. Then

$$\sigma(A) \subseteq \{a_i : i \in \alpha_0\} \cup (\bigcup_{\substack{i \in \bar{\alpha}_0 \\ j \in N_{\sigma_j} \setminus \alpha_0 \\ \{i,j\} \in E_{\sigma}}} D_{ij}(A)). \tag{10}$$

Proof. Without loss of generality, we assume that $\alpha_0 = \{1, \dots, k\}, k \in \langle n \rangle$. Then A has the form

$$A = \begin{pmatrix} a_{11} & & & & \\ & \ddots & & & 0 \\ & & a_{kk} & & \\ & & 0 & & A_{n-k} \end{pmatrix},$$

where $A_{n-k} \in C^{(n-k)\times (n-k)}$ is the principal submatrix of A with orders n-k at least. Thus $\sigma(A) = \{a_i : i \in \alpha_0\} \cup \sigma(A_{n-k})$. It follows from Lemma 2.1 that

$$\sigma(A_{n-k}) \subseteq (\bigcup_{i \in \bar{\alpha}_0} D_i(A)) \cup (\bigcup_{\substack{i \in N_{\sigma_i} \setminus \alpha_0 \\ j \in N_{\sigma_j} \setminus \alpha_0 \\ \{i,i\} \in E_{\sigma}}} D_{ij}(A)).$$

This completes the proof.

Remark 1. Take m=2. Then from Lemma 2.1, Theorem 1 of [5] can be deduced. Hence Theorem 2.2 of this paper is a generalization of the corresponding results in [4]-[6].

In the following, we will discuss the Brualdi-type estimate for singular values.

Theorem 2.3. Let $A = (a_{ij}) \in C^{n \times n}$ and give a partition $\langle n \rangle = \bigcup_{j \in \langle m \rangle} N_j$, $N_i \cap N_j = \phi$, $i, j \in \mathcal{N}$

 $\langle m \rangle$, $i \neq j$. If $G_i(A) \neq \phi$, $\forall i \in \langle n \rangle$, and

$$G_i(A) \cap N_{\sigma_i} \supseteq G_j(A) \cap N_{\sigma_i}, \quad \forall j \in G_i(A) \setminus N_{\sigma_i}, \ \forall i \in \langle n \rangle,$$
 (11)

then

$$\sigma(A) \subseteq (\bigcup_{i \in \langle n \rangle} D_i(A)) \cup (\bigcup_{\gamma \in C(A)} D_{\gamma}(A)), \tag{12}$$

where

$$D_{\gamma}(A) = \{ z \ge 0 : \prod_{i \in \gamma} (|z - a_i| - S_{N_{\sigma_i}}^{(i)}(A)) \le \prod_{i \in \gamma} \bar{S}_{N_{\sigma_i}}^{(i)}(A) \}, \, \forall \gamma \in C(A)$$

and the set of nontrivial circuits, with length 2 at least, is denoted by C(A) in G(A).

Proof. Following the notations in Lemma 2.1, we let $z_p = \max_{j \in \langle n \rangle} \{z_j\} = |y_p| \ge |x_p|$, $z_j = \max\{x_j, y_j\}$, $j \in \langle n \rangle$, $\eta = x_p/y_p$. Moreover, denote $z_{p_1} = \max_{j \in G_p(A) \setminus N_{\sigma_p}} \{z_j\}$. From equalities (3) and (4) we can deduce

$$|\sigma \eta - a_{pp}| \le r_{N_{\sigma_p}}^{(p)}(A) + \bar{A}_{N_{\sigma_p}}^{(p)}(A) \frac{z_{p_1}}{z_p},$$
 (13)

$$|\sigma - \bar{a}_{pp}\eta| \le c_{N_{\sigma_p}}^{(p)}(A) + \bar{c}_{N_{\sigma_p}}^{(p)}(A)\frac{z_{p_1}}{z_p}.$$
 (14)

If $z_{p_1} = 0$ or $G_p(A) \setminus N_{\sigma_p} = \phi$, then (13) and (14) imply

$$|\sigma - a_p| \le S_{N_{\sigma_p}}^{(p)}(A),$$

that is $\sigma \in D_p(A)$.

202 M.X. PANG

Let $\sigma \notin \bigcup_{i \in \langle n \rangle} D_i(A)$. Then $G_p(A) \setminus N_{\sigma_p} \neq \phi$ and $z_{p_1} > 0$. Let $z_{p_1} = |x_{p_1}| \geq |y_{p_1}|$ and $z_{p_2} = \max_{j \in G_{p_1}(A) \backslash N_{\sigma_{p_1}}} \{z_j\}. \text{ Similarly, we can prove that } G_{p_1}(A) \backslash N_{\sigma_{p_1}} \neq \phi \text{ and } z_{p_2} > 0 \text{ (otherwise proved)}$ $\sigma \in \bigcup D_i(A)$). Denote by $\xi = y_{p_1}/x_{p_1}$. Then, we have

$$|\sigma - \xi a_{p_1 p_1}| \le \sum_{j \in G_{p_1}(A) \cap N_{\sigma_{p_1}}} |a_{p_1 j}| |y_j| / |x_{p_1}| + \sum_{j \in G_{p_1}(A) \setminus N_{\sigma_{p_1}}} |a_{p_1 j}| |y_j| / |x_{p_1}|, \tag{15}$$

$$|\sigma\xi - \bar{a}_{p_1p_1}| \le \sum_{j \in G_{p_1}(A) \cap N_{\sigma_{p_1}}} |\bar{a}_{jp_1}| |x_j| / |x_{p_1}| + \sum_{j \in G_{p_1}(A) \setminus N_{\sigma_{p_1}}} |\bar{a}_{jp_1}| |x_j| / |x_{p_1}|. \tag{16}$$

Note that $G_p(A)\setminus N_{\sigma_{p_1}}=\bigcup_{j\in G_p(A)\cap N_{\sigma_j}}(G_p(A)\cap N_{\sigma_j})$, we see that (11) implies $z_{p_1}\geq \max_{j\in G_p(A)\cap N_{\sigma_{p_1}}}\{z_j\}\geq 0$ $\max_{j \in G_{p_1}((A)) \cap N_{\sigma_{p_1}}} \{z_j\}. \text{ On the other hand, it is clear that } |\xi| \leq 1. \text{ If } \sigma \leq a_{p_1} \text{ then } |\sigma - a_{p_1}| \leq 1.$ $|\sigma|\xi|-a_{p_1}|\leq |\sigma\xi-\bar{a}_{p_1p_1}|$, and if $\sigma\geq a_{p_1}$ then $|\sigma-a_{p_1}||\leq |\sigma-a_{p_1}|\xi||\leq |\sigma-\xi a_{p_1p_1}|$. Therefore, from (13)-(16), the following formulae are derived:

$$|\sigma - a_p| \le S_{N\sigma_p}^{(p)}(A) + \bar{S}_{N\sigma_p}^{(p)}(A)z_{p_1}/z_p,$$
 (17)

$$|\sigma - a_{p_1}| \le S_{N_{\sigma_{p_1}}}^{(p_1)}(A) + \bar{S}_{N_{\sigma_{p_1}}}^{(p_1)}(A)z_{p_2}/z_{p_1}.$$
 (18)

Moreover, since $\sigma \notin D_i(A)$ implies $|\sigma - a_i| > S_{N_{\sigma_i}}^{(i)}(A)$, $\forall i \in \langle n \rangle$, (17) and (18) are equivalent

$$|\sigma - a_p| - S_{N_{\sigma_p}}^{(p)}(A) \le \bar{S}_{N_{\sigma_p}}^{(p)}(A) z_{p_1}/z_p,$$
 (19)

$$|\sigma - a_{p_1}| - S_{N_{\sigma_{p_1}}}^{(p_1)} \le \bar{S}_{N_{\sigma_{p_1}}}^{(p_1)}(A)z_{p_2}/z_{p_1}.$$
 (20)

Under similar discussions, by replacing p_1 by p_2 we have $z_{p_3} = \max_{j \in G_{p_3}(A) \backslash N_{\sigma_{p_3}}} \{z_j\} > 0$ and $G_{p_2}(A)\backslash N_{\sigma_{p_2}}\neq \phi$. Therefore,

$$|\sigma - a_{p_2}| - S_{N_{p_2}}^{(p_2)}(A) \le \bar{S}_{N_{\sigma_{p_2}}}^{(p_2)} z_{p_3}/z_{p_2}$$
 (21)

holds. Since $\sigma \notin D_i(A)$ and $G_i(p) \neq \phi$, $\forall i \in \langle n \rangle$, the above process can be proceed continuously. Thus, in G(A), the undirected edges $\{p, p_1\}$, $\{p_1, p_2\}$, $\{p_2, p_3\}$, \cdots can be constituted. Because n is finite, there exists s < t such that $p_s = p_t$, i.e., there exists a circuit γ_0 in $G(A): \{q_1, q_2\}, \{q_2, q_3\}, \{q_3, q_4\}, \cdots, \{q_t, q_{t+1}\} = \{q_t, q_1\} \text{ with } z_{q_{s+1}} = \max_{j \in G_{q_s}(A) \setminus N_{\sigma_{q_s}}} \{z_j\} > 0$

0, $z_{q_s} > 0$, $s \in \langle t \rangle$. From the above process we have

$$|\sigma - a_{q_s}| - S_{N_{\sigma_{q_s}}}^{(q_s)}(A) \le \bar{S}_{N_{\sigma_{q_s}}}^{(q_s)}(A) z_{q_{s+1}}/z_{q_s}, \quad \forall s \in \langle t \rangle.$$
 Take product of the inequalities in (22) over all s , we obtain

$$\prod_{s=1}^{t} (|\sigma - a_{q_s}| - S_{N_{\sigma_{q_s}}}^{q_s}(A)) \le \prod_{s=1}^{t} \bar{S}_{N_{\sigma_{q_s}}}^{q_s}(A),$$

that is

$$\prod_{j \in \gamma_0} (|\sigma - a_j| - S_{N_{\sigma_j}}^{(j)}(A)) \le \prod_{j \in \gamma_0} \bar{S}_{N_{\sigma_j}}^{(j)}(A), \tag{23}$$

Thus, $\sigma \in D_{\gamma_0}(A)$.

Lemma 2.4. Let $A = (a_{ij}) \in C^{n \times n}$ satisfy all assumptions in Theorem 2.3. Then

$$\bigcup_{\gamma \in C(A)} D_{\gamma}(A) \subseteq \bigcup_{\substack{i \in N_{\sigma_i} \\ j \in N_{\sigma_j} \\ \{i,j\} \in E_{\sigma}}} D_{ij}(A). \tag{24}$$

Proof. For every $\gamma \in C(A)$, denote $\gamma : \{i_1, i_2\}, \{i_2, i_3\}, \cdots, \{i_k, i_{k+1}\} = \{i_k, i_1\}$ and the length of γ by $|\gamma| = k$. When k = 2, the result holds obviously.

When $k \geq 3$, if the result does not hold, then for any $z \in D_r(A)$ we have

$$(|z - a_i| - S_{N_{\sigma_i}}^{(i)}(A))(|z - a_j| - S_{N_{\sigma_i}}^{(j)}(A)) > \bar{S}_{N_{\sigma_i}}^{(i)}(A)\bar{S}_{N_{\sigma_i}}^{(j)}(A), \quad \forall \{i, j\} \in \gamma.$$

Moreover,

$$(\prod_{i \in \gamma} (|z - a_i| - S_{N\sigma_i}^{(i)}(A)))^2 = (|z - a_{i_1}| - S_{N\sigma_{i_1}}^{(i_1)}(A))(|z - a_{i_2}| - S_{N\sigma_{i_2}}^{(i_2)}(A))$$

$$(|z - a_{i_2}| - S_{N\sigma_{i_2}}^{(i_2)}(A)) \cdots (|z - a_{i_k}| - S_{N\sigma_{i_k}}^{(i_k)}(A))$$

$$(|z - a_{i_k}| - S_{N\sigma_{i_k}}^{(i_k)}(A))(|z - a_{i_1}| - S_{N\sigma_{i_1}}^{(i_1)}(A))$$

$$> \bar{S}_{N\sigma_{i_1}}^{(i_1)}(A)\bar{S}_{N\sigma_{i_2}}^{(i_2)}(A)\bar{S}_{N\sigma_{i_2}}^{(i_2)}(A) \cdots \bar{S}_{N\sigma_{i_k}}^{(i_k)}(A)\bar{S}_{N\sigma_{i_k}}^{(i_k)}(A)\bar{S}_{N\sigma_{i_1}}^{(i_1)}(A)$$

$$= (\prod_{i \in \gamma} \bar{S}_{N\sigma_i}^{(i)}(A))^2,$$

that is, $\prod_{i \in I} (|z - a_i| - S_{N\sigma_i}^{(i)}(A)) > \prod_{i \in I} \bar{S}_{N\sigma_i}^{(i)}(A)$. This contradicts with $z \in D_{\gamma}(A)$.

From Theorem 2.3 and Lemma 2.4 we can obtain the following theorem immediately. **Theorem 2.5.** Let $A = (a_{ij}) \in C^{n \times n}$ satisfy all assumptions in Theorem 2.3. Then

$$\sigma(A) \subseteq (\bigcup_{i \in \langle n \rangle} D_i(A)) \cup (\bigcup_{\gamma \in C(A)} D_{\gamma}(A)) \subseteq (\bigcup_{i \in \langle n \rangle} D_i(A)) \cup (\bigcup_{\substack{\{i,j\} \in \gamma \\ \gamma \in C(A)}} D_{ij}(A)).$$
 (25)

In general, we have the following result.

Theorem 2.6. Let $A=(a_{ij})\in C^{n\times n}$ satisfy all assumptions in Theorem 2.2 and $\bar{\alpha}_0=$ $\langle n \rangle \setminus \alpha_0 \neq \phi$. If A satisfies $G_i(A) \cap (N_{\sigma_j} \setminus \alpha_0) \supseteq G_j(A) \cap (N_{\sigma_j} \setminus \alpha_0), \ \forall j \in G_i(A) \setminus (N_{\sigma_j} \setminus \alpha_0), \ \forall i \in G_i(A) \cap (N_{\sigma_j} \setminus \alpha_0)$ $\bar{\alpha}_0$, then

$$\sigma(A) \subseteq \{a_i : i \in \alpha_0\} \cup (\bigcup_{i \in \bar{\alpha}_0} D_i(A)) \cup (\bigcup_{\gamma \in C(A)} D_{\gamma}(A)).$$
 (26)

The proof is similar to Theorem 2.2 and is thus omitted.

Remark 2. In [8] the authors gave an interval of Brualdi-type for singular values under the assumptions $\Gamma_i^+(A) \neq \phi$, $\Gamma_i^+(A) \supseteq \Gamma_i^-(A)$, $\forall i \in \langle n \rangle$. But Theorem 2.3 is obtained under the assumptions $G_i(A) \neq \phi$, $G_i(A) \cap N_{\sigma_i} \supseteq G_j(A) \cap N_{\sigma_j}$, $\forall i \in \langle n \rangle$, $\forall j \in G_i(A) \setminus N_{\sigma_i}$ which are different from the assumptions in [8].

3. Example

By elementary calculations, [4] give the following result. Let $0 \le a \le b$ and $g \ge 0$. Set c = (a+b)/2, d = (b-a)/2. Then

$$\{z \ge 0: |z-a||z-b| \le g\} = [(c-(d^2+g)^{1/2})_+, c-((d^2-g)_+)^{1/2}] \cup [c+((d^2-g)_+)^{1/2}, c+(d^2+g)^{1/2}],$$
(29)

where $u_r = max\{0, u\}, u \in R$.

We shall arrange the singular values in decreasing order.

Example is the following: consider

$$A = \left(\begin{array}{cccc} 1 & 0.1 & 0.1 & 0 \\ 0 & 2 & 0.1 & 0.1 \\ 0 & 0 & 3 & 0.4 \\ 0 & 0 & 0 & 4 \end{array}\right)$$

Apply Theorem 2.2 and (29). Let $N_1 = \{1\}, N_2 = \{2,3\}, N_3 = \{4\}$. It can be verified that

$$S_{N_1}^{(1)} = 0$$
, $S_{N_2}^{(2)} = 0.1$, $S_{N_2}^{(3)} = 0.1$, $S_{N_3}^{(4)} = 0$, $\overline{S}_{N_1}^{(1)} = 0.2$, $\overline{S}_{N_2}^{(2)} = 0.1$, $\overline{S}_{N_2}^{(3)} = 0.1$, $\overline{S}_{N_3}^{(4)} = 0.2$,

204 M.X. PANG

and

$$\begin{array}{l} D_1(A) = \{1\}, \ D_2(A) = [1.9, \ 2.1], \ D_3(A) = [2.9, \ 3.1], D_4(A) = \{4\}, \\ D_{12}(A) = [0.9783, \ 1.0228] \cup [1.8772, \ 2.1179], \\ D_{13}(A) = [0.9895, \ 1.0106] \cup [2.8894, \ 3], \\ D_{24}(A) = [2.0895, \ 2.1106] \cup [3.9894, \ 4.0105], \\ D_{34}(A) = [2.8821, \ 3.1228] \cup [3.9772, \ 4.0217]. \end{array}$$

Thus by Theorem 6 in [4] the singular values of A satisfy

$$\sigma_1 \in [3.9772, 4.0217], \quad \sigma_2 \in [2.8821, 3.1228],
\sigma_3 \in [1.8772, 2.1179], \quad \sigma_4 \in [0.9783, 1.0228].$$
(30)

Applying the techniques in [4], we obtain

$$\begin{cases} z \geq 0 : |z-1||z-2| \leq 0.04 \} = [0.9615, \ 1.0417] \cup [1.9583, \ 2.0385], \\ \{z \geq 0 : |z-1||z-3| \leq 0.04 \} = [0.9802, \ 1.0202] \cup [2.9798, \ 3.0198], \\ \{z \geq 0 : |z-2||z-3| \leq 0.04 \} = [1.9615, \ 2.0417] \cup [2.9583, \ 3.0385], \\ \{z \geq 0 : |z-2||z-4| \leq 0.04 \} = [1.9802, \ 2.0202] \cup [3.9798, \ 4.0198], \\ \{z \geq 0 : |z-3||z-4| \leq 0.04 \} = [2.9615, \ 3.0417] \cup [3.9798, \ 4.0198]. \end{cases}$$

Therefore, the singular values of A satisfy

$$\sigma_1 \in [3.9583, 4.0385], \quad \sigma_2 \in [2.9615, 3.0417],
\sigma_3 \in [1.9583, 2.0385], \quad \sigma_4 \in [0.9615, 1.0417].$$
(31)

The bounds of σ_1 and σ_4 in (30) are batter than those in (31).

Clearly A satisfies all assumptions in Theorem 2.3 and there exist three circuits in G(A): γ_1 : 1-2-3-1, γ_2 : 1-2-3-4-1, γ_3 : 2-3-4-2. Moreover, we can obtain:

$$\begin{array}{l} D_{\gamma_1}(A) = \{z \geq 0 : |z-1|(|z-2|-0.1)(|z-3|-0.1) \leq 0.002\}, \\ D_{\gamma_2}(A) = \{z \geq 0 : |z-1|(|z-2|-0.1)(|z-3|-0.1)|z-4| \leq 0.0004\}, \\ D_{\gamma_3}(A) = \{z \geq 0 : (|z-2|-0.1)(|z-3|-0.1)|z-4| \leq 0.002\}. \end{array}$$

Thus by Theorem 2.3, it can be verified that

$$\sigma(A) \subseteq (\bigcup_{i \in \langle 4 \rangle} D_i(A)) \cup (\bigcup_{j \in \langle 3 \rangle} D_{\gamma_j}(A)) \doteq [0.9988, 4.0012]. \tag{32}$$

The upper bound of σ_1 and the lower bound of σ_4 in (32) are better than those in (30)and (31).

References

- Qi L, Some simple estimates for singular values of a matrix, Linear Algebra Appl., 56 (1984), 105-119.
- [2] Johnson, C.R., A Gerschgorin-type lower bound for the smallest singular value, *Linear Algebra Appl.*, 112 (1989), 1-7.
- [3] Johnson, C.R., Szule.T., Futher lower bounds for the smallest singular value, *Linear Algebra Appl.*, **272** (1998), 169-179.
- [4] Luoluo Li, The undirected graph and estimates of matrix singular values, *Linear Algebra Appl.*, 285 (1998), 181-188.
- [5] Luoluo Li, New results on estimates for singular values, Num. Math. J. of Chinese Universities, 9:1 (2000), 55-60.
- [6] Li Saijian and Luoluo Li, Brauer-type theorems for estimating singular values of a matrix, Act. Scien. Nature Univer. Sunyatseni, 37:4 (1998), 43-45.
- [7] Zuxiang Li, Mingxian Pang, The estimations of lower bounds for singular value of matrix, Math. Numer. Sinca, 20:4 (1998), 377-382.
- [8] Jiongsheng Li, Kai Yang, Qingxue Wang, Digraphs and inclusion intervals of Brualdi-type for singular values, Act. Math. Appl. Sinica, 18:3 (2002), 471-476.
- [9] Horn.R.A., Johnson C.R., Matrix analysis, New York: Cambridge Uni. Press, 1985.
- [10] Horn.R.A., Johnson C.R., Topics in matrix analysis, New York: Cambridge Uni. Press, 1991.