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Abstract

A revised conjugate gradient projection method for nonlinear inequality constrained
optimization problems is proposed in the paper, since the search direction is the combi-
nation of the conjugate projection gradient and the quasi-Newton direction. It has two
merits. The one is that the amount of computation is lower because the gradient matrix
only needs to be computed one time at each iteration. The other is that the algorithm
is of global convergence and locally superlinear convergence without strict complementary
condition under some mild assumptions. In addition the search direction is explicit.
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1. Introduction

Consider the optimization problem

min{f(x) : gj(x) ≤ 0, j ∈ I, x ∈ Rn}, (1)

where f(x), gj(x) : Rn → R, j ∈ I = {1, 2, . . . , m}.
We know that the quasi-Newton method is one of the most effective methods for solving

nonlinear optimal problems because of the property of superlinear convergence. Some peo-
ple investigated the variable metric algorithms for constrained optimization problems, such as
[4, 5, 7, 8, 9, 13]. At present, the research on this topic is still active due to various improve-
ments both in theory and applications. It is one of important results that the search direction
of the method is constructed by combining the conjugate projective gradient with the quasi-
Newton direction. However, the assumption of strict complementary condition, which is very
strong, is necessary for keeping the superlinear convergence. Bonnans and Launay [1] proposed
a globally and superlinearly convergent method without strict complementary condition. But
it needs sufficiently curvature condition and needs to solve two quadratic sub-programmings in
each iteration. Generally, the search directions of constrained quasi-Newton methods are com-
posed of two different approaches. In fact, the search direction is determined by quasi-Newton
direction under some conditions and determined by the gradient projection direction under
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other conditions in the same iteration[12, 14]. This leads to the great amount of computation
generally.

In order to overcome the defects in the stated methods above—strong assumption and great
amount of computation, we present a revised conjugate projective gradient method. By means
of schemes of ε-active constraint set and the explicit conjugate projection gradient direction with
respect to a positive definite matrix, our algorithm is more harmonious and effective. There are
two merits in our method. The first is that the algorithm is of global convergence and locally
superlinear convergence without strict complementary condition. The second is that we only
need to compute the conjugate projection matrix one time to obtain two search directions at
each iteration, so the method presented greatly decreases the amount of computation.

This paper is organized as follow. In Section 2, we present the algorithm. The convergence
of the algorithm is discussed in Section 3. In Section 4, we analyze the rate of convergence of
the algorithm. In the last section, we show the numerical tests with four examples.

2. Algorithm

Denote X = {x : gj(x) ≤ 0}, and J(x) = {j ∈ I : gj(x) ≥ −ε}. We need following two
assumptions in the paper.

A1. f(x) and gj(x) are continuously differentiable for any j ∈ I.

A2. {∇gj(x), j ∈ J(x)} is linearly independent for x ∈ X.

Let us introduce some notes. At current point xk, we define

Ak = (∇gj(xk), j ∈ J(xk)),
gJk

= (gj(xk), j ∈ J(xk))T .

The conjugate projection w.r.t. a given symmetric positive definite matrix Hk is

Pk = Hk −HkAkBk (2)

where Bk = (AT
k HkAk)−1AT

k Hk.
We define

d0
k = −Pk∇f(xk)−BT

k gJk
, (3)

and
λk = −Bk∇f(xk) + (AT

k HkAk)−1gJk
= λ1

k + λ2
k, (4)

where, λ1
k = −Bk∇f(xk), λ2

k = (AT
k HkAk)−1gJk

.
If the set J(xk) = ∅, the algorithm is an ordinary quasi-Newton method. In the following,

we always assume that J(xk) 6= ∅.
To simplify, we denote xk, Pk, Ak, · · · as x, P, A, · · · , and J stands for J(x).

Lemma 1. P is a positive semi-definite matrix, and PA = 0, BA = E, where E is a |J | × |J |
identity matrix.
Theorem 1. If x ∈ X, d0 = 0, λ ≥ 0, then x is a KKT point of problem (1).

Proof. From d0 = 0, we have

0 = −H∇f(x) + HA(AT HA)−1AT H∇f(x)−HA(AT HA)−1gJ

= −H∇f(x)−HAλ

and
0 = AT d0 = −AT P∇f(x)− (BA)T gJ = −gJ .

Hence, there exists λ ≥ 0 such that ∇f(x) + Aλ = 0 and λjgj = 0, j ∈ J .
Now state the algorithm as follows.
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Algorithm:

Step 0. Given α ∈ (0, 1
2 ), β, η ∈ (0, 1), θ ∈ ( 1

2 , 1); ε, δ > 0. Select x0 ∈ X and a symmetric
positive definite matrix H0, set k = 0.
Step 1.1. Set i = 0, εki = εk.
Step 1.2. If

det(AT
kiAki) > εki,

where Aki = (∇gj(xk) : j ∈ Jki) and Jki = {j ∈ I : gj(xk) > −εki}, then set Ak = Aki, Jk =
Jki, ε

k = εki and go to step 2.
Step 1.3. Let i = i + 1, εki = 1

2εk(i−1) and go to step 1.2.
Step 2. Compute d0

k, λk by (3) and (4). if d0
k = 0 and λk ≥ 0, then stop.

Step 3. If ‖d0
k‖ ≤ δ, λkj ≥ −η‖d0

k‖ and

{

f(xk + d0) ≤ f(xk) + α(∇f(xk)T d0
k − λT

k gJk
),

gj(xk + d0) ≤ 0, j ∈ I,
(5)

then set xk+1 = xk + d0
k and δ = 1

2δ. Go to step 7.
Step 4. Let Uk = (ukj , j ∈ Jk)T where

ukj =

{

λ1
kj , λ1

kj < 0,

−|gj(xk)|, λ1
kj ≥ 0.

Set d1
k = −Pk∇f(xk) + BT

k Uk and d2
k = −Pk∇f(xk)−BT

k ‖d
1
k‖e, where e = (1, 1, ..., 1)T .

Step 5. Set
dk = (1− ρk)d1

k + ρkd2
k, (6)

where ρk = max{ρ ∈ (0, 1] : ∇f(xk)T ((1− ρ)d1
k + ρd2

k) ≤ θ∇f(xk)T d1
k}.

Step 6. Let tk be the first one of t in the sequence {1, β, β2, . . .} satisfying

{

f(xk + tdk) ≤ f(xk) + αt∇f(xk)T d1
k,

gj(xk + tdk) ≤ 0, j ∈ I
(7)

and set xk+1 = xk + tkdk.
Step 7. Update Hk to Hk+1 by quasi-Newton method. Set k = k + 1 and back to step 1.

Based on assumption A2, we can immediately get the following lemma.
Lemma 2. Sequence {εk} has a low bounder ε̄ > 0 such that εk ≥ ε̄ for all k.

3. Convergence

In this section, we discuss the global convergence of the algorithm. We need additional
assumptions and let they hold in the rest of the paper.

A3. For any k and y ∈ Rn, a‖y‖2 ≤ yT Hky ≤ b‖y‖2, where b ≥ a > 0 are constants.
A4. Sequence {xk} generated by the algorithm is bounded.

Lemma 3. Sequences {Pk}, {d
0
k}, {dk} and {λk} are all bounded.

Proof. According to A3, ‖Hk‖ is bounded. So we only need to prove det((AT
k HkAk)−1) is

bounded from (2), (3), (4) and (6). If it is not bounded, then from A4 there exists a subset K
such that

xk → x∗ ∈ X, det((AT
k HAk)−1)→∞, k

K
→∞.

This implies det(AT
k Ak) → 0, (k

K
→ ∞). It is a contradiction with assumption A2. In view of

A1 and the boundness of {Pk}, we can know the rest of conclusion is true.
Lemma 4. d0

k = 0, λk ≥ 0 ⇐⇒ d1
k = 0.
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Proof. Let d0
k = 0, λk ≥ 0. Based on the proof of Theorem1, (3), as well as the definitions

of Uk and d1
k, it is easy to learn d1

k = 0.
Contrarily, from d1

k = 0, we can get

∇f(xk)T d1
k = −∇f(xk)T Pk∇f(xk) +∇f(xk)T BT

k Uk

= −‖P
1

2

k ∇f(xk)‖
2

−
∑

λ1

kj
<0

(λ1
kj)

2 −
∑

λ1

kj
≥0

λ1
kj |gj | = 0.

Thereby, Pk∇f(xk) = 0, λ1
k ≥ 0. Recalling Step 4, we obtain BT

k Uk = 0 from d1
k = 0 and

Pk∇f(xk) = 0, therefore Uk = 0 which implies gJk
= 0. So d0

k = 0 and λk ≥ 0 hold.
Lemma 5. If xk is not a KKT point of (1), then

(i). ∇f(xk)T d0
k − λT

k gJk
≤ 0, ∇f(xk)T d1

k < 0 and
(ii). ∇gj(xk)T d1

k ≤ 0, ∇gj(xk)T d2
k < 0, j ∈ Jk.

Proof. (i). Since (d0
k , λk) is a KKT pair of the following quadratic programming

(QP )
min 1

2dT H−1
k d +∇f(xk)T d

s.t. gj(xk) +∇gj(xk)T d = 0, j ∈ Jk,

we have

∇f(xk)T d0
k − λT

k gJk
= ∇f(xk)T d0

k + λT
k AJk

d0
k = −(d0

k)T H−1
k d0

k ≤ 0.

Now we show ∇f(xk)T d1
k < 0. For xk is not a KKT point, we have either d0

k 6= 0 or there
is a j ∈ Jk such that λ1

kj < 0. Hence

∇f(xk)T d1
k = −(d0

k)T H−1
k d0

k −
∑

λ1

kj
<0

(λ1
kj)

2 −
∑

λ1

kj
≥0

λ1
kj |gj | < 0

(ii). Since xk is not a KKT point, then d1
k 6= 0. Thus,

AT
Jk

d1
k = Uk ≤ 0, AT

Jk
d2

k = −‖d1
k‖e < 0.

From (6) and Lemma 5, the following lemma holds evidently.
Lemma 6. If xk is not the KKT point of (1), then

(i). ∇f(xk)T dk < 0.
(ii). ∇gj(xk)T dk < 0, j ∈ J(xk).

Lemma 7. If xk is not a KKT point of (1), then there exists t̄ > 0 such that (7) holds for
any t ∈ [0, t̄].

Proof. By the differential mean value theorem,

f(xk + tdk) = f(xk) + t∇f(xk + ξdk)T dk, ξ ∈ [0, t].

Since f(x) is continuously differentiable, ∇f(xk)T dk ≤ θ∇f(xk)d1
k < 0 and α/θ < 1, there

exists t0 > 0 such that

f(xk + tdk) ≤ f(xk) + αt∇f(xk)T d1
k. ∀ t ∈ [0, t0].

In the same way, we can write for any j

gj(xk + tdk) = gj(xk) + t∇gj(xk + ξjdk)dk, ξj ∈ [0, t].

If j 6∈ J(xk), i.e. gj(xk) < 0, it is easy to know that there exists sufficiently small tj > 0
such that gj(xk + tdk) ≤ 0, ∀t ∈ [0, tj ].
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If j ∈ J(xk), then ∇gj(xk)T dk < 0 according to Lemma 6, which deduces that there exists
sufficiently small tj such that gj(xk + tdk) ≤ 0, ∀t ∈ [0, tj ].

Set t̄ = min{t0, t1, . . . , tm}. Then (7) holds for any t ∈ [0, t̄ ].
Lemma 8. Let x∗ be an cluster point of {xk} generated by Algorithm and let {xk}K be any
subsequence converging to x∗. Then, {d0

k}K → 0, {λk}K → λ∗ ≥ 0. λ∗ is the Lagrangian
multiplier associated with x∗, i.e., x∗ is a KKT point of (1).

Proof. From Lemma 5 and assumptions, it is known that {f(xk)} is descending and

f(xk)→ f(x∗), k
K
→∞.

Therefore, because ∇f(xk)T d0
k − λT

k gJk
= −(d0

k)T H−1
k d0

k, there would be

0← f(xk+1)− f(xk) ≤

{

−α(d0
k)T H−1

k d0
k, if xk+1 = xk + d0

k

αtk∇f(xk)T d1
k, otherwise.

(8)

If xk+1(k ∈ K) is decided by xk + d0
k, from A3 and Step 3 we obtain

{d0
k}

K
→ (d0)∗ = 0, {λk}

K
→ λ∗ ≥ 0.

That is to say x∗ is a KKT point.

If xk+1(k ∈ K) is decided by xk +tkdk, we only need to prove d1
k

K
→ (d1)∗ = 0 by the Lemma

4. Suppose it is not true, that is d1
k

K
→ (d1)∗ 6= 0 , then there exists d′ > 0 such that ‖d1

k‖ ≥ d′

for all large enough k ∈ K. Next, we will show that there exists t′ > 0 such that tk ≥ t′ for all
large enough k ∈ K. Therefore, tkd1

k 6→ 0.
Since d1

k → d∗ 6= 0, there is σ1 > 0, ρ′ > 0 such that for large enough k

∇f(xk)T dk ≤ θ∇f(xk)T d1
k ≤ −σ1 < 0, ρk > ρ′ > 0.

If j 6∈ J0(x
∗) (where J0(x) = {j ∈ I : gj(x) = 0}), then gj(xk) → gj(x

∗) < 0. Hence, there
exists σ2 > 0 such that for large enough k, gj(xk) ≤ −σ2 < 0.

If j ∈ J0(x
∗), then from (), gj(xk) → gj(x

∗) = 0 implies that ∇gj(xk)T d2
k → −‖(d

1)∗‖ ≤

−d′ < 0, k
K
→∞.

Hence, we get that for large enough k

∇gj(xk)T dk ≤ −
1

2
ρ′d′ < 0.

and it is easy to know that there exists t′ > 0 such that tk ≥ t′ and tkd1
k 6→ 0.

On the other hand, according to (8) and the definition of d1
k,

0← ∇f(xk)T d1
k = −(d0

k)T H−1
k d0

k −
∑

λ1

kj
<0

(λ1
kj )

2 −
∑

λ1

kj
≥0

λ1
kj |gj | ≤ 0

Therefore we get(d0)∗ = 0, λ∗ ≥ 0 ⇒ (d1)∗ = 0. This is a contradiction.
From Lemma 8, we immediately have the convergence of the algorithm.

Theorem 2. The algorithm either stops at a KKT point of problem (1) in finite steps or
generates a infinite sequence whose any cluster point is the KKT point of (1).

4. The Rate of Convergence

In this section, we discuss the convergent rate of the algorithm. We replace assumption A1
by A1′ and add another two assumptions. They hold in this section.
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A1′. f(x), gj(x) are twice continuously differentiable for any j ∈ I.
A5. Strong second-order sufficient condition holds, i.e.,

dT∇2
xxL(x∗, λ∗)d > 0, ∀ d ∈ ker∇g

Ĵ(x∗)(x
∗)\{0},

where L(x, λ) = f(x) + λT g(x), g(x) = (g1(x), · · · gm(x))T , Ĵ(x∗) = {j ∈ J(x∗) : (λ∗)j > 0}
and (x∗, λ∗) is the KKT pair of problem (1).
A6. ‖(Hk −∇2

xxL(x∗, λ∗))d0
k‖ = ◦(‖d0

k‖).
Lemma 9. Let (x∗, λ∗) be a KKT pair of (1). Then, there exists a convex neighborhood Ω of
(x∗, λ∗) and a positive µ such that for all (xk, λk) ∈ Ω, the matrix

M̂k =

(

∇2L(xk, λk) Ak

AT
k 0

)

is nonsingular and ‖M̂−1
k ‖ ≤ µ.

Proof. See [2, Proposition 3.1].
Lemma 10. For large enough k, the iterative implementation will come into Step 3 and will
not go away from Step 3 under the assumptions A1’, A5 and A6.

Proof. If the conclusion is not true, then the iterative process will come into Step 6 infinite
times. Since (d0

k, λk) is the KKT pair of the sub-problem (QP), the following equation holds

[(

H−1
k −∇2L(xk, λk) 0

0 0

)

+ M̂k

] (

d0
k

λJk

)

=

(

−∇f(xk)
−gJk

(xk)

)

.

By assumption A6, the formulation above implies

M̂k

(

d0
k

λJk

)

=

(

−∇f(xk)
−gJk

(xk)

)

+ ◦(‖d0
k‖),

and furthermore

M̂k

(

xk + d0
k − x∗

λJk
− λ∗

Jk

)

=

(

−∇f(xk) +∇2L(xk, λk)(xk − x∗)−Akλ∗
Jk

−gJk
(xk) + AT

k (xk − x∗)

)

+ ◦(‖d0
k‖).

Let (xk , λk) ∈ Ω . In view of assumption A1′, ∇L(x∗, λ∗) = 0 and mean-value theorem, we
have

‖ −∇f(xk) +∇2L(xk, λk)(xk − x∗)−Akλ∗
Jk
‖

≤ ‖∇f(x∗)−∇f(xk) +∇2f(xk)(xk − x∗)‖

+‖
∑

Jk

(λ∗)j [∇gj(x
∗)−∇gj(xk) +∇2gj(xk)(xk − x∗)]‖

+‖
∑

Jk

[λkj − (λ∗)j ]∇
2gj(xk)(xk − x∗)‖

≤ ‖

∫ 1

0

[∇2f(xk + t(x∗ − xk))−∇2f(xk)](xk − x∗)dt‖

+c1

∑

Jk

‖

∫ 1

0

[∇2gj(xk + t(x∗ − xk))−∇2gj(xk)](xk − x∗)dt‖

+c2

∑

Jk

‖λkj − (λ∗)j‖ · ‖xk − x∗‖

= ◦(‖xk − x∗‖)
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where c1, c2 are constants.
In the same way, from Jk ⊆ J(x∗), gJk

(x∗) = 0 and assumption A1′, we can get that

‖ − gJk
(xk) + AT

k (xk − x∗)‖ = ‖gJk
(x∗)− gJk

(xk) + AT
k (xk − x∗)‖

≤
∑

Jk

‖gj(x
∗)− gj(xk) +∇gj(xk)T (xk − x∗)‖ = ◦(‖xk − x∗‖).

Thus, no matter wether xk is decided by Step 3 or Step 6, if set zk+1 = xk + d0
k , due to

Ĵ(x∗) ⊆ Jk, we always have

‖zk+1 − x∗‖ = ◦(‖xk − x∗‖), ‖λJk
− λ∗

Jk
‖ = ◦(‖xk − x∗‖). (9)

Suppose for k large enough, xk+1 is derived from Step 3. Then ‖d0
k‖ ≤ δ , and from the first

expression of (9)

‖d0
k‖ = ‖xk+1 − xk‖ ≥ ‖xk − x∗‖ − ‖xk+1 − x∗‖ ≥

1

2
‖xk − x∗‖.

Namely, ‖xk − x∗‖ ≤ 2δ. Therefore,

‖d0
k+1‖ = ‖zk+2 − xk+1‖ ≤ ‖zk+2 − x∗‖+ ‖xk+1 − x∗‖

≤ 2‖xk+1 − x∗‖ ≤
1

4
‖xk − x∗‖ ≤

1

2
δ.

And from the second expression of (9), for j ∈ Jk+1

λk+1,j ≥ −‖λk+1 − λ∗‖ ≥ −
η

2
‖xk+1 − x∗‖ ≥ −η‖zk+2 − xk+1‖ = −η‖d0

k+1‖.

Above two inequalities illuminate that the (k + 2)th iteration will be in Step 3 again and
xk+2 = xk+1 + d0

k+1. Therefore, the iterative process will keep in Step 3 from now on. It
contradicts that iterative process will come into Step 6 infinite times.

Based on Lemma 10, we can see when k is large enough the algorithm will implement the
Newton steps and will not change. Thus the following theorem holds.
Theorem 3. Under all stated assumptions in the paper, the algorithm is superlinearly conver-
gent, i.e. for large enough k,

‖xk+1 − x∗‖ = ◦(‖xk − x∗‖).

5. Numerical Test

We present the results of numerical test according to our algorithm. Four tested problems
are chosen from [10] and computed by MATLAB. In the process, we select α = 0.3, θ = 0.75,
β = η = 0.5 and Hk updated by the BFGS formulation. In the following table, No. is
the number of tested problems in reference [10]; Size shows the number of variables and the
number of constraints; x0 is the initial point; NIT stands for the iterative times; f(xk) is the
final objective function value computed by the algorithm.

Table

No. Size x0 NIT xk f(xk)

264 4, 3 (-2,1,-1,1) 30 (-0.00867,0.98530, 2.00290,-0.99880) -43.944

268 5, 5 (1,1,1,1,1) 15 (0.9927, 1.9919, -0.9974, 2.9815, -3.9656) 4.33 × 10−5

269 5,3 (0,0,0,0,0) 6 ( -0.7674, 0.2558, 0.6279, -0.1162, 0.2558) 4.0928

285 15,10 (0,0,...,0) 40 ∗ -8245.9
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where ∗ = (1.0387, 0.96163, 0.97695, 0.98887, 0.97449, 1.0477, 0.85701, 0.97957, 1.0146, 1.0524,
1.0127, 0.9992, 0.97353, 1.0134, 1.005).

The optimal solution and the optimal value:
No.264: x∗ = (0, 1, 2,−1) and f(x∗) = −44 ;
No.268: x∗ = (1, 2,−1, 3,−4) and f(x∗) = 0;
No.269: be not exactly clear;
No.285: x∗ = (1, 1, · · · , 1) and f(x∗) = −8252.
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