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Abstract

In this paper, the linear finite element approximation to the positive and symmetric,
linear hyperbolic systems is analyzed and an O(h2) order error estimate is established
under the conditions of strongly regular triangulation and the H

3-regularity for the exact
solutions. The convergence analysis is based on some superclose estimates derived in this
paper. Our method and result here are also applicable to general hyperbolic problems.
Finally, we discuss the linearized shallow water system of equations.
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1. Introduction

Since 1970’s, finite element method for solving partial differential equations has been suc-
cessfully applied to elliptic and parabolic problems, however, it is still not very popular for
hyperbolic problems. In view of that compared with the difference method, finite element
method is more flexible and adaptive, and easier to mathematically analyze, recently finite
element methods for hyperbolic problems have attracted more and more attention; see, e.g.,
[1-5] for the Galerkin method; [6-13] for the discontinuous Galerkin method; [14-17] for the
Petrov-Galerkin method; and [18-21] for the streamline diffusion method.

It is well known that for the k-th order finite element approximations to elliptic or parabolic
problems, the optimal order error estimate in L2 norm is of O(hk+1) order with the exact solu-
tion u in Hk+1(Ω). However, for linear hyperbolic problems, it is still an unsolved completely
problem that whether or not the finite element solutions admit this optimal order estimate.
Generally speaking, the convergence order of Galerkin method for hyperbolic problems is of
O(hk) order, that is one order lower than the approximation order of finite element space; cf.
[1] and [2]. And in [1], Dupont gave a counterexample by using third order Hermit element to
indicate that this convergence order is sharp. Since then, in order to obtain the high accuracy
and cope with the lower regularity of hyperbolic problems, the discontinuous Galerkin method
is proposed and used extensively in this area; cf. [6],[7],[8],[9],[12] and [13]. By this method, the

convergence order can be improved to O(hk+ 1
2 ), and recently some superconvergence results

are also given in [22] for elliptic problem by using discontinuous Galerkin method.
In the context of Galerkin method, under some assumptions on the finite element partition

and regularity of the exact solution, it is possible to obtain the optimal order error estimates
when linear finite elements are used; see, e.g.,[3] for bilinear rectangular element; and [5] for
linear triangular element imposed on uniform mesh partition. Obviously, the condition of
uniform mesh partition is not very interesting in the practical case.

In this paper, we will discuss the linear finite element approximation to positive and sym-
metric hyperbolic systems. Under the conditions of strongly regular triangulation (cf. [23]) and
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H3-regularity for the exact solutions, the optimal order error estimates are established. The
theoretical tools for the error analysis are some superclose estimates that are also derived in
this paper. Our method and result here are also applicable to general hyperbolic problems. To
author’s knowledge, very few optimal convergence order can be reached for hyperbolic prob-
lems, even in one dimensional case. Hence, our research work in this paper is theoretically
significant.

Let Ω ⊂ R2 be a polygonal domain, Jh = {e} be the finite element partition of domain Ω
parameterized by mesh size h so that Ω = ∪e∈Jh

{ e }. Introduce the linear finite element space
Sh defined by

Sh = { v ∈ C(Ω)
⋂

H1(Ω) : v|e is linear, ∀e ∈ Jh }.

We will use the standard notation for the Sobolev spaces W m
p (Ω) with corresponding norms

and seminorms, and when p = 2, W m
2 (Ω) = Hm(Ω), ‖ · ‖m,2 = ‖ · ‖m. Denote by (·, ·) and

‖ · ‖ the standard inner product and norm in L2(Ω) space. Let X be a Banach space, constant
T > 0, we will also use the space,

Lp(0, T ; X) = { v(t) : (0, T ) → X : ‖v‖Lp(X) = (

∫ T

0

‖v(t)‖p
X dt )

1
p < ∞}.

In this paper, letter C represents a generic constant independent of mesh size h.

The plan of this paper is as follows. In section 2, some superclose estimates for interpolation
are established. In section 3, the linear finite element approximations are analyzed for steady
and nonsteady positive and symmetric hyperbolic systems, respectively, and the optimal order
error estimates are derived. Finally, we will discuss the linearized shallow water system of
equations.

2. Superclose Estimates

Definition 2.1. Let e = 4p1p2p3, e′ = 4p′1p
′

2p
′

3, and e and e′ be two adjacent triangle elements
sharing a common edge in Jh. The quadrilateral e∪e′ is called as an approximate parallelogram
if (see figure 1)

| −→

p1p2 +
−→

p′1p′2 | = O(h2) , | −→

p2p3 +
−→

p′2p′3 | = O(h2). (2.1)

Definition 2.2. A triangulation Jh is called as strongly regular, if any two adjacent triangular
elements in Jh form an approximate parallelogram (see figure 1).

Figure 1. approximating parallelogram
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Remark 2.1. Strongly regular triangulation must be quasi-uniform. And any domain com-
posed of several convex quadrilaterals can be subdivided into strongly regular triangulation
[23,24].
Lemma 2.1. Let triangulation Jh be strongly regular, e = 4p1p2p3 and e′ = 4p′1p

′

2p
′

3 be two

adjacent triangle elements (see figure 1), vectors
−→

L =
−→

p1p2 (or
−→

p2p3) and
−→

L′ =
−→

p1
′p2

′ (or
−→

p2p3),

the lengths l = |
−→

L |, l′ = |
−→

L′ |, and the unit direction vectors n =
1

l

−→

L , n′ =
1

l′

−→

L′ . Then

| l − l′ | = O(h2) , |n + n′ | = O(h). (2.2)

Proof. From (2.1) we have

| l − l′ | =
1

l + l′
|
−→

L ·
−→

L −
−→

L′ ·
−→

L′ | =
1

l + l′
|(
−→

L +
−→

L′ ) · (
−→

L −
−→

L′ )|

≤ |
−→

L +
−→

L′ | = O(h2),

|n + n′ | = |1
l

−→

L +
1

l′

−→

L′ | =
1

l l′
|(l′ − l)

−→

L +l (
−→

L +
−→

L′ )|

≤ 1

l′
( | l′ − l | + |

−→

L +
−→

L′ | ) = O(h).

Let triangular element e = 4p1p2p3 with three edge vectors
−→

L1=
−→

p2p3,
−→

L2=
−→

p3p1,
−→

L3=
−→

p1p2,

li = |
−→

Li | and ni =
1

li
|
−→

Li | denote the lengths and unit direction vectors of
−→

Li (i = 1, 2, 3),

respectively, and Di = ni · ∇ be the direction derivatives along
−→

Li (see figure 2).

Figure 2. triangular element and unit triangular element

Lemma 2.2. Let e = 4p1p2p3 in Jh. Then
∫

e

(w − wI )φ = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w φ + O(h3)(‖w‖2,e‖φ‖1,e + ‖w‖3,e‖φ‖0,e). (2.3)

Where wI is the piecewise linear interpolation approximation of function w in Sh.

Proof. Let
∧

e be the unit triangle with vertices
∧

p1= (0, 0),
∧

p2= (1, 0) and
∧

p3= (0, 1). Set
∧

l1=
√

2,
∧

l2=
∧

l3= 1,
∧

D1= (∂y − ∂x)/
√

2,
∧

D2= −∂y and
∧

D3= ∂x. By straightforward calculation,
we can see that for any quadratic polynomial q,

∫

∧

e

q =

∧

e

3

3
∑

i=1

q(
∧

pi) −
1

24

∫

∧

e

3
∑

i=1

(
∧

li)
2(

∧

Di)
2q, (2.4)
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which is invariant under affine-linear transformations. Define the linear bounded functional F
on W 3

1 (
∧

e) by

F (
∧

w) =

∫

∧

e

(
∧

w − ∧

wI ) +
1

24

∫

∧

e

3
∑

i=1

(
∧

li)
2(

∧

Di)
2 ∧

w . (2.5)

From (2.4) and note that (w − wI)(pi) = 0 and D2
i wI = 0, we obtain

F (q) = 0, ∀ q ∈ P2(
∧

e).

Then, by using the Bramble-Hilbert lemma,

|F (
∧

w )| ≤ C| ∧

w |
3,1,

∧

e
. (2.6)

Combining (2.5) and (2.6) and utilizing the affine-linear transformation, we have

∫

e

(w − wI) = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w + O(h3)|w |3,1,e. (2.7)

Let φ =
1

|e|

∫

e

φ. Writing

∫

e

(w − wI)φ =

∫

e

(w − wI)φ +

∫

e

(w − wI)(φ − φ).

It follows from (2.7) and the interpolation approximation properties that

∫

e

(w − wI )φ = − 1

24

∫

e

3
∑

i=1

l2i D
2
i w(φ − φ + φ) + O(h3)|w |3,1,eφ + O(h3)‖w‖2,e‖φ‖1,e

= − 1

24

∫

e

3
∑

i=1

l2i D
2
i wφ + O(h3)(‖w ‖2,e‖φ‖1,e + ‖w‖3,e‖φ‖0,e).

The proof is completed.

Lemma 2.3. Let
→

β∈ [W 1
∞

(Ω)]2, w ∈ H3(Ω), v ∈ Sh. Then

|
∫

Ω

(w − wI)
→

β ·∇v | ≤ Ch2‖w‖3( ‖v‖ + (

∫

∂Ω

|v|2|
→

β ·n| ) 1
2 ). (2.8)

Where n denotes the outward unit normal vector along ∂Ω.
Proof. By using Lemma 2.2, the Green′s formula and inverse inequality, and noting that

v is piecewise linear, we have
∫

Ω

(w − wI )
→

β ·∇v =
∑

e

∫

e

(w − wI )
→

β ·∇v

=
∑

e

− 1

24

∫

e

3
∑

i=1

l2i D
2
i w

→

β ·∇v + O(h2)‖w ‖3‖v‖

= − 1

24

∑

e

∫

∂e

3
∑

i=1

l2i D
2
i w v

→

β ·n + O(h2)‖w ‖3‖v‖

= − 1

24

∑

l∈∂e,l/∈∂Ω

∫

l

3
∑

i=1

[ l2i D
2
i w − (l′i)

2(D′

i)
2w] v

→

β ·n

− 1

24

∫

∂Ω

3
∑

i=1

l2i D
2
i w v

→

β ·n + O(h2)‖w ‖3‖v‖. (2.9)
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Where l = ∂e ∩ ∂e′ (see figure 1). Now it follows from Lemma 2.1 that

| l2i D2
i w − (l′i)

2(D′

i)
2w | = | ( l2i − (l′i)

2 )D2
i w + (l′i)

2( D2
i − (D′

i)
2 )w |

= | (li + l′i)(li − l′i)D
2
i w + (l′i)

2(Di + D′

i)(Di − D′

i)w |
≤ Ch3|D2w| + (l′i)

2|(ni + n′

i) · ∇(Di − D′

i)w | ≤ Ch3|D2w |.

Substituting this into (2.9) to yield

|
∫

Ω

(w − wI)
→

β ·∇v| ≤ Ch3
∑

e

∫

∂e

|D2w | |v|

+Ch2‖w‖2,∂Ω(

∫

∂Ω

|v|2|
→

β ·n| ) 1
2 + Ch2‖w‖3‖v‖

≤ Ch2‖w‖3( ‖v‖+ (

∫

∂Ω

|v|2|
→

β ·n| ) 1
2 ).

Where we have used the following trace inequalities and inverse inequality:

(

∫

∂e

w2)
1
2 ≤ Ch−

1
2 ( h‖∇w‖0,e + ‖w‖0,e), w ∈ H1(e),

(

∫

∂Ω

|w|2) 1
2 ≤ C(Ω)‖w‖1, ‖v‖1 ≤ Ch−1‖v||, v ∈ Sh.

The proof is completed.

3. First Order Hyperbolic Problems

3.1. Steady problems

Consider the following first order hyperbolic problem:

A(x) · ∇u + B(x)u = f(x), x ∈ Ω, (3.1)

N(x)u =
1

2
(M − D)u = 0, x ∈ ∂Ω. (3.2)

Where A = (A1, A2), Ak = (a
(k)
ij (x)), B = (bij(x)) and M = (mij(x)) are some given m × m

order matrices, aij ∈ W 1
∞

(Ω), bij , mij ∈ L∞(Ω), D = A · n, n = (nx, ny) is the outward unit
normal on ∂Ω, u = (u1, · · · , um)T and f = (f1, · · · , fm)T are m-dimensional vector functions.
Problem (3.1)-(3.2) is called as a positive and symmetric hyperbolic system if

A1 = AT
1 , A2 = AT

2 , x ∈ Ω, (3.3)

B + BT − divA ≥ σ0I, constant σ0 > 0, x ∈ Ω, (3.4)

M + MT ≥ 0, x ∈ ∂Ω, (3.5)

Ker(M − D) + Ker(M + D) = Rm, x ∈ ∂Ω. (3.6)

Introduce the bilinear form:

A(u,v) = (A · ∇u,v) + (Bu,v)+ < Nu,v >∂Ω . (3.7)

By the Green′s formula and (3.4) we have

A(u,u) ≥ 1

2
σ0‖u‖2 +

1

2
< Mu,u >∂Ω, ∀u ∈ [H1(Ω)]m. (3.8)

Now we define the linear finite element approximation to problem (3.1)-(3.2) by finding uh ∈
[Sh]m such that

A(uh,vh) = (f ,vh), ∀vh ∈ [Sh]m. (3.9)
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It is easy to see from (3.8) that uh uniquely exists and satisfies the stability estimate

1

2
σ0‖uh‖2+ < Muh,uh >∂Ω ≤ 2

σ0
‖ f ‖2. (3.10)

From (3.1)-(3.2) and (3.9), we have the error equation

A(u − uh,vh) = 0, ∀vh ∈ [Sh]m. (3.11)

In order to do the error analysis here we assume a more strong condition than condition (3.5),
which can be satisfied by many hyperbolic problems. There exists a constant σ1 > 0 such that

(H) < (M + MT )vh,vh >∂Ω ≥ σ1 < vh,vh >∂Ω, ∀vh ∈ [Sh]m.

Theorem 3.1. Let u and uh be the solutions of problems (3.1)-(3.2) and (3.9) respectively,
u ∈ [H3(Ω)]m, triangulation Jh be strongly regular and hypothesis (H) hold. Then uh satisfies
the following optimal order error estimates

‖u− uh‖ + ‖u− uh‖0,∂Ω ≤ Ch2‖u‖3.

Proof. It follows from (3.11) and the Green′s formula that

A(uI − uh,vh) = A(uI − u,vh) = −(uI − u, A · ∇vh)

+ ((B − divA)(uI − u),vh) +
1

2
< (M + D)(uI − u),vh >∂Ω, ∀vh ∈ [Sh]m.

Taking vh = uI − uh, by using (3.8), hypothesis (H), Lemma 2.3 and interpolation approxi-
mation property we obtain

1

2
σ0‖uI − uh‖2 +

1

4
σ1 < uI − uh,uI − uh >∂Ω

≤ Ch2‖u‖3( ‖uI − uh‖ + (

∫

∂Ω

|uI − uh|2|A · n|) 1
2 )

+ Ch2‖u‖2‖uI − uh‖ + C‖u− uI‖0,∂Ω‖uI − uh‖0,∂Ω.

Combining this with the inequality

‖u− uI‖0,∂Ω ≤ Ch2‖u‖2,∂Ω ≤ Ch2‖u‖3,

we complete the proof.
Below we will briefly discuss the single equation case. Consider a hyperbolic problem of the

form
→

β ·∇u + α u = f, in Ω, (3.12)

u = g, on ∂Ω−. (3.13)

Where
→

β∈ [W 1
∞

(Ω)]2 and α ∈ L∞(Ω), f and g are some given smooth functions, ∂Ω− = {x ∈
∂Ω :

→

β ·n < 0 } and ∂Ω+ = ∂Ω\∂Ω−. We assume that

α − 1

2
div

→

β≥ σ0, σ0 > 0, in Ω. (3.14)

Set a finite element space by

S0
h = { vh ∈ Sh : vh = 0, on ∂Ω− }.

The finite element approximation for problem (3.12)-(3.13) reads: Find uh ∈ Sh such that

(
→

β ·∇uh, vh) + (α uh, vh) = (f, vh), ∀ vh ∈ S0
h, (3.15)

uh = gI , on ∂Ω−. (3.16)
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From (3.14) we see that

(
→

β ·∇w, w) + (α w, w) ≥ σ0‖w‖2 +
1

2

∫

∂Ω

w2
→

β ·n, ∀w ∈ H1(Ω). (3.17)

This implies that the solution uh uniquely exists and satisfies

σ0‖uh‖2 +

∫

∂Ω+

|uh|2|
→

β ·n | ≤ 1

σ0
‖f‖2 +

∫

∂Ω−

| gI |2|
→

β ·n |. (3.18)

From (3.17), Lemma 2.3 and the identity

(
→

β ·∇(uh − uI), vh) + ( α(uh − uI), vh) = −(u − uI ,
→

β ·∇vh) (3.19)

+ ( (α − div
→

β )(u − uI), vh) +

∫

∂Ω+

(u − uI)vh|
→

β ·n |, vh ∈ S0
h, (3.20)

we immediately obtain the following theorem.
Theorem 3.2. Let u and uh be the solutions of problems (3.12)-(3.13) and (3.15)-(3.16)
respectively, u ∈ H3(Ω), triangulation Jh be strongly regular. Then

‖u− uh‖ + (

∫

∂Ω+

|u − uh|2|
→

β ·n | ) 1
2 ≤ Ch2‖u‖3. (3.21)

Remark 3.1. For a single equation case, the hypothesis (H) can be removed.
Remark 3.2. The optimal order error estimates for bilinear and linear finite element approx-
imations to hyperbolic problems have been obtained in [3] and [5], respectively, under some
restrictive conditions such as uniform mesh partitions.

3.2. Nonsteady problems

Consider the time-dependent first order hyperbolic problem:

ut + A · ∇u + Bu = f(t), (t, x) ∈ [0, T )× Ω, (3.22)

Nu =
1

2
(M − D)u = 0, (t, x) ∈ [0, T )× ∂Ω, (3.23)

u(0, x) = u0(x), x ∈ Ω. (3.24)

Where the notation representations in (3.22)-(3.23) are the same as those in (3.1)-(3.2).
Define the finite element approximation for problem (3.22)-(3.24) by finding uh : [0, T ) →

[Sh]m such that

(uh,t,vh) + A(uh,vh) = (f ,vh), ∀vh ∈ [Sh]m, (3.25)

uh(0) ∈ [Sh]m. (3.26)

Where the bilinear form A(u, v) is given by (3.7). Taking vh = uh in (3.25), from (3.8) we
obtain

d

dt
‖uh(t)‖ +

σ0

2
‖uh(t)‖ ≤ ‖f(t)‖. (3.27)

This implies the stability estimate

‖uh(t)‖ ≤ e−
σ0
2

t(‖uh(0)‖ +

∫ t

0

e
σ0
2

τ‖f(τ)‖ dτ ), t > 0. (3.28)

Theorem 3.3. Let u and uh be the solutions of problems (3.22)-(3.24) and (3.25)-(3.26)
respectively, u(0) ∈ [H3(Ω)]m, ut(t) ∈ L1(0, T ; [H3(Ω)]m ), triangulation Jh be strongly regular
and hypothesis (H) hold. Then, there exists a constant C independent of t ∈ [0, T ) such that

‖u(t) − uh(t)‖ ≤ e−
σ0
2

t‖u(0) − uh(0)‖ + Ch2(‖u(0)‖3 +

∫ t

0

‖ut(τ)‖3 dτ ), t > 0.
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Proof. First introduce the projection approximation of solution u in [Sh]m by setting
wh(t) : [0, T ) → [Sh]m such that

A(u(t) −wh(t),vh) = 0, ∀vh ∈ [Sh]m.

From Theorem 3.1 we know that

‖Dj
t (u −wh)(t)‖ ≤ Ch2‖Dj

tu(t)‖3, t ∈ [0, T ), j = 0, 1. (3.29)

Now we write the error function

u(t) − uh(t) = u(t) −wh(t) + wh(t) − uh(t) = η + θ.

Then, from the equations satisfied by u(t), uh(t) and wh(t), we see that θ ∈ [Sh]m satisfies

(θt,vh) + A(θ,vh) = −(ηt,vh), ∀vh ∈ [Sh]m. (3.30)

Taking vh = θ, similar to the argument of (3.28), and using triangular inequality and (3.29),
the proof is completed.
Remark 3.3. For nonsteady problems, the condition (3.4) is not necessary for error analysis.
In fact, we may use the transformation: u = eσtw with σ satisfying σ > ‖B + BT − div A‖∞,
so that (3.4) holds.

4. Linearized Shallow Water Systems

Many physical problems in meteorology and oceanography can be expressed in the math-
ematical model of shallow water systems. In this paper we consider the linearized and sym-
metrized shallow water equations in the form [9]

wt + A1∂xw + A2∂yw + Bw = 0, t > 0, (x, y) ∈ Ω. (4.1)

Where Ω = [0, a]×[0, b] is a rectangular domain in R2, w = (u, v, ϕ) is the vector value function,
u/ϕ0 and v/ϕ0 represent the airflow velocities in x and y directions respectively, ϕ2

0 = gH , g is
the acceleration of gravity, H is the average value of the thickness of air layer, ϕ is a function
relating to the thickness of air layer. Furthermore, constant matrices

A1 =





u0 0 ϕ0

0 u0 0
ϕ0 0 u0



 , A2 =





v0 0 0
0 v0 ϕ0

0 ϕ0 v0



 , B =





0 −f 0
f 0 0
0 0 0



 .

where u0 and v0 > 0 are the average values of the airflow velocities, and u2
0 + v2

0 < ϕ2
0.

Now we introduce the initial-boundary value conditions. In order to ensure the well-
posedness of equations (4.1), the boundary value conditions should be given reasonably ac-
cording to the characteristic directions of matrices A1 and A2. Here we consider equations
(4.1) with the following boundary value conditions:

w(t, 0, y) = w(t, a, y), 0 ≤ y ≤ b, t > 0, (4.2)

v = 0, y = b, 0 ≤ x ≤ a, t > 0, (4.3)

u = 0, v = −αϕ, v0/ϕ0 < α < ϕ0/v0, y = 0, 0 ≤ x ≤ a, t > 0. (4.4)

and the initial value condition w(0, x, y) = w0(x, y). Let D = A1nx + A2ny, n = (nx, ny) is
the outward unit vector on ∂Ω. For function w satisfying (4.2)-(4.4), we have

< Dw,w >∂Ω=

∫ a

0

(v0u
2 + v0v

2 + 2ϕ0ϕv + v0ϕ
2)|y=b

y=0dx ≥ 0.

Hence, for the solution of problem (4.1)-(4.4), we can derive the stability estimate

‖w(t)‖ ≤ ‖w(0)‖, t > 0. (4.5)
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This shows that problem (4.1)-(4.4) is well-posed. Introduce the periodic function space

[ H1
p ]3 = {w ∈ [H1(Ω)]3 : w(0, y) = w(a, y), 0 ≤ y ≤ b }.

Then problem (4.1)-(4.4) can be rewritten as follows: Find w(t) : [0,∞) → [ H1
p ]3 such that

wt + A1∂xw + A2∂yw + Bw = 0, t > 0, (x, y) ∈ Ω, (4.6)

Nw =
1

2
(M − D)w = 0, t > 0, (x, y) ∈ ∂Ω. (4.7)

in which N is the boundary value matrix corresponding to the boundary value conditions (4.2)-
(4.4). In fact, we can set N ≡ O, (x, y) ∈ Γ2 ∪ Γ4, and

N =
1

2





2v0 0 0
0 ϕ0/α ϕ0

0 ϕ0 αϕ0



 , (x, y) ∈ Γ1; N =
1

2





0 0 0
0 2ϕ2

0/v0 0
0 0 0



 , (x, y) ∈ Γ3.

Where ∂Ω =
⋃4

i=1 Γi, and

Γ1 = { (x, y) ∈ ∂Ω : y = 0 }, Γ2 = { (x, y) ∈ ∂Ω : x = a },
Γ3 = { (x, y) ∈ ∂Ω : y = b }, Γ4 = { (x, y) ∈ ∂Ω : x = 0 }.

By straightforward calculation, it is easy to see that M = 2N + D satisfies

< Mw,v >Γ2∪Γ4
= 0, ∀w,v ∈ [ H1

p ]3, (4.8)

< Mw,w >Γ1∪Γ3
≥ σ1 < w,w >Γ1∪Γ3

. (4.9)

where

σ1 = min{ v0/2, αϕ0 − v0, ϕ0/α − v0 } > 0.

This implies that the hypothesis (H) in Section 3.1 holds for problem (4.6)-(4.7), because by
(4.8) we may neglect the boundary value on Γ2 ∪ Γ4.

Set the finite element space [Sh,p]
3 = [Sh]3 ∩ [H1

p ]3. Now the finite element approximation
to problem (4.6)-(4.7) reads: Find wh(t) : [0,∞) → [Sh,p]

3 such that

(wh,t,vh) + A(wh,vh) = 0, vh ∈ [Sh,p]
3, t > 0, (4.10)

w(0) ∈ [Sh,p]
3. (4.11)

According to Theorem 3.3, we immediately obtain the following theorem.
Theorem 4.1. Let w and wh be the solutions of problems (4.6)-(4.7) and (4.10)-(4.11) re-
spectively, w(0) ∈ [H3(Ω)]m, wt(t) ∈ L1(0, T ; [H3(Ω)]m ), triangulation Jh be strongly regular.
Then

‖w(t) −wh(t)‖ ≤ ‖w(0) −wh(0)‖ + Ch2(‖w(0)‖3 +

∫ t

0

‖wt(τ)‖3 dτ ), t > 0.
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