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Abstract

In this paper, some new results on the estimations of bounds for determinant of
Hadamard Product of two H-matrices are given. Several recent results are improved and
generalized.
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1. Introduction

Let R™*™ be the set of all m x n real matrices and A = (a;;) and B = (b;;) € R™*". The
Hadamard product of A and B is defined as an m xn matrix denoted by AoB : (AoB);; = a;;bi;.
|A| is defined by (JA|)i; = |asjl-

We write A > B if a;; > b;; for all 4,5. A real n x n matrix A is called a nonsingular
M-matrix if A = sI — B satisfies: s > 0, B > 0 and s > p(B), where p(B) is the spectral radius
of B. Let M,, denote the set of all n x n nonsingular M-matrices. Suppose A = (a;;) € R"*",
its comparison matrix p(A) = (ms;) is defined by

| i i=,
" ‘{ —lay |, if i#£7
A real n X n matrix A is called an H-matrix if its comparison matrix u(A) is a nonsingular
M-matrix. H, denotes the set of all n x n H-matrices. Let A € R"*™. A, denotes the k x k
successive principal submatrix of A.

In [1], Yao-tang Li and Ji-cheng Li gave an estimation of bounds for determinant of Hadamard
product of two H-matrices recently as follows:

n

Theorem!!:Theorem6]  [op A — (aij) and B = (bi;) € Hp, [] @iibii > 0. Then

=1

n n n k
(H b“) det(u(A)) + (H |am»|> det(u(B)) - []
i=1 =1

—1
k=2 i=1
= Wn(A,B).

Ak Qi

Qi Ok

det(A o B)

Y

(1)

In this paper, we will improve this result and generalize Jian-zhou Liu’s main results on
M-matrices in [2] to H-matrices.
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2. Some Lemmas

In this section, we will give some lemmas that shall be used.

From the definitions and [2, Lemma 3], the following two lemmas are obtained immediately.
Lemma 1. If A € H,, A is the k X k successive principal submatriz of A, then Ay € Hy.
Lemma 2. If A = (a;;) € H,, then

[T laiil = x| det[u(A(k))] = det[u(A)] 20, k=1,2,---.n, (2)

=1

where A(k) € R™=DX(=1) js the principal submatriz of matriz A obtained by deleting row and
column k of A.

Lemma 3. If A and B € H,, then

det[u(By)]  det[u(4)] det[u(By)
detlu(Br_)]  det[u(Ar—1)] det[u(Br_1)]

lakk]

[£27°1¢7°7

k—1
> det Z
- det Bk 1 =

a’l'L

Proof. By Lemma 1,

Ay A(k—l) By B(k—l)
Ak = b1 12 s By, = k1 12 c Hy,.
( 4D B

21 Gk bik
Therefore,
diag(lai], -+, lar—1,6—1]) > u(Ar_1)
and
[1(Ak—1)] " > diag(lai)'],- - a|alz—11,k—1|) > 0.
So,
k k k— . _ k
AS V(A ALY > |AS Vdiag(lar], - lagty o DIAS Y]
k—1 aa
_ ik ki >07 (4)
(2773
=1
A, AkY
det[u(Ar)] = detﬂ( A(ﬁ—i) ;2
21 kk
k—
C e[ M) AT
ATV ] (5)
- det< #(Ak-1) 0 )
0 lare] — |AS D lln(Ar-1)) ALY

= det[u(Ap-1)] - (Jawr| — |AS V| [u(Ar_1)] 71 AGV)).
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Thus, by (2), (4) and (5), we have:
k—1
0 < det[u(Bg)] Z ik Qi
det[u(Bk,l] =1 (0777

QB e
det[p(By—1] Az (A1) AL

det[p(By)] <|akk| det[p(Ar—1)] — det[u(Ak)]>
det[p(By—1] det[u(Ag-1)]
det[u(Bk)]  det[p(Ax)] det[p(By)]

04 ot Brr] ~ Aot Arr)] Aot Bra]

Lemma 4Theoremll " Lot A = (a;;) and B = (b;j) € M,,. Then

det[u(Ao B)] > a11b11H

det(Bk) e — det(Ak)det(Bk)
det(Br_1) ™ " det(Ay_1) det(By_1)

Lemma 5[2Theorem2]  1o4 A — (aij) and B = (bi;) € M,,. Then

det[u(A o B)] > det A [ [ bii +det B] [ ai — det A- det B

=1 =1
i Q5
tdet A | ZXZE | (b det[B(K)] — det(B)]
det[A(k)] W
ﬁ bi;
i=1,i#k . o
+ det B m —1 [Clkk det[A(k)] — det(A)], k= 1, 2, ,Nn.

Lemma 6. Let A = (a;j) and B = (b;;) € H,, then

n d t det|u(B
Ya(AB) = |a11b11|H{dete e 1)]|bkk|+%

~ det[u(Ax)] det[u(By)] }
det[ (Ak 1)] det[ (Bk 1]

det H |b“| + det H |an|

— det[u (A)] det[ (B)]+wn(A,B7n)
= en(A, B) +wy (A, B,n),

lakk|

Y

where

n

[T lail
i=1,ik

wn(A, B, k) = detlu(A)] | g

— 1| [[bxr| det[p(B(k))] — det[n(B)]]
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[T [biil

+det[u(B)] | ==k = 1] llans] det [p(A(k))] — det[u(A)]).

det[u(B(k))

Proof. By direct verification, Y3(A, B) = e2(A, B), wa(A4, B,2) =0 for A and B € Hy, and
for A and B € Hg,

det[p(As)]
det[pu(Az)]

+la |det[u(33)] _ det[u(A43)] det[M(BB)]]
P det[p(B,]  det[u(As)] det[u(By)] |

Hence (7) holds for n = 2. Now, suppose (7) and (8) hold for n — 1, that is,
Ynfl(Aa B) Z Enfl(Aa B) + wnfl(Aa B7 n— ]-)7

Y3(A, B) = Y3(As, Ba) {|b33|

1 |annl det[u(Bn)] _ det[(An)] det[p(By)] :|
" det[u(Br-1)]  det[u(An—1)]det[u(Bn-1)]]
Then, for A = ( ﬁ;l ;475 ) and B = < Bézl ijj > € H,, we have
Yo(A,B) = Y, 1(An—1,Bn1) ['bnn|7djfﬁt£igéi)1])]
o 2Bty St (5)
"det[u(Bn-1)]  det[u(An—1)] det[u(Bn-1)]
det[p(An)]
Z 511—1(1411—17377,—1) |:|bnn|m
+|ann] det[u(By)] _ det[p(An)] det[p(Bn)] :|
" det[pu(Bn-1]  det[u(A,—1)]det[u(By—1)]

= [detlp(An0)] [T 0] + detlpa(Bn )] [T la
— detlp(An-1)] detlu( By 1)]] % ['b'%

NONECCA R TTER T
| G (Bar)] ~ Al A1) et (B 1)
= ¢en(A,B)+wn(A4,B,n),

which completes the proof.
Lemma 7. If A and B € H,, then

en(A, B) > Wo(A, B).

Proof. Since A and B € Hy, u(A) and u(B) € M,,. From [5, Corollary 2.2], the result is
evident.
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3. Main Results

In this section, we give out several estimations of bounds of det(A o B) for A and B € H,.
Theorem 1. Let A= (a;j) and B = (bij) € Hy,. Then

det[u(A o B)] > en(A, B) + wn(A, B,k), k=1,2,--- ,n.

Proof. From A and B € H,, we have Ao B € H,, so u(Ao B) € M,. It is easy to prove
that
(Ao B) = p[u(A) o u(B)].

Hence
det[p(A o B)] = det{u[u(A) o u(B)]}.

Obviously,
u(A), w(B) € My.

By Lemma 5, we have

det[u(Ao B)] = det{p[u(A) o u(B)]}

(detlp(A)) [ ol + detlp(B)] T o

v

n
[T lail

i=1,ik

detlu(AR)]

— det[u(A)] det[u(B)]] + det[u(A)]

x[[brx| det[p(B(k))] — det[u(B)]] + det[u(B)]
L
Totaqey] ~ L[ sl detlp(AGK))] - detlu(A)]

= en(A,B) +wy(4,B,n).

Theorem 2. Let A = (a;;) and B = (bij) € Hy,, [] aisbii > 0. Then
i=1

det(AoB) > det[u(Ao B)]
> En(A,B) +Wn(Aank)
>

Wo(A4,B), k=12 n.

Proof. From Lemma 2, w, (A, B,k) > 0. Hence, we have the following inequality by Lemma
7
5n(A7 B) + Wn(Aa B, k) > Wn(Aa B)

By [1, Theorem 3] and Theorem 1, we obtain

det(AoB) > det[u(Ao B)]
> 5n(AvB)+Wn(AaB7k)
> Wn(A,B), k=12 ,n
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Theorem 3. Let A = (a;;) and B = (b;;) € Hy,, [] aiibis > 0. Then

=1

det[u(A o B)] > Y, (A, B).

Proof. Similar to the proof of Theorem 1, by Lemma 4, we have

detlu(Ao B)] = det{u[u(A) o u(B)}

n

det[p(Ax)] det
|a11b11|H{ Tl An 1)]|bkk|+det[

_ det[p(Ag)] det[p(By)] }
det[pu(Ap—1)] det[p(By—1]

= Y,.(4,B),

[H(Bk)] |CL |
u(Br—a]

Y

where pu(Ag) and pu(Bg), k= 1,2, ,n, denote the comparison matrix of the k x k successive
principal submatrix of A and B, respectively.

By [1, Theorem 3], Theorem 3, Lemma 6, and Lemma 7, we can obtain the following
theorem, immediately.

Theorem 4. Let A = (a;;) and B = (b;;) € Hy,, [] aibii > 0. Then

i=1
det(AoB) > det[u(Ao B)]
> Y,.(A,B)
> en(A, B) +wn(A, B,n)
> W,(A,B).
Now let us consider the following example.
Example 1. Let
3 1 1 4 1 2
1 1 4 1 2 4

=1

3 -1 -1 4 -1 =2
pA)=1 -1 2 0 |,uB)=( -1 3 0 [,
-1 -1 4 -1 -2 4
12 1 2
AoB= 1 6 O ,
1 2 16

det(A o B) = 1128,

3
W3(A,B) = (H%) det(p(A4)) + (HI%I)
3 k-1 I
x det(u(B)) - [] p——

X
0
=
&
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e3(4, B) + ws(A, B,2) ~ 991 + 41 = 1032,
Y3(A, B) ~ 1062.
It is obviously that

det(Ao B) > Ya(A, B) > e5(A, B) +ws(A, B,2) = Ws(A, B).

4. Remark

Theorem 1 and Theorem 3 are the new results on estimations of bounds of det[u(A o B)]
when A, B are H-matrices. From Lemma 3 and Example 1, we know that Theorem 2 and
Theorem 4 strengthen really Theorem 2 and Theorem 6 of [1], respectively. When A, B € My,
Aand B € Hg, a;; >0, bj; >0, i=1,2,--- n,and u(A) = A, u(B) = B, pu(4x) = Ag,
1(Bg) = Bg. So, Theorem 2 and Theorem 4 are the generalizations of Theorem 1 and Theorem
2 of [2], respectively.
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