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Abstract

The main aim of this paper is to study the superconvergence accuracy analysis of the
famous ACM’s nonconforming finite element for biharmonic equation under anisotropic
meshes. By using some novel approaches and techniques, the optimal anisotropic inter-
polation error and consistency error estimates are obtained. The global error is of order
O(h?). Lastly, some numerical tests are presented to verify the theoretical analysis.
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1. Introduction

There are a lot of studies on the famous ACM’s nonconforming finite element (refer to
[6,8,12]). It is well-known that ACM’s element is often employed as solving biharmonic equation.
But all the results obtained previously are based on usual admissibility conditions of meshes
Jy, , in which regular assumption 6! (or quasi-uniform assumption or inverse assumption) plays
a very important role in the error estimates. That is, denoted by hg,h the diameter of the
finite element K € J;, and Ir{ngaﬁ hk, and by pg the superior diameter of all circles contained in

K respectively, then it is assumed in the classical finite element theory that Z—g <C, % <C.

Here and later in this paper, C' denotes a general positive constant which is independent of Z—If:
and the function under consideration. However, such assumption is no longer valid in the case
of anisotropic meshes. Conversely, anisotropic elements K are characterized by Z—g — oo,where

the limit can be considered as h — 0. Recently, Zenisek!'®14 and Apel "2 published a series
of papers concentrating on the interpolation error estimates of some Lagrange type elements
(conforming elements), but nonconforming methods are hardly treated. As far as we know, it
seems that there are few studies on the nonconforming elements on anisotropic meshes and the
application to the fourth order equation is still an open problem.

On the other hand, the superconvergence study of the finite element methods is one of the
most active research subjects both in theoretical analysis and in practical computations. Many
superconvergence results about conforming finite element methods have been obtained (see
[3,7,9,16]). Do the superconvergence results of conforming elements still hold for those noncon-
forming ones? [4,11,15] studied the superconvergence results of Wilson element, and obtained
the superconvergence estimates of the gradient error at the centers , nodes and midpoints of
edges of the elements. [10] obtained the same superconvergentce results of rotated @)1 element
under square meshes.

Besides the conventional error order of ACM’s element for the fourth order problem is of
O(h)18], [9] and [12] obtained the optimal error estimate of ACM’s element for biharmonic
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equation with uniform rectangular meshes and rectangular meshes respectively. Furthermore,
[9] also get the superclose result of ACM’s element for biharmonic equation.

In this paper, we will consider the superconvergence of ACM’s element for the biharmonic
equation on anisotropic meshes. The interpolation error estimate can be regarded as an ap-
plication of the anisotropic finite element theory proposed by the same authors in [5], and the
consistency error estimate is a generation to anisotropic mesh of the result of [8,9]. The results
obtained herein are helpful in developing a posterior error estimates for the ACM’s element and
then designing some adaptive algorithm for numerical solution for biharmonic equations.

2. The Anisotropic Interpolation Property of ACM’s Element

Let © be a domain of tensor product type,which means that the domain is the union of
rectangles with sides parallel to the coordinate axes. Let Jp, be a rectangular subdivision of
Q without the restrictions of regular assumption and inverse assumption. Let K € I}, be a
rectangle , with the central point (zx,yx), 2k, and 2h, the length of sides parallel to x axis
and y axis respectively, a1(xx — hy, Yyx — hy), a2(2x + ha, yx — hy), az(@x + he, yx + hy) and
as(xx — ha, yx + hy) the four vertices. Let K be a reference element in £ — 7 plane with central
point (O 0), and four vertices a;(—1,—1),az(1,—1),as(1,1) and as(—1,1). Let [ = 67&2),1} =
— — —
a2a3, lg = asa4 and l4 = a4G1. Then there exists an affine mapping F : K —K:

{ x:hwg"'_xKa
y=hyn+yk.

We define the finite element (K, P,3) on K as follows:
P = P3(K) U{ﬁgﬂafﬁg}a S = {01, O1g, D1y, - -+, 04, Dag, an } (1)
where @1‘5 = g—Z(&i),@m = g—Z(fLi),i:].Q,?)A.

It can be easily proved that the interpolation defined above is properly posed, and the
interpolation function may be written as:

4 4
ﬁ:ZN 6nvz+Zsz§nvzg+Zst€n)vm, Vo€ P, (2)
=1 =1 =1
where ) ,
1 i i .
Nl ) = 71+ &&1+mn)(1 + SEEIN_E X 51534
Noi(&,m) = 1+ &P (A +min)(1 — &£)(—&)/8,,i=1,2,3,4,

Nai(&,m) = (L+ &)1+ min)*((L = mim) (—mi) /8,1 = 1,2,3,4,
(£1,82,83,64) = (=1, 1,1, =1), (1, m2,m3,m4) = (—1,1,1,-1).

Then we define the interpolate operator of ACM’s element as

o 4

PH’[A}:Z 1lfﬂvz+ZN2zfﬂUzg+ZN3z€nU1n (3)
i=1 =1 =1

and
IT: HY(K) — Po Fg!, v = (IIo) o F'.
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Lemma 1. The interpolation operator 11 defined by (3) has the anisotropic interpolation prop-
erty, i.e., for |a| =2, we have

|D*(0 = T10) |l 5 < CID¥D|, g, V0 € H*(K). (4)

Proof. 1) if a = (2,0), then D*P = Q,(K), and

8Hv L 92N, 0°Noi . o~ 9Ny )
DTl = (%;U Z 3522 Vie + Z > Zﬁu )G (€M),

where
R 1 N 1 R 3 . 3
g = 1(1 -n), qi2 = 1(1 +n), G13 = 15(1 —1n), q1a = 15(1 +n)

are basis of Q1(K), and

Bii(0) = ag — b1 = A %ds, Br2(0) = U3¢ — V4e = [ g;

Bia() = b1 — g+ drg + dag = — 112—2(6 )d€+gz( 1=—1)+g—2(1’_1)
_ %[_2 _11‘;_2(57_1)61& 12—2(—1,—1)d§+ g—z( 1)dg]
- L3 e [ v

By the same argument, we get that

%%
Bua() = /1[53525’ e~ [ O ie vaciae

So

where Fy; is a function defined over H2(K) :

Fu(o) = [ dds,  Fiold) = / ads, Fiaf) =5 [ X /Q_ (s, —1)ds — / " (s, —1)dslde,

A
Fulo) = [ 11 [ /ﬁ (s, 1)ds | i (s, 1)ds|de.

Employing the trace theorem!®, we have

[Fu(@)] < Cllolly g < Clldlly g [Fro(@)] < Cllolly g < Clldlly g

1
Fis()] < 2 / (s, —1)|ds = 2 / [lds < Cllol, & < Clldlly 4

—1 11

1
Fua(@) <2 [ s, 1)ids =2 [ folds < Clal, ¢ < Clil 4
- 3



638 D.Y. SHI, S.P. MAO AND S.C. CHEN

Then employing the basic anisotropic interpolation theorem!® yields
[D%(0 —o)|o g < CIDY0, g

2) if a=(0,2), we can prove that (11) is still valid similarly.
3) if a« = (1,1), then

BRI 92 Nh s 92 No; 5 9% Ns; 5
oo Z aEan Z acon '« Z ocom M

4 4 4

1 S (i L L€ S em U )
= D) (&mivs — vaig &Um 1 NiDie + 1 E &iiin
=1 =1 =1

352 4 4
+ ] 2:: —&ini0; + Mi0ig + 2:: —&imi0; + gz’{}m)

5

:Z Q31§TI

where
S S AP S SN
431 9’ » 432 1’ g33 1 q34 877 y 435 877 )
are the basis of D(P) = P, (K) U{€2, 1%},
1 1
Bs1(0) = U1 — U2+ 03— s+ 1(615 + Ug¢ — D3¢ — Dag) + Z(ﬁln — D9y — U3y + Vayy)
020 1 020 020 1 020 82@
= s+ ds) — — +
« 860y ™~ 1 aean™ |, aeon™ ~ 1\, aean™ " |, aeon™
25 25
_ 040 dedn — 1 040
& 080n oic 960"
) R ) R ) 82A 82A
Parl®) =g = fag o Dag — Dag = i 55877d8 * 358
and similarly,
9% 32A
; - ds +
Bas 2)  ocon ™t oean ™
02%% 929 52A
b - ds + ds +
Baa(9) « 9€on™ " |, oean™ " |, oean ™
020 020 82A
; - ds + ds +
Bas () « 0600 T [, aeon™ |, oeon™

Using the trace theorem yields

0?0
0&on

. . 1 . . . .
Fu(o) = [ wdgdn— [ ds,[Fu(@)] < Clal, 4 < Clloll 4
K oK

B3i(0) = F3i(=——=), i=1,2,3,4,5,

Fi(id) = — / s + / dds,  |Faa(@)] < Cllily g < Clliblly 2
4 2
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Fug (1) = — /l dods + /l dds,  |Pys(@)] < Clléll, z < Cllbly 4
1 .
Faa(id) = — /K wdédn + /l iods + /l wds,  |Fa()] < Cllall, z < Cllil, x
. :
Fys(i0) = — /K ddgdn + /l dds + /l dds, | Fs(i)] < Cllo], ¢ < Cllilly -
1 :
Therefore, we have

1D%(0 —T10)llo.c < CID0ly ., V0 € HY(K), ()

which follows the proof.
For the later use, we would like to prove the following lemma.
Lemma 2. On the reference K,Vv, € V3, we have

neeenllo i < 3V5l|Onenllo, g 10nennmllo & < 3V5l|onenllo i (6)
lneenllo i < V3lloneello i 10nemllo.x < V3l|0nnllo i (7)
Oneenllo, & < V15l1onenllo o 1Onenmllo & < V15[|10nenllo - (8)

Proof. 'We get from (1) that
@h§77 S Span{17§7£27n7772}' (9)

Supposing Upen = o + 1€ + aé? + asn + 044772, then

lincalls i = | lincolPdcan

- st ittt tar 4 Sagan + Savau + Sasa

- 0 3 1 5 2 3 3 5 4 3 02 3 0t¥4 9 20kq
oy oy 4 4 16 16

= A5+ 5 +ao) +gal+ gal+ pad+ al.

Note that Opecen = 202, Dneen = a1 + 2026, and

[oneeenllly 7 = / |Ongeen|*dédn = 1603,
K

3 N 16
lincenll i = [ e Pdedn = o + o3,

we have
neeenllo ic < 3V5l|0nenllo g 10neenllo & < V15| Onenllo -

On the other hand, since Op¢e € span{l1,£,m,&n}, we may assume Opee = Bo + (1€ + Bon +
G3€n. Then

. . 4 4 4
oneell) 7 = /K |Onee|*dédn = 465 + 5/3% + gﬂ% + 55:?,

) ) 4
oneenlly 7 = /K |neen|*dédn = 455 + 2 65.
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Therefore

oneenllo i < V3lloneello -

By the same argument, we can get

lonennllo i < V3l Onmllo, i |onemmnllo i < 3V5l|Dnenllo. - 1onennllo i < V15l|0nenllo k-

This completes the proof.

3. Anisotropic Interpolation Error Estimate

Now, we consider the following the biharmonic equation
A2y = f, in €,
u = g—z =0, on O9.

The corresponding variational form!® is

Find u € HZ(Q), such that
a(u,v) = f(v),  VYwveH;Q),

where

a(u,v) = /(umvm + 2y Uy + Uyy + vy )dady,  f € L*(Q),
Q

ou
f(v) = / fvdzdy, HE(Q) = {ve H*(Q),v]on = %bg = 0}.
Q
The finite element space is defined as follows
Vi = {'Uh|'[)h = 'Uh|K ol € P, VK € Jh,and
vp(a) = vpe(a) = vpy(a) =0, for any node a € ON}.

The finite element approximation of (11) reads as

Find up € Vp, such that

{ an(up,vn) = f(vn), VY vn € Vi,

where
an(un, vn) = Y / (UhzaVhas + 2UhsyVhay + UnyyVhyy)dTdy.
Keg, K
Define
Illn=C 32 1 B )%
Kedy

then it is easy to see that || - ||, is the norm over Vj, .

Now, we begin to estimate the anisotropic interpolation error .

(13)

Theorem 1. Supposed u € H*(Q)(HE(Q) be the ezact solution of (10). Define the interpo-

lation operator Iy, : HA(Q) N HZ () — Vi, 11|k = Uk, VK € Jy, then

lu = hulln < Ch?fulq.

(14)

Proof. Let a = (a1, 2),|al =2, hx = (hg,hy),h% = kg hy? . Then by Lemma 1, we

have

1D (i — T1a) ||z < ClDY0y g < ChGelhahy) 2 Y B || D Pullo k.

8=2

(15)



On the Anisotropic Accuracy Analysis of ACM’s Nonconforming Finite Element 641

So

1 a 1
lu—=Thulln = () fu—Tgu3 )2 =Y > ID%(u—xu)llf x)?

KeJp KeJp |al=2
—2a PN NN 1
= (), D hx(hahy)ID*(@ — Hxa)|3 z)2
KeJn |al=2

< oY, > WPIDetPu} )3

KeJdy |al=2,|8|=2
2
S Ch |u|4,ﬂa

which completes the proof.

4. Anisotropic Superclose Result and the Optimal Error Estimate

In this section we will focus on obtaining the anisotropic superclose result of ACM’s element.
Firstly, we prove the following lemma.
Lemma 3. Assume u satisfies the same assumption as in theorem 1 and uy be the ACM finite
element solution of (13). Then under anisotropic rectangular meshes, Yvy, € Vi, we have

ah(uh — u,vh) < Oh2|u|4,Q||’Uh||h. (16)
Proof. By Green’s formula, and noticing that v;, € C°(Q), vn|oq = 0, we have

an(up,vr) = flop) = (A%u,vp) KZ] Jox 8(AU)U ds — (V(Au), Vop)
cJn

= 0+ > [xAulopdrdy — 37 faKAu%“;;lds
KeJdy KeJp

- Z fK(urrvhrr + uzyvhry)dxdy - KZ] (fl2 - fl4)(urrvh1 + U/ryvhy)dy
€Jn

Kedy,
+ 2 Ji(UayVhay + wyyvnyy)dody — L[lg le)(uwyvhoc + UyyUhy ) dy
KelJy, KeJp
= an(u,vn) = 35 ([, = J;,) (UazVhe + tzyvny)dy
KeJ h

‘flg le)(ury”hr + UyyVny )dy.
KeJ h

(17)

Let Ij, be the bilinear interpolate operator. Then it is easy to see that Ijvp, is continuous
in Q and Ipvpg|sn = 0. Noticing that vy, is continuous on the sides parallelling to x-axis and
Unylon = 0, we get

Z / / UgzVha T UzyUhy dy =

/ um Vhe — Ihvhx)d (18)
KeJ, Keg, V2 Yl

On fg, I4 of the reference element K , we get that

N 1 .
(n° — 1)dngnn(£1,7) — 5(772 = 1)nOngnmn- (19)

N | =

ﬁh&(ilvn) - fh(f]hé(:tlvn)) =
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So, on a general element K, we have

Vha (K £ ha,y) — In(Vhe (2K + ha,y))

= —5((y = yx)?* = hy)vhayy (@ £ ha,y)) — 3(( = yK)® = hy) (Y = Yi)Vhayyy (20)

= F(y)vha:yy(xK =+ hwa y)) - %F(y)F/(y)vha:yyy

Noticing that vhzzyy = Vhzayyy = 0, then

(/ - )uwa:(vha: - Ihvha:)dy
l2

lg

(,/lz - A)uwI(F(y)thyy - %F(y)Fl(y)vha:yyy)dy
K
Thus,

Z (flz - fl4)(umxvhx + Umyvhy)dy
KelJy

(21)
KEJh KEJh
By the same argument, we get that
2 (flg - fll)(umyvhw + Uyy Uy )d
KeJ,
(22)

=3 fK E(x)uyyyyVhezdedy + % > fK E2(2)UgyyyVhzzaydrdy.
KEJn KEJn

By (17)-(22) and (6), we can obtain that

ap (uh —u, ’Uh) = Z fK F(y)uwa:a:a:vhyydxdy + Z fK E(x)uyyy’l/vhwwdxdy
KeJy KeJn

- % > fK FQ(y)urmyUhryyydxdy_% > fKEQ(m)uryyyvhrrrydxdy
KeJy, KeJy

IN

C 3 (Melularlvnla,x + h3|ula ke |vnl2,x
KeJdy

+  hylulax |Vheyyyllo.x + 7 |ula x| Vnzeeyllo. )

< C Y (hilulaxlvnlz.x + P3lulaxlvnl2
KeJdy

+  heulaxl|vheyllox + P2ula k[Vheyllox) < CR?ula.gllvnlls-
(23)
The proof is completed.
Based on Lemma 3, it is not hard to get the following superclose result.
Theorem 2. Suppose u satisfies the same assumption as in Theorem 1. Then on anisotropic
meshes, we have

||Hhu — uh||h < Ch2|u|4,g. (24)
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Proof. Tt is easy to prove that!'?):
IThu — up |7 < an(Mpu — up, Tpu — up). (25)
On the other hand,
anp(pu — up, Tpu — up) = ap(Tpu — v, Hpu — uwp) + ap(u — up, Hpu — up). (26)
Noticing that IIpu — up € Vj, by Lemma 3 , we have
ap(Mpu — u, Mpu — up) < C’h2|u|4,g||1_[hu — up||n- (27)
By Theorem 1,

ap(u — up, Hpu —up) < Ch2|u|4,g|\l_[hu—uh|\h. (28)

Then (24) follows from (25)-(28).

Furthermore, based on the above Theorem 1 and Theorem 2, we can get the following
optimal anisotropic energy norm error estimate of ACM’s element.
Theorem 3. Suppose u satisfies the same assumption as in Theorem 1. Then on anisotropic
meshes we have

lu— upl[n < ChZ o ltls o (29)

Proof. By triangle inequality,
lu = unl[n < [lu—Tpul[p + [ Thu — w5 (30)
Then by Theorem 1 and Theorem 2, the proof is completed.

5. Numerical Examples

In order to investigate the numerical behavior of anisotropic ACM’s element, we still consider
the biharmonic equation (10) with f(z,y) = 87 cos(27z) cos(2mry) — 87 cos(2mz)
sin?(my) — 87 cos(2my) sin’(7x) € L?(Q), and Q = (—1,1) x (=1, 1). It can be verified that the
exact solution of problem (10) is u(x,y) = sin®(7z)sin®(7y). Denote the rectangular meshes
of Q by Ju, h = Ir(neaﬁ hig, p = Ir(neaﬁ oK, hi = diam(K), pg = n}é}xdiam(M), and M is an

arbitrary circle contained in K. Let uj, be the the ACM’s element solution of problem (13).

Figure 1: the anisotropic meshes of Q for n = 16(left: mesh 1, right: mesh 2)
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We take the following two types of mesh on Q = [0,1]%: mesh 1 and mesh 2 ( see Figure 1
). To obtain mesh 1, we subdivide the boundary of £ which parallel to x-axis into m parts by
the following m + 1 points: sin(:%)/2, i = 0,1,..., %, (1 —cos(:%))/2, i = & +1,..., m and

...77’ .
n intervals along y — axis by the n + 1 points: sin(r)/2, i =0,1,..., §, (1 —cos(*X))/2, i =

5 +1,..., n. For mesh 2, we subdivide the boundary of {2 ,which parallel to x-axis, into m parts
by the following m+1 points: (1—cos(X))/2, i =0,1,..., 2, (14+sin(Z—%2))/2, i = Z+1,...,m

and n intervals along y — axis by the n+1 points: (1—cos(X))/2, i =0,1,..., %, (1+sin(*Z —
/2, =241,

The numerical results are listed in Table 1 and Table 2. Here, a denotes the convergence
order.

Table 1. The errors ||[IInu — up||n and ||u — up||n (mesh 1)

mxXn 8 x8 16 x 16 32 x 32 64 x 64 128 x 128
ITThu — up||n 1.5598175379 | 0.4159846531 | 0.1054176569 | 0.0264402926 | 0.0066234110
o \ 1.9067749977 | 1.9804137945 | 1.99513064919 | 1.9979852361
[lu — un||n 2.0730948783 | 0.5518639451 | 0.1398930088 | 0.0350916579 | 0.0087871245
o \ 1.9094015360 | 1.9799888134 | 1.9951238632 1.9976650476
Ir{né]x hk 0.270598 0.137950 0.069309 0.034696 0.017353
h
ax {hk/pr} 7.109732 14.358751 28.786978 57.608674 115.234703
h
Inax {h/hK} 5.027339 10.53170 20.355408 40.735484 81.483240
h
Table 2. The errors |IIu — up||p and ||u — upl|p (mesh 2)
mXxn 8 x 8 16 x 16 32 x 32 64 x 64 128 x 128
[TTpw — upllp, | 1.4101900778 | 0.3760484456 | 0.0953962667 | 0.0239339392 | 0.0059887510
o \ 1.9068992138 | 1.9789137840 | 1.9948749542 | 1.9987307787
[lw — wnl|n 2.0227487338 | 0.5348153631 | 0.1354684092 | 0.0339762842 | 0.0085008748
o \ 1.9192042351 | 1.9810844660 | 1.9953565598 | 1.9988447428
Ir(nea}( hi 0.270598 0.137950 0.069309 0.034696 0.017353
h
}{neaf {hk/pK} 7.109732 14.358751 28.786978 97.608674 115.234703
h
nax {h/hK} 5.027339 10.53170 20.355408 40.735484 81.483240
h

From the above two tables, we can see that with the increasing of the number of meshes,

max {hk/px} and max {h/hk} increase sharply. However, the order of the errors ||IIpu—up||n
€Jn €Jn

and ||u — up||p are approximating to 2, which show that the regularity assumption and inverse
assumption on the meshes are not necessary conditions for the optimal order of the convergence
of ACM’s element for biharmonic equation. In fact, we can get sharper meshes than those in the
above two tables as the following two tables, but the optimal orders of the errors are obtained
too.
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Table 3. The errors ||IIyu — up||n and |Ju — upll; (mesh 1)

mXn 8 x 48 16 x 96 32 x 192 64 x 384
ITpu — upllp, | 0.7860449921 | 0.1928776907 | 0.0477986851 | 0.0119093725
« \ 2.0269255638 | 2.0125789642 | 2.0048735291
[lw — wpl|n 1.0918419990 | 0.2696962329 | 0.0671754592 | 0.0167830123
« \ 2.0173568231 | 2.0053291873 | 2.0009325938
}(nEaJx hi 0.194116 0.098907 0.049687 0.024873
h
Ir{nga} {hk/pK} 252.768191 515.302439 1035.522221 2073.507418
h
Ir{nga} {h/hk} 5.098217 10.290977 20.629149 41.281885
h

Table 4. The errors ||[ITpu — up||n and ||u — up||p (mesh 2)

645

mxn 8 x 48 16 x 96 32 x 192 64 x 384
IMIpu — upllp | 0.6129853474 | 0.1439701267 | 0.0352935480 | 0.0087788713
o \ 2.0900831223 | 2.0282931328 | 2.0072972775
llu — unln 0.9927046569 | 0.2470434794 | 0.0616648662 | 0.0154113710
o \ 2.0065996647 | 2.0022442341 | 2.0004534721
max hk 0.194116 0.098907 0.049687 0.024873
h
max {hk/pK} 252.768191 515.302439 1035.522221 | 2073.507418
h
max {h/hK} 5.098217 10.290977 20.629149 41.281885
h
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