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Abstract

This work is concerned with mathematical modeling, analysis, and computation of
optics and electromagnetics, motivated particularly by optical and microwave applications.
The main technical focus is on Maxwell’s equations in complex linear and nonlinear media.
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1. Micro-optics

Micro diffractive optics is a fundamental and vigorously growing technology which contin-
ues to be a source of novel optical devices. Significant recent technology developments of high
precision micromachining techniques have permitted the creation of gratings (periodic struc-
tures) and other diffractive structures with tiny features. Current and potential application
areas include corrective lenses, microsensors, optical storage systems, optical computing and
communications components, and integrated opto-electronic semiconductor devices. Because of
the small structural features, light propagation in micro-optical structures is generally governed
by diffraction. In order to accurately predict the energy distributions of an incident field in a
given structure, the numerical solution of full Maxwell’s equations is required. Computational
models also allow the exciting possibility of obtaining completely new structures through the
solution of optimal design problems. General discussion and recent advances on the diffraction
problem may be found in [32], [19], [16] and references therein.

1.1. Computation and Analysis of the Diffraction Problem

The diffraction problem is to predict the electromagnetic field distributions when a time-
harmonic plane wave is incident on a given grating or periodic structure. Because of the
small structural features, wave propagation is dominated by the system of Maxwell’s equations.
Here, the diffractive structure is periodic either in one direction – linear grating (2-D model)
or in two orthogonal directions – biperiodic structure (3-D model). In the two-dimensional
case, convergence analysis for the finite element methods in TE (transverse electric) and TM
(transverse magnetic) polarization was first carried out in Bao [11] and [12]. In both cases,
existence and uniqueness for the continuous and discreet model problems were established. In
general, to model the diffraction of biperiodic diffractive structures, i.e., a three-dimensional
geometry, it is essential to study Maxwell’s equations in vector form. In Bao and Dobson [18],
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a new variational formulation for the diffraction problem in biperiodic structures (3D) was
introduced. Using the formulation, we established the well-posedness of the weak solutions (the
magnetic fields) in H1. In contrast, the classical approach only gives rise to the existence and
uniqueness of H(curl) solutions. This presents a severe difficulty in numerical analysis since
the imbedding from H(curl) to L2 is not compact. It was established in [27] the well-posedness
of the discretized problem. Error estimates for the variational (finite element) approximation
of the model problem was obtained. These convergence estimates are quite general since little
smoothness is assumed on the coefficients and the geometry.

A related project is on least-squares finite element analysis of diffraction problems. In the
two-dimensional case, a least-squares finite element method was first proposed in [26] that
incorporates the jump conditions at interfaces into the objective functional. Optimal error
estimates were obtained. The results indicate that significantly better error estimates than
standard finite element methods may be obtained for sufficiently smooth interfaces. More
recently, for the two-dimensional diffraction problem, Chen and Wu [30] have developed a new
approach by combining the adaptive finite element method and a perfectly matched layer (PML)
boundary condition.

1.2. Chiral Gratings

Chiral gratings provide an exciting combination of the medium and structure, which gives
rise to new features and applications. For instance, chiral gratings are capable of converting a
linearly polarized incident field into two nearly circularly polarize diffracted modes in different
directions. Mathematically, in a chiral medium, the Maxwell equations remain the same form.
However, the constitutive equations are now coupled. Therefore, the model equations are
necessarily of vector form and much more complicated than standard Maxwell’s equations. A
variational approach was developed by Ammari and Bao [1]. We established the existence
and uniqueness of weak solutions by a combination of a variational approach and the Hodge
decomposition of the electric field.

1.3. Scattering by a Perturbed Periodic Structure

Consider a time-harmonic electromagnetic plane wave incident on a periodic (grating) struc-
ture. An inhomogeneous (subwavelength) object is placed inside the periodic structure. The
scattering problem is to study the electromagnetic field distributions. The problem arises in the
study of near-field optics and has many physical and biological applications. In [2], we devel-
oped an integral representation approach to solve the model problem. It was shown particularly
that the perturbation due to the object decays exponentially along the periodic direction of the
structure, provided that no surface waves occur. Based on the approach, a general solution
method may be introduced. More recently, the approach has been generalized to study the
three dimensional Maxwell equation model [4].

1.4. Inverse Diffraction and Optimal Design Problems

Consider scattering of electromagnetic waves by a doubly periodic structure. Above the
structure, the medium is assumed to be homogeneous with a constant dielectric coefficient.
The medium is a perfect conductor below the structure. An inverse problem arises and may be
described as follows [10]. For a given incident plane wave, the tangential electric field is measured
away from the structure. To what extent can one determine the location of the periodic structure
that separates the dielectric medium from the conductor? This inverse problem which arises
naturally in the optimal design of gratings has received much attention recently. However,
most of the progress has been made only in the 2-D or scalar case where the structure and
material are assumed to be invariant in one direction. In this 2-D setting, Friedman and Bao
obtained by using a variational method and index theory in [21] the first set of stability results
for a large class of inverse diffraction problems. The result indicates that for small h, if the
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boundary measurements of a perturbed problem are O(h) close to the scattered fields in a
suitable norm, then the grating structure of the perturbed problem is O(h) close to the original
grating structure measured in the Hausdorff distance. More recently, Bao and Zhou [28] made
some important progress in characterizing uniqueness and stability in the general biperiodic
case, where the model PDE is three dimensional and in vector form. The main idea was to
formulate the problem as an estimation problem of the first eigenvalue for the Laplacian and
then use the fact that the eigenspaces are finite dimensional. In particular, our stability result
leads to a nontrivial extension of a theorem proved in [21].

Given the incident field, the optimal design problem is to determine a periodic structure
which gives rise to some specified diffraction patterns away from the structure. The problem
can be posed as a nonlinear least-squares problem. Difficulties arise since the scattering pattern
depends on the interface in a very implicit and nonlinear fashion and in general the set over
which the function is minimized is neither convex nor closed. Recently, Bao and Bonnetier
[13] studied the design problem in TM (transverse magnetic) polarization by developing a
homogenization approach. The main idea is to allow the grating profiles to be highly oscillating
and to use relaxed formulation [31] of the optimization problem. In the present case, the relaxed
formulation involves materials, the effective dielectric properties of which need be determined.
When considering optimal design problems involving diffraction gratings, it is useful to have
some a priori characterization of the range of possible reflectances one can achieve for given
material parameters. More recently, we have also examined [20] the limiting case of a rapidly
oscillating dielectric grating and show that such gratings can have reflectance no greater than
that of a flat interface, regardless of the shape of the grating interface.

2. Nonlinear Diffractive Optics

A remarkable application of nonlinear optics is to generate powerful coherent radiation
at a frequency that is twice that of available lasers (so called second-harmonic generation)
[34]. Nonlinear optics also has applications in laser technology, spectroscopy, optical switching,
parametric amplifiers and oscillators, optical computing, and communications. Our focus is on
modeling and enhancements of the most useful second order nonlinear optical effects, especially
second harmonic generation (SHG). In general, nonlinear optical effects are so weak that the
observation of nonlinear phenomena in the optical region can only be made by using high
intensity lasers. Recently, it has been found experimentally by physicists and engineers that
diffraction gratings can greatly enhance nonlinear optical effects [33] .

2.1. Well-posedness of the Model

The electromagnetic fields in a nonlinear medium are governed by the following Maxwell
equations:

∇× E = iωH, ∇ · H = 0 ,

∇× H = −iω(E + 4πP ), ∇ · E = −4π∇ · P,

where the new term P is the polarization vector. In general, P is a nonlinear function of
E. The simplest nonlinear optical wave interaction deals with second harmonic generation, a
special case of the second-order nonlinear optical effects. When a pumping wave with frequency
ω1 = ω is incident on a nonlinear medium, second harmonic generation leads to two wave fields
E(x, ω1) and E(x, ω2 = ω1+ω1). Note that new frequency components are present in the above
expression, which is the most striking difference between nonlinear and linear optics. In this
case,

P (ω1) = χ(1)(ω1) · E(x, ω1) + χ(2)(ω1)(ω1 = ω2 − ω1) : E(x, ω1)E(x, ω2) ,

P (ω2) = χ(1)(ω2) · E(x, ω2) + χ(2)(ω2)(ω2 = ω1 + ω1) : E(x, ω1)E(x, ω1) ,
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where χ(2) is the second order nonlinear susceptibility tensor which measures the nonlinearity
of the medium, and χ(2) : E E is a vector whose i-th component is

∑
j,k χ

(2)
ijkEjEk.

Little is known mathematically on the nonlinear problem. In [17], we studied second har-
monic generation in periodic structures. The model, derived from a general nonlinear system of
time harmonic Maxwell’s equations, was shown to have a unique solution for all but a discrete
number of frequencies. The problem was solved numerically by combining a method of finite
elements and a fixed-point iteration scheme. Our numerical experiments confirmed that it is
possible to use gratings to enhance nonlinear optical effects. Furthermore, we analyzed [14]
another model that deals with nonlinear optical materials with more practical group symme-
try properties than in [17]. The PDE is a coupled system of Maxwell’s equations derived by
the linearization of the nonlinear model. Using a pair of transparent boundary conditions, we
reformulated the problem in a bounded domain. A technical difficulty for this model is the
appearance of jumps in the leading coefficients of the PDE. By using a variational technique,
we established well-posedness and regularity of the system.

Another recent project is concerned with the well-posedness of the mathematical model
for second harmonic generation of nonlinear optics in biperiodic structures. The governing
equation is a system of nonlinear Maxwell’s equations. The well-posedness of the model has
been studied by Bao, Minut, and Zhou [23]. A crucial step is to establish interior and global
Lp-type estimates for the solutions of Maxwell’s equations with source term in a domain filled
with two different materials separated by an interface. The usual elliptic estimates cannot
be applied directly, due to the singularity of the dielectric permittivity. A special curl-div
decomposition is introduced for the electric field to reduce the problem to an elliptic equation
in divergence form with jump coefficients. The potential analysis and the jump condition lead
to the interior Lp estimates which are superior to the straightforward Nash-Moser estimates.
The reduction procedure is expected to be useful for future numerical simulation. Because of
the natural physical requirements, the boundary condition is nonlocal and involves a first order
pseudo differential operator, the boundary estimate is established by novel maximum principles
and Riesz convexity arguments.

2.2. Thin Coatings

In many applications, diffractive structures are coated with one or more thin dielectric
layers to enhance diffraction efficiency and, in the case of metallic structures, to prevent the
metal surface from tarnishing. Another application of great interest is the antireflective coating.
Coated structures present certain difficulties. The coatings are usually very thin in contrast to
the structure features (wavelength, period, height of the grating). Thus, the diffraction problem
involves at least two scales. A direct numerical solution of the multiple scale problem is difficult
with our current finite element method due to the scale of computation. The standard finite
element method attempts to resolve the small scale features of the problem, which is very
expensive in terms of CPU time and computer memory. Thin nonlinear coatings are also of
great interest. The effect of thin coatings of nonlinear material on gratings structures in second
harmonic generation has been studied recently by Ammari, Bao, and Hamdache [6]. Asymptotic
expansions of the fields inside a thin nonlinear coating are performed. The convergence of these
formal expansions is established. Our asymptotic analysis reveals the physical nature of this
nonlinear problem. It also provides an effective method for overcoming the computational
difficulties that arise in thin nonlinear coatings.

2.3. Optimal Design

The optimal design of nonlinear gratings arises in the study of surface enhanced nonlinear
optical effects of second harmonic generation. The problem has been studied in [24] by an opti-
mization approach. In order to apply certain gradient based optimization methods, an explicit
formula for the partial derivatives of the Rayleigh coefficients with respect to the parameters of
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the grating profile has been derived. Using the formula, numerical results have been obtained
on an optimal design problem of nonlinear binary gratings.

3. Electromagnetics

Significant progress has been made in a diverse set of research topics with industrial, medical,
and millitary applications.

3.1. Electromagnetic Cavities

As a measure of the detectability of a target by radar systems, the radar cross section (RCS)
of the target has always been an important subject of study in electromagnetics. Mathematical
and computational methods to accurately predict the RCS of complex objects such as aircraft
are of great interest to designers. Of particular importance is the prediction of the RCS of
cavities due to its dominance to the target’s overall RCS. Examples of cavities include jet
engine inlet ducts, exhaust nozzles, and cavity-backed antennas.

Consider a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped
open cavity embedded in an infinite ground plane. The ground plane and the walls of the
open cavity are perfect electric conductors, and the interior of the open cavity is filled with a
nonmagnetic material which may be inhomogeneous. The half-space above the ground plane
is filled by free-space characterized by its permittivity ε0 and permeability µ0. An important
project is to study the propagation of the scattered waves from the cavity, and hence its RCS.

There are a large number of articles in the engineering literature available on computation
and design of cavities. However, little is known about the analysis of the problem. In the
general two-dimensional setting, we have recently established the well-posedness of the scatter-
ing problem in [8] by a variational approach, and in [7] by an integral equation method. The
analysis of the three-dimensional scattering problem from a cavity has been conducted in [9] by
extending the variational approach of [8] to solve the scattering problem. However, the situa-
tion here is more difficult: Because of the three dimensional geometry, we must study directly
the vector form of Maxwell’s equations. A Hodge decomposition is needed here due to a lack of
compactness of the solution functional space. In comparison, the compactness is trivial in the
two-dimensional case. We are also interested in the optimal design of cavities with desirable
features.

3.2. Helmholtz and Maxwell’s Equations with High Wavenumbers

It is well known that wave propagation problems for the Helmholtz equations involving
high wavenumbers are notoriously difficult to solve numerically. The very short wave problem
governed by the Helmholtz equations has recently been recognized by O. C. Zienkiewitz as one
of the remaining unsolved problems for modern numerical approaches. As observed recently by
I. Babuska, J. B. Keller, and many others, the existing approaches lead to some numerically
non-robust behavior, known as “the pollution effect”.

Along with G. W. Wei and S. Zhao, we have investigated [25] the pollution effect, and explore
the feasibility of a local spectral method, the discrete singular convolution (DSC) algorithm for
solving the Helmholtz equation with high wavenumbers. The algorithm is designed by using
a novel regularized Shannon’s sampling theorem. The Fourier analysis is employed to study
the dispersive error of the DSC algorithm. Our analysis of dispersive errors indicates that
the DSC algorithm yields a dispersion vanishing scheme. The dispersion analysis is further
confirmed by the numerical results. For one and higher-dimensional Helmholtz equations, the
DSC algorithm is shown to be an essentially pollution free scheme. Furthermore, for large scale
computation, the grid density of the DSC algorithm can be close to the optimal two grid points
per wavelength. The present study reveals that the DSC algorithm is accurate and efficient for
solving the Helmholtz equation with high wavenumbers.
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3.3. Inverse Source Problems in Brain Imaging

Understanding the human brain, the most complex organized structure known to exist,
presents a great challenge to the scientific community. The project is devoted to the study
of an inverse source problem that arises in determining locations of epileptic foci in the living
human brain. At present, the only way to cure a patient with an epileptic focus permanently
is to remove a small part of the brain surgically or by use of gamma-rays. Therefore, accurate
location of the epileptic focus is of great clinical interest. The data is measured via magne-
toencephalography (MEG) – a noninvasive technique for investigating neuronal activity of the
living human brain.

A new computational method has been developed for solving the inverse problem in [5]. Our
main idea is to conduct a low frequency asymptotic analysis of the fields for Maxwell’s equations.
Our method is constructive and computationally attractive. In fact, the method only requires
a small number of solutions to the Maxwell equations. To the best of our knowledge, all of the
existing modeling methods are based on least-squares type optimization procedures which are
iterative (non-constructive) and often require solutions of the model equations many times. A
crucial step of our method is to construct special test functions which relate the source locations
and direction vectors to the boundary measurements of the magnetic fields. Such a construction
relies on a careful study of the asymptotic behavior of Maxwell’s equations. The Maxwell
equations may be solved by a finite element approach developed in our previous research on the
electromagnetic scattering. Our preliminary analysis and computational experiments indicate
that the method is accurate and robust.

3.4. Inverse Medium Problems

Recently, we have obtained significant results in the development of solution methods for
inverse scattering problems motivated by optimal design of electromagnetic cavities and optical
devices. Other applications of inverse scattering problems include non-destructive testing, opti-
cal measurements, ultrasound tomography, seismic imaging, submarine detection, and medical
imaging.

In Bao and Liu [22], we have introduced a general regularized homotopy continuation method
is for numerical solution of nonlinear inverse problems. A major difficulty for solving these in-
verse problems by an optimization method is the ill-posedness due to the presence of many local
minima. Classic iterative methods, such as Gauss-Newton or Levenberg-Marquardt algorithms,
offer fast local convergence but might not be able to compute the global minimum. Based on a
natural concept of multi-experimental data, a regularized homotopy continuation method is con-
structed to compute the global minimum. As the experimental index t increases continuously,
the global minimizer can be computed continuously by using local optimization methods. By
discretizing the continuous homotopy method, various recursive linearization algorithms may
be developed. These algorithms can be applied to numerical solution of an inverse medium
scattering problem which reconstructs the refractive index of an inhomogeneous medium from
limited aperture measurements of the far field pattern of the scattered fields. It is assumed
that the data is measured at multiple frequencies. Our results in particular provide a general
framework for the work of Chen [29] on recursive linearization of inverse medium problems.

Another interesting problem is to solve the inverse scattering problems when the data are
only measured along one or a few directions, the limited aperture case. The model is obviously
more practical. The inverse scattering problem with limited aperture is also challenging, since
without full aperture measurements, the ill-posedness and nonlinearity of the inverse problem
become more severe. An efficient regularized iterative linearization method (recursive lineriza-
tion with respect to the wave number) has been developed for solving the inverse problem. The
convergence of the iterative method has been illustrated through numerical examples.

Results on regularity and stability of the inverse medium problem were proved by Bao,



154 G. BAO

Ma, and Chen [15] in the two-dimensional case. Initial progress on the regularity and stability
analysis of the inverse medium problem in electromagnetics has been made in Ammari and
Bao [3] where the forward problem is governed by the Maxwell equations. A crucial step is to
establish interior estimates for the non-elliptic Maxwell equations.
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