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Abstract

Typical solution methods for solving mixed complementarity problems either generate
feasible iterates but have to solve relatively complicated subproblems such as quadratic
programs or linear complementarity problems, or (those methods) have relatively simple
subproblems such as system of linear equations but possibly generate infeasible iterates.
In this paper, we propose a new Newton-type method for solving monotone mixed com-
plementarity problems, which ensures to generate feasible iterates, and only has to solve a
system of well-conditioned linear equations with reduced dimension per iteration. Without
any regularity assumption, we prove that the whole sequence of iterates converges to a so-
lution of the problem (truly globally convergent). Furthermore, under suitable conditions,
the local superlinear rate of convergence is also established.
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1. Introduction

We consider the mixed complementarity problem, MCP for simplicity: Find a vector z* €
[I,u], such that

z; =1; = Fiz")>0,
z; € (li,u;) = Fi(2*) =0, (1)
i =u; = F;(z*)<0,

where I; € RU {—o0} and u; € RU {+o0} are given lower and upper bounds with I; < wu;,
i=1,---,n, F is a continuously differentiable mapping from the rectangle [I,u] to R™. The
MCP (1) can also be written as the closed form of the variational inequality problem of finding
a vector z* € [I,u], such that

(x—2*)TF(z*) >0, Vzell,ul. (2)

When [; =0 and u; = oo for all ¢ = 1,---,n, MCP reduces to the nonlinear complementarity
problem of finding a vector z* € R™, such that

" >0, F(z*) >0, z* F(z*) =0,

and if [; = —oc0 and u; = o0 for all ¢ = 1,---,n, MCP reduces to the nonlinear system of
equations
F(z) =0.
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The mixed complementarity problem and the nonlinear complementarity problem have a num-
ber of important applications in operations research, engineering problems and economics equi-
librium problems, see the survey papers [6, 8, 10] for detailed examples and the references
therein.
There are many iterative methods for solving the mixed complementarity problem [2, 7, 11,
12, 13, 14, 15, 19, 30]. While the projection-type methods [11, 12, 13, 14, 15] are attractive
for its simplicity and global convergence, the most successful and widely used are Newton-type
methods. A class of Newton-type methods are Josephy-Newton methods based on solving a
series of linear complementarity problems [3, 10, 17, 30]. Given a point z*, the Josephy-Newton
methods generate the next iterate z*+! by solving the following linear mixed complementarity
problem
Find z € [I,u], such that F*(z)"(z —z) >0, Vz € [I,u], (3)

where F*(.) is the first order approximation of F' at x*,
F¥(z) = F(z*) + F (a")(z — 2*) (4)

assuming F'(+) is differentiable.
Another class of Newton-type method are equation-based reformulation for MCP [18, 22,
32, 33, 36]. At each iteration, this type of methods solves a linear system of equations

Hpd* = —®(zF) (5)
to find the search direction d*, where ® is a semismooth function with the property that
x solves MCP (1) <= ®(z) =0,

and Hy, € 0®(z*) is an element of the generalized Jacobian of ® at z* in the Clarke’s sense [4].
Note that at each iteration, the equation-based Newton-type methods solve a linear system of
equations (5), which is structurally easier to solve than linear mixed complementarity problem
(3). Because of the extreme efficiency in practice, this class of Newton-type methods, especially
those methods based on Fisher-Burmeister function are recently studied extensively [7, 18, 21,
22, 36, 38]. However, the generated sequence {z*} is not necessarily contained in the feasible
set [I,u]. At the same time, the feasibility issue for MCP (1) is always important because some
real-life applications such as in engineering design and economics [16, 29] require the data only
defined in the feasible region. Hence, as mentioned in [21], “it would be extremely nice to have
an algorithm that, on the one hand, generates only feasible iterates and, on the other hand, has
to solve only simple subproblems”. Nevertheless, there are currently only a few methods with
these two properties available [21, 24, 38, 39].

A common difficulty with using the Newton-type method by solving (3) or (5) is that, while
possessing fast local convergence property, there are serious problems with ensuring global
convergence. To enlarge the domain of convergence of the Newton method, many globalization
strategy for (3), (5) are proposed. The most natural globalization strategy is a line search
procedure in the obtained Newton direction aimed at decreasing the value of some valid merit
functions. However, these strategies can only ensure that the generated sequence converges to
a stationary point of the merit function, which is a solution of MCP under some restrictive
assumptions. These assumptions imply the boundedness of level sets of the merit function and
possible uniqueness of the solution. Moreover, some of the merit functions, such as those based
on the natural residual [27] and the normal map [34] are nondifferentiable, which make the line
search difficult to implement. The differentiable merit functions, such as the gap function [23],
the regularized gap function [9] and the D-gap function [30], are designed for special variational
inequality problems and/or complementarity problems, and thus each of these globalizations
has certain drawbacks. Recently, Solodov and Svaiter [35] proposed a truly globally convergent
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Newton-type method for solving monotone nonlinear complementarity problems. They do
not use any merit function, but use an additional projection step to globalize the domain of
convergence. The method is truly convergent in the sense that the subproblems are always
solvable, and the whole sequence of iterates converges to a solution of the problem without
any regularity assumptions. Under natural assumptions, the method is locally superlinearly
convergent.

In this paper, by combining the method of Solodov and Svaiter [35] and the equation-based
feasible Newton-type method of Kanzow [21], we propose a new Newton-type method for the
monotone mixed complementarity problem. Our method thus, has all the favorable properties
of these methods. Specially,

a). It is well defined for an arbitrary monotone mixed complementarity problem;

b). It is truly globally convergent to a solution of the problem without any regularity assump-
tion;

c). It has to solve just one linear system of equations at each iteration. This system is actually
of reduced dimension;

d). Under some natural conditions, it is locally superlinearly convergent;

e). All iterates of the method remain feasible.

We note that most recently some efforts have been made on those methods based on Fisher-
Burmeister NCP function in weakening the conditions guaranteeing convergence. Some meth-
ods, for example, the methods in [37, 31], only require the solution set is bounded and F is
Py function. The later is weaker than the property of monotonicity, required in the proposed
method. But even for monotone MCPs, these methods cannot ensure that the whole generated
sequence converges to a solution.

Some words about our notation are in order. The Jacobian of a continuous differentiable
function G : RP — RP at a point z is denoted by G (z), whereas VG(z) is the transposed
Jacobian. If M € RP*P, M = (myj;), is any given matrix and I,J C {1,2,---,p} are two
subsets of indices, then My denote the |I| x |J| submatrix with elements m;;, 3 € I, j € J.

2. Preliminaries

In this section, we summarize some related definitions and properties that will be used in
the following discussion.
Let [I,u] be a rectangle in R™. For a vector z € R™, let [z]* denote the orthogonal projection
of z to [I,u]. Then,
li, ifx; <y,
[:L‘]j_ = x;, ifx; € (li,ui),

Since the solution set of MCP (1) is invariant under multiplication F' by some positive scalar
B, it follows from ([1], p. 267) that
Lemma 2.1. z* is a solution of the MCP (1) if and only if

r* =[z* — BF(z")]", VB>0.

Let e(x, 8) denote the residue function associated with mapping F, i.e.,

e(z,p) =z — [z — BF(x)]". (6)
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Then, solving MCP (1) is thus, equivalent to finding a vector Z € [I,u], such that
e(z,8) =0

for any positive constant 3.
A basic property of the projection mapping [-]* is

(¢ —[2]") T (y — [¢]") <0, Yo € R, Vy € [I, ], (7)
which, together with the Cauchy-Schwarz inequality, means that [-]T is nonexpansive, i.e.,
21" = Il < llz = yll, Yo,y € R™.

We need the following definitions concerning the functions.
Definition 2.1. Let  be a nonempty closed convex subset of R™. A mapping F: Q@ — R"™ is
said to be

a). monotone on Q, if
(F(x) = F(y))"(x —y) >0, Yo,y € O

b). strictly monotone, if the above inequality holds strictly whenever x # y;

c). strongly monotone, if there is a constant a > 0, such that

(F(z) = F(y) " (z —y) > allz — y|?, Yo,y € Q. (8)

Here, || - || denotes the Euclidean norm in R™. It can be shown [25] that, when F' is
continuously differentiable, an necessary and sufficient condition for (8) is

d"VF(z)d > o||d|*, V2 € Q, Vde R".

The following error bound [28] result will play a crucial role in establishing the superlinear
rate of convergence of our algorithm.
Lemma 2.2. Suppose that T is a solution of MCP (1) where VF(Z) is positive definite, and
p > 0 is a constant, then there exist constants 81 > 0 and 62 > 0, and a neighborhood B of %,
such that
lle(a, p~")I| < llz — 7| < Ballew, )l

for all z € B.

3. The Algorithm

As we described in Introduction, our method can be viewed as a combination of the Solodov
and Svaiter’s method [35] and some equation-based Newton-type methods. That is, we solve a
system of linear equations (with reduced dimension) to obtain a Newton-type direction, and use
a projection step to force the global convergence. However, our computation of the steplength
is different from that of Solodov and Svaiter.

We now formally state our method as follows.

Algorithm 3.1. (A truly globally convergent Newton-type method.)

Step 0 (Initialization)
Choose 2° € [l,u], o € (0,1), B € (0,1),¢>0,6>0,e>0, p>0 and set k := 0.

Step 1 (Termination criterion)
If lle(ah, )| < e, STOP.
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Step

Step

Step

Step

Step

2 (Active set strategy)
Let

8, := min {6,0 ||e(x’“,p1)||} ;
and define

A = {i|zh —1; <0 oru; — 2F < 6},
T : = {1,2,---,n}\ A

3 (Subproblem solution)

Choose a positive semidefinite matriz G¥ € R™ "™ and a number py, > 0, and compute a
vector d* € R™ in the following way: For i € Ay, set

dk:{ Li—xf if li—zf <9

k>
wi —ap i wi—af <O,

i k
then solve the linear system
(G, 1, + mD)d = —F(a*)z, — GF, 4, dY, (9)
in order to get the components d¥ for i € Ty,.

4 (Acceptance criterion for Newton-type search direction)
Set zF = xF + d*. If 2% € [I,u] and satisfies

Z=u; = Ff(EF) <o,
and
|1F (%) — F(a¥) — G*d¥|| < opglld®|), (11)
then set
v = F(2%) = F(a*) — G*d* — ud?, (12)
o, += max{1.0/pug, v (=" — 2%/ oe 12} (13)

and go to Step 6, else go to Step 5.

5 (Extragradient search direction)

Set ¢ = [z* — p~ F(2F)]*, and S* := 7% — 2*, and find t, = B™ with my, being the
smallest nonnegative integer m, such that

—F(zF +1,8%)TS* > ap||S*||%. (14)
Then, set z* := % +1,S*, vy, := F(2*) and compute
ag = vy (z* = 25)/||ve]*.

6 (Projection step)

Compute
2* L = 2P — agop)] T, (15)

set k:=k+1 and go to Stepl.
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To ensure it does not occur that a:f —1; <6 and u; — a:f < 6y, for the same index i € Ay,
throughout this paper, we choose

1
0 < = mi i — 1.
< g pin fui =l

Before analyzing the convergence properties of Algorithm 3.1, let us give some explanations
and comments on each step. First of all, the set Ay defined in Step 2 is used as an approximation
to the set of active constraints

A. = {i| &} =liora} = ui}. (16)

This strategy was first investigated in [20], which has a close connection to the identification
technique studied in [5] and was further used in [21]. The set Z;, can thus be viewed as a suitable
approximation of the set of inactive constraints

T, = {i |2} € (i, u)}. (17)

Based on this active strategy, in Step 3, we try to compute a Newton-type search direction
d* by solving the proximal Newton equations

(G" + ppI)d = —F (),

which, after a possible permutation of the rows and columns, can be rewritten as

( G%kzk G%k.Ak > ( dIk > - _ ( F(m:)lk ) (18)
Gh.z. Gh.a, da, F(z") 4,

We just take the same simple formula for the components d¥ with i € Ay, as [21], which basically
aims at bringing the corresponding components of the next iterate closer to the boundary. The
components d¥ with i € 7}, are obtained by solving the first block row in (18), which is just
the system of linear equations (9).

In Step 4, we first check if the direction d* provides us a solution for the linear mixed
complementarity subproblem (10) and a sufficient descent direction (11). If this is true, we
just accept this direction; otherwise, we turn to use the extragradient-type direction in Step 5,
which will guarantee the global convergence of our method. It should be noted that in Step 5,
our line search procedures do not use any merit function for MCP (1).

In Solodov and Svaiter’s method [35], the stepsize a4, is always computed by

ar = vy (aF = 2F)/[|ve1*.
Here we take a larger stepsize
. = max{ 1.0/, v (0 — 25 /Joxl|?}

in the case that (10) and (11) hold. This has some advantage from the viewpoint of computation,
since we should take a stepsize as large as we can.

Note that the sequence {z*} is feasible and since the iterates are generated by projection to
[1,u], the whole sequence {z*} is also feasible.

In the following we will always assume implicitly that the termination parameter € in the
algorithm is equal to zero, and the algorithm does not terminate after finitely many iterates.
This assumption is reasonable since Lemma 2.1 shows that otherwise the current iterate would
already be a solution of MCP (1).
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4. Global Convergence

This section will be devoted to the global convergence of the method. We will establish our
global convergence of the proposed method under the assumptions of merely monotonicity and
continuity of F. We now start our analysis with some lemmas.

Our first result states that the whole algorithm is well-defined.

Lemma 4.1. Let F be a continuous, monotone mapping from [l,u] to R", and let G* € R"*"
be a positive semidefinite matriz. Then the method is well-defined for any parameter u; > 0.

Proof. Since G* is semidefinite and p; > 0, the system of linear equations (9) is always
solvable. Thus, to show that the algorithm is well defined, we need only to show that for
any k > 0, the line search in Step 5 is finite. In fact, by setting z := z¥ — p~1F(2*) and
y:=1z* € [l,u] in (7), we have

(l‘k _ ple(mk) _ jk)T(xk _ i‘k) S 0,

which means that
—F(z*)TS* > pl|S*|°. (19)

The conclusion thus follows immediately from the above inequality, the continuity of F' and the
fact that o < 1.
Lemma 4.2. For all k > 0, we have that

v (28 = 2%) >0, (20)

where x* € [l,u] is an arbitrary solution of MCP (1).

Proof. For Step 5, since v, = F(2%), zF € [I,u], (20) follows immediately from (1) and the
monotonicity of F. We now pay our attention to vy defined in Step 4. Note that in Step 4,
(10) implies that z*¥ = 2* + d* is a solution of the linearized mixed complementarity problem
(9), ie.,

(F(") + (G* + D) (z* = 2*)T(y = 2*) >0, vy el ul.

Since z* € [I,u], we have that
(F(a®) + (G* + mD)d") " (2" = 2%) > 0.
On the other hand, it follows from (1) and the monotonicity of F' that
F(zF)T(z% —z*) > 0.

Thus, from the above inequalities, (20) also holds for vy, defined in Step 4.

Lemma 4.3. Suppose that F is continuous and monotone, G¥ € R™*™ is positive semidefinite.

The sequence {z*} generated by the algorithm is bounded for all positive parameter py > 0.
Proof. Let z* € [I,u] be an arbitrary solution of MCP (1). Then, it follows from the

nonexpansivity of the projection operator [-]* that

2 =22 < |z - 2 — e
_ k * (12 —92 k 2
=l = 2™|]* = 2ap0y (" — &%) + af[|ve]
< et =P = 200 (a8 = 2F) + ag o,

where the second inequality follows from

(20). If
ar = vy (2% = 28)/[|ve?,
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then

k+1 x*HQ S ||Cl7k _ x*HQ _ Oék’UkT(ZEk _ Zk:)

= la® = 2| = (v (" = 2"))*/llow] . (21)

|«

Otherwise, if ay = 1.0/ us, then it follows from (11) that
2apvy (a8 = 2%) > alluel” + (1 = %) [la* - 2F)1, (22)

and thus
"+t —2*|* < l2* — 2% | = (1 = o?)[J=* — ¥ (23)

From (21) and (23), we have that
la"F = 2|2 < fla® — 2| <o < l2” - 2 (24)

The generated sequence {z*} is thus bounded.

We are now ready to prove the main result in this section, which states that the whole
sequence of iterates always converges to a solution of MCP (1) under the assumptions of merely
monotonicity and continuity of F. As far as we know, this is the only Newton-type method
that possess this remarkable property without any regularity assumptions except the method
of Solodov and Svaiter [35].

Theorem 4.4. Suppose that F is continuous and monotone and suppose further that there
exist constants c1, ¢z, c3 > 0 and t > 0, such that for all k > 0,

IG¥] < a1

and
e > > czle(a®, p)|I"
Then the sequence {z*} C [I,u] generated by Algorithm 1 converges to a solution of MCP (1).
Proof. If the tests (10) and (11) are satisfied infinitely many times, then it follows from (23)
that
lim d* =0. (25)
k—o00
Since {z*} is bounded, it has at least a cluster point. Let € [I,u] be a cluster point and {z*i}
be the subsequence of {z*} converging to Z. Therefore, it follows from (25) that
kj

lim 2% = z.

j—oo
Then, taking limit along the subsequence and using the continuity of F' and the boundedness
of G, and py, we have, from (10) that

F(z)"(y—z) >0, Vyell,ul

Thus, Z is a solution of MCP (1). Since z* is an arbitrary solution, we can just take z* = Z
and it follows from (24) that
[t — 2 < [la* — 2.

The whole sequence {z*} thus converges to Z, a solution of MCP (1).

In the rest of this proof, we can therefore assume that the tests in Step 4 are satisfied only
a finite number of times. That is, there exists a constant ko > 0, such that for all k& > ko, (10)
and (11) are not satisfied. For simplicity but without loss of generality, we can just assume
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that ko = 0. Under these conditions, z* is defined in Step 5. It follows from the monotonicity
of F' and the line search procedures (14) that

F(z*)T(a* = 2%) > F(z") T (@ = 2%) > aplla — 2*|.
Then, using the Cauchy-Schwarz inequality, we have
IF@) 2" = 2% > oplla® — =¥

From the boundedness of {z*} and the continuity of F, it follows that {2*} is bounded. Using
again the continuity of F', we have that there exists a constant M > 0, such that

loell < M
for all k£ > 0. It then follows from (14) and (21) that
lim tg|le(z*, p~")|| = 0. (26)
k—o00
We now consider the two possible case that
liminf ||e(z*, p~")|| = 0
k— o0
and
liminf |le(z*, p=1)|| > 0.
k—o00

In the first case, by continuity of e(,-) and boundedness of {z*}, there exists Z € [l,u], an
accumulation of {z*}, such that e(Z,p~!) = 0. Thus, it follows from Lemma 2.1 that Z is a
solution of MCP (1) and

la*+! — 2l < Jlz* — 2.

The whole sequence {z*} thus converges to 7.
We now consider the second case. Because of (26), it must be the case that

lim tp = 0,
k—o0

which is equivalent to saying that mj — 0o. Then, for sufficiently large & > 0, mj > 2. Hence,
(14) is not satisfied for the value of my, — 1, i.e.,

—F(a* +1,/85*)TS* < oplle(a, p~ ).

Taking into account the boundedness of {z*}, {z*} and passing onto a subsequence if necessary,
as k — oo, we obtain that B
~F(2)"S <oplle(z, p~H)II%,

where Z, S are limits of corresponding subsequences. On the other hand, (19) implies that
—F(2)"S > plle(z, p~H)II”.

Then we have |le(Z, p~1)|| < olle(Z, p~1)||, which yields that e(z,p~t) = 0, i.e., Z is a solution
of the MCP, and that the whole sequence converges to Z.
This completes the proof.

5. Local Convergence

Having established the global convergence of the method, we are now ready to prove the
superlinear convergence of our algorithm for solving monotone mixed complementarity problems
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under the assumptions of strict complementarity of a solution, positive definiteness of VF at the
solution and its local hélder continuity. The proof relies on the fact that in a small neighborhood
of such a solution, the tests (10) and (11) in Step 4 of Algorithm 3.1 always hold and the line
search procedures in Step 5 is not used. We now begin our analysis with some technical results
from [21].
Lemma 5.1.([21], Proposition 8) Let VFE' be positive definite at the solution of the mized
complementarity problem MCP (1). Then, Ay = A, and Iy, = T, for all z* € [I,u] sufficiently
close to x*, where Ay, and Ij, denote the index sets computed in Step 3 of Algorithm 3.1 and
A, and T, are defined by (16) and (17), respectively.
Lemma 5.2. ([21], Lemma 3) Let the assumptions in Lemma 5.1 hold, and let x* be a solution
of the MCP (1). Then,
d’;lk =2y, — a:’;lk

for all z* sufficiently close to x*, where dﬁlk denotes the vector calculated in Step 3 of Algorithm
3.1.
Lemma 5.3. Let the assumptions in Lemma 5.1 hold, and let ©* be a solution of the MCP
(1). Then,

lim [|d@¥|| = 0.

k—o0

Proof. Since {z*} converges to z*, it follows from Lemma 5.2 that
lim d% =0.
koo Ak 0

On the other hand, since 7y, = Z, for k sufficiently large and F(z*)z, = 0, it follows from (9)
and the boundedness of G* and . that

. ko
kl;rrgo dz, = 0.

The assertion thus follows immediately.

Theorem 5.4. Suppose F' is continuous and monotone on [l,u]. Let T be the (unique) strictly
complementarity solution of MCP (1) at which F is differentiable with VF(Z) positive definite.
Suppose further that VF is locally Holder continuous around T with degree p. If

e = lle(@, p D", t € (0,p),
and starting with some index ko > 0, G¥ = VF(z*), then

1. Eventually, the algorithm takes only the Newton-type directions from Step 4 of Algorithm
3.1.

2. The rate of convergence is Q-superlinear.

Proof. By Theorem 4.4, we know that the generated sequence {z*} converges to # and from
the choice of uj and Lemma 2.1, we have that limy_, o g = 0.

By Holder continuity of VF' around Z, we have that for all w € R™ sufficiently small and
all indices k sufficiently large, there exists a constant L > 0, such that

IVF(z* +w) = VF(")|| < Lllwl?, pe (0,1].

Therefore, we have

F(z* +w) — F(z*) - VF(Mw = RFw)
IR @)l < Sl
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From Lemma 5.1 and Lemma 5.2, the boundedness of {2*} and the continuity of VF, it follows
that there is a constant v > 0, such that for all k sufficiently large,

|d* || < llz* — z|]. (27)
It then follows from Lemma 2.2 that
1d¥]| < B27lle(z", p)II.

Since d*¥ — 0, we have

IF(zF) = F(z") - Grd"|

IN

L
Zdk|A e
=
L YN /] k _—1\[p|| gk
5027 lle(z", p= )Pl
Thus, (11) always holds if
L D.p k. _—1\|p k =1\t
5027 lle(@®, p™)IIP < o = olle(z®, p™)II"

Since t < p and ||le(z*, p~1)|| = 0, the above inequality will hold for k large enough.

Now we consider (10). From Lemma 5.1, the strict complementarity of Z and the continuity
of F, we have that for k sufficiently large, if #7 = l;, then F;(z*) > 0 and if 2} = u;, F;(2*) < 0.
Since d* — 0, (10) will also hold for k sufficiently large. Thus, the tests in Step 4 will hold and
eventually, the algorithm takes only the Newton-type directions.

If ap = v (2% — 2%)/||vk||?, the superlinear rate of convergence can be proved in a similar
way to that of Solodov and Svaiter [35]. We thus pay our attention to the case that o, = 1.0/ .

In this case, from Theorem 4.4, we have

x 1 .
la*t —z|| < fla® —z - —oF||
Pk

- ; 1 .
12 = 2| + [la* - 2* - EU'”II- (28)

AN

Note that
F(%) — F(a*) = VF(2") (2" — 2%) — pp (zF — 2*)
= Rz —2") = VF(a") (2" — 2) — ju (2" — 2"). (29)
Since Z is a solution of MCP (1) and z* satisfies (10), we have
(F(z) = F(a*) = VF(a") (2" — a*) — e (zF — %)) T(z - 2F) <0.
Therefore, we have
(2 = 2)TVE(b) (2" — 7) < (RE@ - 2*)T (2" = 7) — (2 — )T (2* - 7).

Since VF(Z) is positive definite and continuous and z*

constant Cy > 0, such that

— &, for k large enough, there is a

Cullz* — 2| < [l — 2|77 + u[] 2" — 2" (30)

Note that it follows from (27) and Lemma 2.2 that, for k large enough, there exists a constant
Cs > 0, such that
I — 2] < Cslle(a®, p~H)II-
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Thus,

1 o
ﬁ”ﬂk(wk = 2F) =]

1o
M—IIR'”(HJ’c — 2|
k

IN

—||lz* — 2"

< G5 Plle(a", pm I (31)
It follows from Lemma 2.2 and (28), (30) and (31) that

125t = 2| < (lla* = 2P + Cs /f1pui + C577 [ lle(a™, p~ )P~ " — 2.
Since ¥ — %, pr — 0 and [le(z*,p )| = 0, {z*} thus converges to Z superlinearly. This
completes the proof.

6. Conclusions

We presented a new Newton-type method for solving the monotone mixed complementarity
problem. The method has the nice property that it generates only feasible iterates, while has
only to solve simple subproblems (system of linear equations with reduced dimension). The
algorithm also possesses the remarkable property that it is truly globally convergent. That is,
without any regularity assumption, the generated sequence converges to a solution of MCP if
the solution set is nonempty. Under natural assumptions, locally superlinear rate of convergence
was established.
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