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Abstract

Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-
lem. But the iteration technique used to solve implicit Runge-Kutta method requires lots
of computational efforts. In this paper, we extend the Parallel Diagonal Iterated Runge-
Kutta(PDIRK) methods to delay differential equations(DDEs). We give the convergence
region of PDIRK methods, and analyze the speed of convergence in three parts for the
P-stability region of the Runge-Kutta corrector method. Finally, we analysis the speed-up
factor through a numerical experiment. The results show that the PDIRK methods to
DDE:s are efficient.
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1. Introduction

We consider here a stiff initial value problem (IVP) method that is highly accurate and
stable. This method is used as a corrector method, which achieves convergence by using parallel
iteration techniques. In the selection of a suitable corrector method, we are automatically led
to the classical implicit Runge-Kutta methods such as the Radau ITA methods. These methods
fulfill the requirements of accuracy and stability and belong to the family of best correctors for
stiff problems. For the iteration technique we select the PDIRK (Parallel Diagonally Implicit
RK) approach developed in [1] that solves the RK corrector by diagonally implicit iteration
using s processors for ODEs, where s being the number of stages of the corrector.

In this paper, we use a so-called step-parallel method. Here, a step-parallel method is
understood to be a method that computes solution values at different points on the-axis simul-
taneously. Such methods are usually based on the iterative solution of an implicit step-by-step
method. A further level of parallelism for ODE was introduced in [2,3,4] by making use of
the PDIRK iteration technique. The conventional approach of iteration is that it iterates until
convergence at a particular point is achieved, before advancing to the next point along the
t-axis, while step-parallel methods already start the iteration process at the next point before
the iteration at the preceding point converged. In the literature, we consider a step-parallel
iteration of Runge-Kutta method for solving initial value problems (IVPs) of delay differential
equations (DDEs):

y'(t) = fly@),y(t —7)), t>0, y(t)=g(t), t<0, (L.1)

where f, g denote given functions and are both sufficiently smooth. 7 is a given constant with
T > 0.
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2. The Iteration Scheme
Consider initial value problems of ordinary differential equations(ODEs):

y'(t) = f(y(t), >0, y(0)=yo. (2.1)

To avoid the tensor product in our formulations, we consider equation(1.1) and (2.1) as
scalar equations. Using the General Linear Method notation of Butcher, the Runge-Kutta
corrector formula for the ODE (2.1) reads(cf.[5, 6]) as follows:

Y, = EY, 1 + hAF(Y,), n=1,2--,N, (2.2)

here, h(= t,—tn—1) denotes the step-size, the matrix A = (a;;) contains the RK parameters, and
F(Y,,) contains the derivative values (f(Y,.;)), where Y, ;,i = 1,2, --- , s, denote components of
the stage vector Y;,. In this paper we assume that (2.2) possesses s implicit stages and that the
last stage corresponds to the step point. The first s — 1 stage components represent numerical
approximations at the intermediate points t,,—1 + ¢;h, i =1,2,--- ;s — 1, where ¢ = (¢;) = Ae,
¢s = 1, e being the vector with unit entries. We define Yy = yoe. The matrix E in (2.2) is of
the form:

0 1
0 1

E =
0 0 1

Applying the method (2.2) to (1.1), we obtain the Runge-Kutta correction formula for
DDEs:

Y, = EY, 1 + hAF(Y,,va), n=1,2--,N. (2.3)

Where F(Y,,v,) contains the derivative values (f(Yy,i,Vn,i)). If 7 = mh with integer m, we
let [6]

| g(etp—1 +ch—er), n <m,

ne { Yom, n>m. (24)

We approximate the solution Y, of (2.3),(2.4) by successive iterates Y,

iteration scheme:

satisfying the

YTSO) to be defined by the predictor formula,
YD —hDF(Y D), ) = EYY, 4+ B[A - DIF(YU™D v,  j=1,2,---,T,

[ gletn—1 +ch—eT), n < m, (2.5)
= Y,fli(,z)fm), n>m,

YD =yk@) s k), n=1,2,---,N.

The number of iterations k(n) performed at the point ¢, is defined by the condition that
for j = k(n), the v, s numerically satisfy the corrector equation (2.3),(2.4). The k(n) depends
on t, (see(3.34)). But in a theoretical analysis, however, it seems not feasible to allow the
parameter k(n) to be an arbitrary function of n, so while deriving convergence results, k(n) is
taken as a constant. The matrix D = (d;) is assumed to be a diagonal matrix with s positive
diagonal entries, so the formula (2.5) possesses parallelism across the method because of the
diagonal structure of the matrix D. We also call the method (2.5) PDIRK method for DDEs.

Introducing the step index i = n + j, and writing the correction formula (2.5) as

Y —hDFY ™, v P ) = YV + hA - DIF(v D v (2.6)

—m
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If N =wm + w with integers w > 0 and w = 1,2, --- ,m, the corresponding computational
scheme can be implemented in accordance with the following scheme
FOR j:=1TO m
FORv:=0TO k
LET V") = g(etj_m—1 + ch)

j—m
FOR[:=0TO w
FORi:=1k+2TO (I+1)k+1
FOR n:=i—k TO min{lm + (i — k), (I + 1)m}
CALL correction subroutine
FORi:=(w+1)+2TO (w+1k+w
FOR n:=i—k TO min{i, N}
CALL correction subroutine
The correction subroutine is defined by
IF i = n THEN compute Y,Ei*”) = Y,SO) by means of the predictor formula
ELSE IF n = 0 THEN Y™™ = g(et,_; + ch)
ELSE compute Y,Ei*”) by means of the correction formula
According to the computational scheme (2.7), we find that the method (2.5) also possesses
parallelism across the step; the sequential costs are Ngq = (w + 1)k + w on sm processors
(for fixed k ). Indeed, if we restrict our considerations to predictor formulas that are equally

expensive as the correction formula and if we assume that the iteration process at the end points
of the integration subinterval is stopped only if iteration at preceding step points has converged,
w

then the total sequential computational costs are now given by Ny = Y k(im) + k(N) + w.
i=1

3. Stability and Convergence

The region of convergence for the iteration method is discussed for the familiar basic test
equation
y'(t) = Xy(t) + py(t—7), t>0, y(t) =g(t), t<0. (3.1)

With respect to this test equation, the stability properties of the predictor-corrector pair
and convergence properties of the iteration process determine the stability properties of the
iteration (2.5). Assuming that the underlying corrector (2.3),(2.4) is highly stable.

There are several possibilities in defining a predictor formula for PDIRK method (2.5). An

imperialistically convenient choice is to define Y,\? as (3.2),here formula (3.2) is obtained by
applying a backward differentiation formula(BDF) to the preceding iterates Yrg[l)l and Y,Ef)m
Y© — hpF (Y@, y,Ermm)y = pry ) (3.2)

So that we can achieve predictor order s —1.If E* = E then this formula is only second-order
accurate.

3.1. Region of Convergence of The Correction Formula

In this section, we derive the region of convergence for the recursion(2.5), which is applied
to the test equation (3.1). Let us define the stage vector iteration errors

E%]):YTSJ)_Yn> n:172)>N (33)
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Subtracting (2.3),(2.4) from (2.5), we obtain the liner recursion

ell) = ngll + 7070 4 ﬂMsﬁ{:,L),
where the matrices K, Z and M are given by
K =[I-aD]|'E,
Z =a[l —aD] '[A - D],
M =[I —aD] A,
We study the convergence of the iteration error vectors

E(j) = (ng)vsgj)v T 75g))T'

X.H. DING AND M.Z. LIU

(3.4)

(3.5)

In particular, we are interested in the speed of convergence of the error vectors as function

of n. From the recursion (3.4), we can get

e® = Q(a, B k)=, (3.6)
where, the n-by-n block iteration matrix Q(«, 3,k) is given by
Q(a, Bik) = [I = B(I — H*)(L — My) ' Mp) ' H* (3.7)
and
T 0 o0 0
-K T o0 0
0 -—K I 0
L= , (3.8)
0 o 0 I 0
0 0 0 ~K I
Z 0 0
0 Z 0 0
0 0 0
M, = , (3.9)
0 0 7 o
0 0 0
0o 0 0 0 0
o o 0 0
My=1m o 0 0 ol (3.10)
0o M 0 0
0 0 M o 0
z 0 0
KZ 0 0
K27 KZ 0
H = LilMl = ) (311)
Kn-2g  Kn-sz  Kn-iz z 0
Kn-1z Kn-2Z7 Kn-37 .. KZ Z
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If p(H) < 1,we get limy, o0 e® = (I — B[L— M;] " My) ! -limy_, o H*e(®) = 0 and p(H) =
p(L7tM;) = p(Z) < 1.This observation leads us to the convergence region C'(n,m) = {(a, 3) €
C? : p(Z) < 1}, where p(e)denotes the spectral radius function. Assuming that the underlying
corrector(2.3), (2.4) is P-stable [7,8] (with respect to the basic test equation), that is, if S, be
the P—stability region of the underlying corrector (2.3),(2.4), we have

Y ={(a,B) €C* : Re(a)+ | B|I<O0}CS,, a=h)\  B=hpu. (3.12)

If the corrector methods (2.3),(2.4) are based on the Radau ITA method, we know these
methods are P-stable. We can also find that the region {(a,8) € C? : Re(a) < 0 is contained
in C(n,m), so the region X, is also contained in C'(n,m). Hence, the Radau ITA based method
(2.5) may be considered as “P-convergent”.

3.2. Speed of Convergence

In order to get an insight into the convergence properties as a function of k and n, we need
an estimate for the speed of convergence for the iteration process. In this paper, we adopt a
definition as given in [9], where the average speed (or rate) of convergence for the recursion
(3.6) is given by

R(n)kaaaﬁ) = —IOg( Y ||Q(aaﬁ)k)||) (313)

Here we discuss the speed of convergence in three parts for the region X, (3.2), in the first
part non-stiff speed of convergence at the origin, in the second part stiff speed of convergence
at infinity, and finally the speed of convergence at any intermediate point of ¥,. In the region
Y., 8 — oo implied (o, 8) — (00, 00). So the stiff problem have three case as following:I)(a, 3)
satisfied the conditions @ — oo, § fixed; II) (o, 8) — (00,00) and limg g = 0; III)

(a, 3) = (00,00) and limg_,00 £ =6,0 < 6] < 1.

[e%

At the origin, the matrix Q(«, 3; k) can be approximated by

Q(a, B; k) = o*[I = BL] LY + O((a + B)*H1), (3.14)
where
A-D 0
S A-D 0 0
Li=]| s s A-D - o |, (3.15)
s s s A-D
S = E[A - D], (3.16)
0 0 ) 0
0 0 0 0 0
Ji=a o . o o - of, (3.17)
EA A 0 0
FA BEA . A 0 . 0

and at infinity, we obtain

Q(a, B3 k) = [T + §J2]L§ +0(a™h), (3.18)
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I-D-'A 0
0 I-D-'A 0
L, = 0 0 I-D-'A - 0 , (3‘19)
0 0 0 I-D-'A
0 0 0 0 0
0 0 0 0o - 0
J2 = | 1-[I-D-1A]* 0 0 o - O01]- (320)
0 I-[I-D-1A}* - 0 0 - 0
0 0 <+ I-[I-D-'A]* 0 - 0

In the following subsections, the maximum norm is used in the definition of R(n,k, a, 3).
3.2.1 Convergence of nonstiff error components
At the origin, from (3.14) it follows that

R(n,k,a, ) = — 10g(f/||[04’“[1 = BIITTLE( + O(Je + ). (3.21)

Theorem 3.1. (a) For fized values of n, the non-stiff speed of convergence of the method (2.5)
satisfies the asymptotic relation

R(n,k,a, 8) = —log(lalp(A — D)) — O(k™" log(k)) (3.22)

as j — oo and (a, 3) — (0,0).
(b) If the matriz A and D satisfy the conditions ass < ds <1 and as; >0 (j =1,2,---,9),
then for fized k, the speed of convergence is given by,

o1 —2ass +ds

R(nvkaaaﬂ) = —10g(n|a|) - IOg((l - dS) k?'(]. _ ds)

+0(n 1)) (3.23)

as n — oo and (a, B) — (0,0).

Proof. The proof of part (a) is immediately follows from the asymptotic formula for the
norm of powers of matrices (see e.g. [9]). About Assertion (3.23), from (3.14) and (3.21) it
follows that

R(n,k, a, ) = —logla| —log({/||L}llc + Ol + B1)). (3.24)

The following assertion (3.23) can be proved along the same lines of two theorems given in
[2, 3] separately. It can be verified that

I[aLt oo = [|QF]lcc + O ™") as n — oo, (3.25)
where
0 0 0 0 o
S1 0 0 0 o
S1 S 0 0 0
Q1= S1 S S o o> (3.26)
S S S - S o

Si = aE[A - D]. (3.27)
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Also it can be verified easily that
Q4 lloe = ZnSHloo + O a5 1 oo (3.28)
By observing that S; satisfies the recursion Sf = |(1—d;)a|*~1S;, and using the assumptions
ass < ds <1 and ag, > 0, we get
1SF oo = (1= 2ags + dy) (1 = do)* o, (3.29)

From (3.18),(3.17),(3.16) and (3.13), we immediately get (3.15).
3.2.2 Convergence of stiff error components
At the infinity in the region X, from(3.21) it follows that

R(n, k,a, B) = —10g(f/||[f - §J2]L§||oo +0(a™)). (3.30)

Theorem 3.2. a) For fized values of n, if (o, 8) € Tx and (a, B) — (00, 00), then the speed of
convergence is given by

R(n,k,a,B) = —log(p(I = D™'A)) — O(k~ ' log(k)) as k — oc. (3.31)

b) For fized values of k, if the («, 8) satisfy the conditions I) and II) or III), then the speed of
convergence is given separately by

1
R(n,k,«a,B) = —ElogH(I — D_lA)kHoo, as mn — 0o, (3.32)
or )
R(n, k,a,B) = —E(log[l + 011 = (I = D' A)*||s0] + log |(I — D" A)¥]| )

+O(%log(|0|)), a5 n— oo. (3.33)

Proof. At infinity, formulas (3.20) and (3.21) immediately follow from (3.12) and the asymp-
totic formula for the norm of powers of matrices [9].
About (3.33), from (3.18) we know that:

R(n,k,a, ) = —log {/ [ - 0.7 + O(9)]L4 )
=~ (log[1 + 81T (I = D A))ll] + logl(T - D' ¥ ll)  (334)
+0(7 Tog((6])

We remark that the stiff convergence speed of the PDIRK method (2.5) is not depend on
n. When || = 0, this case can be considered as the case of ODEs, the convergence speed is
determined by the values of — log ||(I — D™ A)¥||, but when |6 # 0, from (3.33) we can find
that the delay has some influence on the speed of convergence for large values of n, that is the
delay will decrease the convergence speed. Table 1 lists the values for a few values of k£ and |6] .

In an actual implementation, we must choose suitable matrices D. When j — oo , theorem
3.1 shows that Q(«, 3,k) is already small for the nonstiff components, hence the possibility
is the minimization of Q(a, 8, k) for the highly stiff components (large values |a| of and |3|
). According to the convergence region C'(n,m) = {(a,3 € C? : p(Z) < 1)} and (3.31) of
theorem 3.2, D is chosen such that the very stiff components in the iteration error are strongly
damped. That is, D was chosen such that D minimizes p(Z(—o00)) = p(I — D~tA), with
Z(z) = 2(I — 2D) (A — D). In [1] diagonal matrices with p(I — D! A) ~ 0 were given for the
two, three and four stage Radau ITA methods.



368

X.H. DING AND M.Z. LIU

Table 1. Stiff R(n, k, «, B) values for the three-stage ITA corrector
0] | k=1 | k=2 | k=4 | k=8 | k=16 | k=32 | k=c0
0 -0.62 | -0.26 | 1.54 | 1.68 2.08 2.16 2.33
0.4 | -0.95 | -0.37 | 1.51 | 1.66 2.07 2.16 2.33
0.8 | -1.14 | -0.44 | 1.48 | 1.64 2.08 2.15 2.33

3.2.3 Convergence at Intermediate Values of (a, 3)
The preceding subsections indicate that the stiff and nonstiff speeds of convergence of the

method (2.5) are quite satisfactory, even for larger values of n. However, as soon as we move
away from the origin or from infinity, the speed of convergence deteriorates. For the sake of

sim

plicity, here, we suppose a and (3 as real, and the underlying corrector is the three-stage

Radau ITA method iterated by means of the matrix D = D3 as defined in [1]. In this case,

the

minimal rate of convergence was always found on the boundary of ¥x. Hence, for the test

equation (3.1) we list the values of min{R(n,k,a, ) : a + |B] = 0} for m = 4 and for a few
values of n in table 2.

is, the iterates Y

Let the iteration error associated with Yi(k) ,i=1,2,---,n, be of magnitude 10~2(¥) (that
(!) and the corrector solutions Yi(k) ,i < n, differ by A(k)decimal digits). Then,

taking logarithms to base 10, the number of iterations k£ needs to achieve this at most

. Alk) —A0)
 R(n,k, 0, )
Table 2 also lists the values of k = ka(n) given by (3.35) with A(k) — A(0) = 10. Table 2

(3.35)

shows that the number of n varies from 4 to 5, we can find that the delay has some influence
on the speed of convergence, and for large values of n, the speed of convergence only becomes

pos

an

itive if the numbers of iterations k = k(n) are relatively large.
Finally, we remark that by means of the values of k¥ = ka(n) we can compute to get
estimate of the speed-up factor of the PDIRK method (2.5) with respect to the method

introduced by [10]:

YD) —hDF(Y D, y,) = BEY M) L hl4 — DIF(YVUD y,)  j=1,2,---,k(n),
gletn_s +ch—er),  n<m, (3:36)
Yn = Yéﬁ(:rz)_m); n>m,

By the method (3.36), the only possibility is to compute first the iterates Ylj, j=0,1,2,--- k(1),

next the iterates Yy, j = 0,1,2,---,k(2), etc. Obviously, this method does not allow for par-

allelism across the steps. If the predictor formula defining YTSO) requires the same sequential
costs as the correction formula in (3.36), then the sequential computational complexity of the
method (3.36) is given by Ny =3, k(n).

Setting n = N, the number of sequential iterations of the methods (2.5) and the method

(3.36) are respectively given by Nyeq = > 1| ka(im)+ka(N)+w and Nyey = Nka(1), resulting
in the speed-up factor S(N) = Nka(1)[> i, ka(im) + ka(N) + w]™t.

Table 2. Value of min{R(n,k,a,3) : @ + |8] < 0} and ja for the three-stage IIA corrector
k n=1 | n=2 | n=4 | n=5 | n=6 | n=8

1 -0.62 | -0.62 | -0.62 | -1.01 | -1.05 | -1.22

2 -0.26 | -0.26 | -0.26 | -0.79 | -0.83 | -0.96

4 0.14 0.11 | -0.05 | -0.26 | -0.31 | -0.53

8 0.29 | 0.23 | 0.10 | -0.10 | -0.16 | -0.39

16 0.48 0.40 | 0.22 | -0.01 | -0.04 | -0.21

32 0.72 | 0.67 | 038 | 0.19 | 0.15 | -0.11
44 0.81 0.78 | 0.56 | 0.35 | 0.31 | 0.24
Ea(n) | 20 | 23 | 30 | 34 | 37 | 43
S(n) 1 16 | 24 | 16 | 1.8 | 21
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4. Numerical Experiment

The PDIRK method (2.5) described above was applied by using the three-stage Radau ITA
corrector equation and the predictor formula (3.2). Since the number k(n) of outer iterations
needed to solve the corrector equation will strongly depend on n, we applied a dynamic iteration
strategy with stopping criterium (cf.[2])

R
leTBY ™ |l

In our experiment, we set T0lqorr = 107'2, and the calculations were performed using 15-
digits arithmetic. The accuracy is given by the number of correct digits A and obtained by
writing the maximum norm of the absolute error at the endpoint in the form 102,

4.1. Comparison of The PDIRK (2.5) and The Method (3.36)

Our test problem is that of Hairer, N ¢sett and Wanner [6]:
Y = (L4 -yt —)y(t), 0<t<2,
Y =0, —1<1<0, y(0)=0.1.

In our test, we compare results obtained by the PDIRK method (2.5) and the method
(3.36). We apply the PDIRK method in unlimited-of-Processors mode and in one-processor
mode (by which we generate the method (3.36)). The sequential computational complexity is
measured by total number Ny = Y7 | ka(im)+ka (N)+w of sequential implicit systems to be
solved during the integration process. Furthermore, we define the average number of iterations
per step and the average number of sequential iterations per step by k* := N ! >, k(n) and
k%o, := N7'Nyeq, respectively. For the method (3.36), we obviously have Nyq = Y-, k(n) and
k* = k%, = N7'Ngeq. The ratio of the values of k,, for the PDIRK method and the method
(3.36) determines the speed-up factor S(IN). Table 3 presents multi-processor results for the
PDIRK method (2.5) and the speed-up factor S(N) . From these results, we conclude that the
PDIRK method becomes more efficient as the number of step points increases and the speed-up
factors S(N) are in good agreement with the theoretical speed-up factors listed in table 2.

A

n

< Tolorr (4.1)

(4.2)

Table 3. Results for the problem (4.2)

h= % N A k* Noeg | kieq | S(NV)
1 2 6.17 | 16.0 16 16.0 1.00
1/2 4 6.90 | 18.8 23 17.9 1.05
1/4 8 7.88 | 23.2 42 11.4 2.04

1/8 16 | 9.20 | 25.7 58 9.10 | 2.83

5. Conclusion

In this paper, we firstly give a class of PDIRK method (2.5) for solving DDEs. It can be
considered as an extension of the PDIRK method for solving ODEs. Secondly, the region of
convergence was presented and the speed of convergence was separately analyzed for tow cases:
at the region (nonstiff) and at infinity (stiff) of the region of the P —stability of the RK corrector
method. It was found that the diagonal matrix D of the PDIRK methods for DDEs can be
chosen in the same way as the PDIRK methods for ODEs[1]. But for the stiff IVPs of DDEs,
from (3.33) of theorem3.2 we can find that the stiff speed of convergence of the method (2.5)
depends on the value of |§] . We must increase the numbers of iteration to get the satisfactory
value of the DDEs of the case III).

Acknowledgement. The authors are grateful to the efforts of the referee who apparently
made a detailed study of the paper and suggested essential improvements in the description of
our method.
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