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Abstract

This paper is concerned with numerical methods for American option pricing. We
employ numerical analysis and the notion of viscosity solution to show uniform convergence
of the explicit difference scheme and the binomial tree method. We also prove the existence
and convergence of the optimal exercise boundaries in the above approximations.
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1. Introduction

In the probability theory, the Black-Scholes model for American option pricing belongs to the
optimal stopping problems. On the other hand, in the viewpoint of PDE, it is a parabolic varia-
tional inequality. Consequently, roughly speaking, there are two kinds of numerical methods for
American option pricing based on the probabilistic approach and finite difference respectively.

The binomial tree method, as a discrete time model, is the most common approach for
pricing options. Amin and Khanna (1994), using the probabilistic approach, first provided a
convergence proof of the binomial tree method for American options [1]. In essence, the binomial
tree method belongs to the probabilistic one. However, it can be proved that the binomial tree
method is consistent with an explicit difference scheme. By virtue of the notion of viscosity
solutions, Barles and Souganidis (1991) presented a framework to prove the convergence of
difference schemes for fully nonlinear PDE problems [3]. Jaillet etc. (1990) studied the Brennan-
Schwartz algorithm for pricing American put option based on the framework of variational
inequalities [9]. Lamberton (1993) showed the convergence of the resulting optimal exercise
boundary (critical price) [11]. He also proved the convergence result within the probabilistic
approach.

This paper will concentrate on the explicit difference scheme and the binomial tree method
for American options. The main purpose is to prove the convergence of the above approxima-
tions by using numerical analysis and the notion of viscosity solution, especially in the case of
American call option for which the approximate sequence is not uniformly bounded in [*°-norm.

The remainder of this paper is organized as follows: In section 2, we recall the Black-Scholes
model, the explicit difference scheme and the binomial tree method for American options. In
section 3 we will concentrate on the explicit difference scheme and show the existence of optimal
exercise boundary computed in the approximation of the explicit difference scheme. Section 4 is
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devoted to the convergence proofs of the explicit difference scheme and the approximate optimal
exercise boundary. We extend the results of the explicit difference scheme to the binomial tree
method in section 5.

2. Black-Scholes Model and Numerical Methods for American
Options

The Black-Scholes model for American options with continuous dividend yield is the follow-
ing:
. oV o? ,0%V ov
m1n<—5—75 W—(T—Q)S%'FTV,V—’(/J)—O (21)
in [0,T) x (0, 00) )
V(Tv S) = 1/}(5) n (07 OO),

where ¢(S) = (S — E)T (call option) or ¢(S) = (E—S)* (put option), r > 0, and o represent
the interest rate, dividend yield and volatility [8].

Using the simple transformations u(z,t) = V
following constant-coefficient problem

. ( ou o2 d%u o? Ou >
mn|—-—-—=-=—-(r—q¢g— —)—+ruv,u—p| =
x 0z
in [0,T) x (—o0,00)

(S,t), S = €”, (2.1) is transformed into the

(2.2)
u(T,z) = p(x) in (—o0,00),

where ¢ (z) = (e* — E)™ (call option) or ¢ () = (E — e*)T (put option).

We now present the explicit difference scheme for (2.2). Given mesh size Az, At > 0,
NAt =T, let Q = {(nAt,jAz) : 0 < n < N, j € Z} stand for the lattice. U’ represents
the value of numerical approximation at (nAt,jAz) and ¢; = ¢ (jAz). Taking the explicit
difference for time and the conventional difference discretization for space, we have

n+1l n 2 n—l—l _ ’(L+1 ’(L+1
i (_ Uptt-up P UM -2+ U

At 2 Az?

o2 UM —UM
—(r—q—?) 5AL +rU U = | =0
or
U' = ma L (1-— U2At)U"Jrl + UQAt(l + ﬂ(7“ —q- 0—2))U”Jrl
;T T A Az2 i Az? 2 g2V 1T
o?At, 1 Az o’ .
+m(§ - F(T —q— 7))Uj+11> ,%‘) ;
which is denoted by
o 1
U= max (m (1- a)U;H_l + a(aU;Z:'ll + cUJnfll)) ,<pj> , (2.3)
where
N , At " 1+Aa:(r 02)0 1 —a
=0 — = — R — _ — — —a.
Ag2 "T 2T 92 T 1T )
By putting @ = 1 in (2.3), namely o?At/Ax? = 1, we get
n 1
Uj' = max (1 AL (aU]Tfl1 + cU;Lj'll) ,<pj> . (2.4)
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The final values are given as follows:
UN =5, j €2

Now we recall the binomial tree method, which is the most common approach for option
pricing. It can be described as follows:

1 )

‘/jn = max <;(p‘/]1+11 + (1 _p)‘/]n_ﬁl)’ (SUU] - E)+> ’ .7 =n,n— 27 s, TN, (25)
N (S()’U,j — E)+ call option

‘/]' - N+ . >j:N7N_2)"')_N (26)
(E — S()’U,j) put option

where
_ p/exp(gAt) —d
p=H =20 -
u—d

Set Az = o/ At. In view of

,p =exp(rAt), u=exp(cVAt), d = exp(—cVAt).

p=1+rAt+0 (At?)

and . A )
p=51+ —(r—q— ) +O(AF?),
2 o? 2
we deduce that the binomial tree method is equivalent to explicit difference scheme (2.4) in the
sense of neglecting a higher order of At.

Remark 1. The trinomial tree method is equivalent to scheme (2.3).

3. Existence of Optimal Exercise Boundary in the Explicit Difference
Approximation

This section is to show the existence of optimal exercise boundary in explicit difference
approximation (2.3). Later we will concentrate on American call option. It’s easy to generalize
all results to American put option.

We will always assume

0<a<l1 (3.1)

and A N
—f(r—q—a—) <L (3.2)

o 2

The second assumption always holds for Az small and implies a,¢ > 0. In addition, we will
assume ¢ > 0 because when ¢ = 0 the American call option is reduced to the European one.
Now we investigate the properties of scheme (2.3).

Lemma 1. The explicit scheme (2.3) has the following properties:
(1) U} < Uy for all j, n.
(2) UM < UP foralln < N, j.
(3) U < eI for all j, n.

Proof. To prove property (1), we use the induction. Clearly UN = ¢; < @j1 < UN,. If
Uf“ < Uﬁ'll for all 7,

1
U](“ = max (m (1- oz)UJlH-1 + a(aUﬁ‘ll + chff)) ,90]')

1 . X X
S max (m ((1 - Oé)Uka:ll + Oé(a/U;j:; + CU;+1)) ,80‘7'+1>

_ k
- Uj+1>
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which is the desired result. Similarly we can prove property (2). Next we will prove property
§3) Let U* denote {UJk}jeZ' Since U* ¢ 1> (Z), we introduce a weighted norm 10 (7 as
ollows:

10 1o () = sup e 78U (3.3)
It suffices to show that
|U* ||,z () = 1 for all k. (3.4)
Clearly
i 1 s X
e JAzUJl“ = max <m ((1 —a)e JAzU;»+1

_‘_a(aeAme—(j-‘rl)AxUJ{c:-ll n ce_me—(j—nAfojf)) ,e—jAz(pj) )

By the Taylor expansions, we have

Az —Az Az? 4
ae”" +ce”2 =14 (r —q)— + O (Az?) . (3.5)
(2

Then

(Leg

IN

1 xr — AT
max<1+rAt((1—cu)—Fcu(aeA + ce AT)) ||Uk+1||l:°(z),1>

1+a(r—q)§'—€2+a0 (Az*)
e ( 1+ rAt 175 e 2 -1

< max (”Uk“”l:o(z) ,1) , for small Az,

“lgO(Z)

<

which yields the desired result by combining with ||UN||l°°(Z) =1L
In order to prove the existence of approximate optimal exercise boundary, it suffices to show

that

Lemma 2. Let At be sufficiently small. For each n < N, there exists an integer j, such that

1 . .
Ul=p; > T rAL (1- cu)U;‘+1 + a(aU;fll + cU]nfll)) , J > dn 5.6)
Ur = 1— )" t! yntl UNY) > o i . ’
]_1+T.At(( a) j + ala j+1 T ¢ j—1))_%;]<]n-

Furthermore, we have
jn S jn—l S ]n + 1

Proof. Let k; = inf {j (el > 0} I j > ki + 1, in terms of (3.5) we can get

1
T4 rAL (1= a)p; + alapji +cpj-1)) — ¢;
6% AT A
= TirAL <(rE — gelt )? + e300 (Aa:4)> . (3.7)

(i) In the case of ¢ > r. When j > k; + 1, we deduce from (3.7)

U]N_1 =p; > T3 Az (1 —a)p; + alapjrr +cpj—1)) for At small.
On the other hand, U;V_l = ﬁ((l —a)pjt+a(apjr+cpi—1)) >0 =;if j < k1. Therefore

we choose jy_1 = ky if v, > ﬁ((l — @)k, + (@i, +1 + cpr,—1)). Otherwise we choose
JN—1 =k + 1.
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(ii) In the case of ¢ < r. Take ky = inf {j 1 qelAT —rE > 0}. When 7 > k2 + 1, due to
(3.7), we get U™ = ¢; > ixg (1 = a)p; + alapjsr + epj-1)); When j < &y, U} =
ﬁ((l —a)pj + alapjr1 + cpj—1)) > 0 = ¢;; When &k < j < ky — 1, in view of (3.7) and
rE —qeltDAT 5 0, we have —1+710At (1 —a)p; +alapjir +cpj-1)) —@; > 0. As for U,gfl and
U,gj, we may always assume ks — 2 > ky for Az small. Hence for j = ks — 1, ko,

N-1 a iA Az® iA 4
" — - E _ Jary _— " JAT A
U; ©; T AL ((r qe’>") — +e O( m))

is monotonically decreasing with respect to jAz. Thus there exists jy_1 € [k2 — 1, k2 + 1] such
that (3.6) holds.

We have shown that (3.6) holds when n = N — 1. Suppose (3.6) is true when n =
k+1. When j < jry1, due to Lemma 1 (2), 557 ((1— a)UF + a(aUtH + cUM)) >
g (L= Ui + a(aUlf? + cUME)) > ;. When j > jipa, since U = UMt = o,
1=7—1,7,7+ 1, we have

1 1 1 1
UF > US> e (M- U +aaUfE + USED)
1
= 1A (- U +aeU + U

and thus Uf = ;. Therefore we take ji = jr41 or jr41 + 1. The proof is completed.
Now we can define the approximate optimal exercise boundary.

Definition 3. For fized At, define the approximate optimal ezxercise boundary x = pay (t) as
follows: fort € [(n —1)At,nAt], 1 <n <N,

_t—(n—1)At. nAt —t .
pai (t) = T]nAﬂf + A7 Jn—1Ax,

By definition pa¢ (t) is monotonically decreasing.
The proof of Lemma, 2 implies

Corollary 4.

pae (T — At) € [max {ln E,ln @} — Az, max {ln E,In E} + 2Aw] .
q q

4. Convergence of the Explicit Difference Scheme

This section is devoted to the convergence of the explicit difference scheme. Meanwhile
we will show that pa; () converges uniformly to the true optimal exercise boundary p (t). To
simplify notation, (2.3) will also be written as

U = Fp(An) (U (4.1)

where U = {Uik}jez' It is a simple fact that (4.1) is monotone under the assumptions (3.1)
and (3.2), that is,

— — .

Fo(At)U < Fp(At)V if U< V. (4.2)

It is easy to check that
FO(AD(U + K) < Fp(ANU + K , K >0, (4.3)

where we identify K with the non-negative constant function on Z.
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Define the extension function uay (¢, x) as follows: for z € [(j — 3)Az, (j + 3)Az), t €
[(n — 5)At, (n + 3)At),

uat(t,z) = U}
By definition and Lemma 1 (3) we have
uns(t, ) = (ﬁp(m)um(t + At -)) (z), for all (t,z) € [0,T — Alf] x R (4.4)
and
0 < uae(t,x) < e TA7/2 for small At. (4.5)

We will show that

Theorem 5. Suppose that u (t,z) is the solution to the problem (2.2). Under the assumption
(3.1), as At — 0, we have

(1) uag (t, ) converges to u (t,z).

(2) pat (t) converges to p(t).

The proof relies on the notion of viscosity solution ([3],[4]). Before the proof of Theorem 5,
we review the notion of viscosity solution as follows.

Definition 6. A functionu € USC([0,T]x R) (resp. LSC([0,T]x R)) is a viscosity subsolution
(resp. supersolution) of the problem (2.2) if uw(T,z) < @(x) (resp. u(T,z) > p(x)), and
whenever ¢ € CH%([0,T) x R) and u — ¢ attains its local mazimum (resp. local minimum) at
(t,z) €10,T) x R we have

. 0% 0¢
m1n<—a—?w—(r—q—?)%—%ru,u—gp) <0
(resp.

. fJ0)
s S Y R S AR - > 0).
min ( n . (r—gq 5 ) L Truu <p> - 0)

We call u € C(]0,T] X R) is a viscosity solution of (2.2) if it is both a viscosity subsolution and
supersolution of (2.2).

Lemma 7. Suppose u and v are viscosity subsolution and supersolution of problem (2.2) re-
spectively and
|u(t, )], |v(t, 2)| < €7,

then u < v. (see [4])
Theorem 8. The problem (2.2) has a unique viscosity solution. (see [4])

Proof of Theorem 5. Suppose u (t, z) is the viscosity solution of the problem (2.2). Denote

U*(t,l’) = lim sup ’LLAt(S,y),
At—0,(s,y)—(t,z)

ux(t, ) lim inf uat(s,y).

At—0,(s,y)—(t,x)
Owing to (4.5), u* and u, are well defined and
0 < ux(t,z) <u*(t,z) <e”.

Obviously u* € USC([0,T]x R) and u, € LSC([0,T]x R). If we show u* and u, are subsolution
and supersolution of (2.2) respectively, then in terms of Lemma (7) we deduce u* < u, and
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thus v* = u, = u(t,z), which guarantees that the whole sequence converges to the viscosity
solution u(t, z).

We only need to show that u* is a subsolution of (2.2). It can be shown that u* (T, z) = p(z).
Suppose that for ¢ € C*2([0,T) x R), u* — ¢ attains a local maximum at (ty, 7o) € [0,T) X R
and (u* — ¢)(to,xo) = 0. We might as well assume that (tg,xo) is a strict local maximum on
B, ={to<t<to+r|z—xzo| <r},r>0. Set ® = ¢ —¢€, € >0, then u* — & attains a strict
local maximum at (¢, o) and

(U* — ‘I’)(to,mo) > 0. (46)

By the definition of u*, there exists a sequence ua¢, (sg,yr) such that At — 0, (sg,yx) —
(to,xo0), uat, (Sk,yr) = u*(to,xo) when k — co. Assuming that (5x,7k) is a global maximum
point of uay, — ® on B, we can deduce that there is a subsequence uay,, (8,9, ), such that

Atkl — 07 (§klagkz) - (tO,CC()), (U’Atki - (I))(gklagkl) — (’U,* - (I))(t07x0) (47)
as k; — oo.

Indeed, suppose (8k;,Jk;) — (§,9), then

(U* - (I>)(t0, 1‘0) = kliinoo(UAtki - (ﬁ)(ski ) yki)
< kliinoo(UAtki - (P)(/S\k”gki) < (U* - Q)(éyg)a

which forces (8,9) = (to, zo) since (to,xo) is a local strict maximum point of u* — ®. Therefore
(uAtki - (P)(gkz + Atki?') < (uAtki - (P)(gkiagki) in By,

that is
Unty, (3k; + Aty 0) < B(8k, + Aty,, 0) + (uar,, — ®)(8k,,Uk;) in B

Without loss of generality, we may assume that the above inequality holds in (¢o,to + r) X R.
From (4.6) and (4.7), we observe an important fact

(uaty, — ) (8k;,9k;) > 0, when k; is large enough. (4.8)
By (4.4), one gets
wsiy, Gror i) = (Fo(AtJus, (i + Aty,,®)) (G1,)
(Fo(ati,) (26w + Aty 0) + (var, — ®)(6rs ) ) (1)
(Fo(aty)@ (e, + Aty,, ) (5,) + (wan, — )k i),

where the last two inequalities are due to (4.2), (4.3) and (4.8). Thus

IN

IN

PO = o N
q)(ski’yki) - (F(p(Atki)(I)(ski + Atki’.)) (ykl) <0,

namely

min

14 T‘Atki Atki
2 Az},
(- 0_2) (8, + Aty Ui + Azy,) — B(8; + Ay, G, — Ayy;)
1= 2Az,,

+ rq)(éki;gki)) ) (}(éki)gki) - G(ékuykl)) <0,
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Dividing the first term by Aty, /(1 4+ rAtg,) and letting k; go to infinity, we get

0% o2 0%d o 0%
n(-— 22 - 1rp,d— <0.
m1n< 5 2 2 (r—gq 5 )693 +re, <P> oy
Letting € tend to 0, we have
0p o020%¢ o 0¢
in(—— -2 _(p—gq— —)=" - <0
min ( ot 2 Or2 (r—q 2 )61' +rd, 0 —p o) )

which yields the desired result because of u(tg,zo) = ¢(to, o).

Next we will show pa: (¢) converges to p (t) . The basic idea is from [11]. Let ¢, € [0,T).
Assume z > liminf pa;(tg). Then there are subsequences At, — 0, t, — to and z, — x, such
that uae, (tn, Tn) = p(xy,). Letting At, — 0, we have u (to, ) = ¢(x), and = > p(to) - Hence
lim inf pa¢(to) > p (to) . To prove limsup pa¢(to) < p(to), we use the reduction to absurdity. If
there is ¢ > 0 such that lim sup pa¢(to) > p(to) + €. Since p (t) is continuous, then there exists
0 > 0 such that

lim sup pa¢ (to) > p(t) +, Vt € [to —d,t0 + 9.
Now we can assume paq, (to) > p(t) +¢, V t € [to — J,to + 6] for some subsequence At,, — 0.
Denote Qo = {(t, ) : t € [to—0,to], x € [p(to—0), p(to—0)+¢]. Because pas, (t) is monotonically
decreasing, we infer
pat, (t) > x> p(t) + ¢ in Qo.

Since uag, (t, ) converges to the viscosity solution u(t,z) to (2.2), due to the regularity of
viscosity solution [4] and pay, (t) > z, we deduce that

ou o (o
ot 2 Jx?
On the other hand, from = > p(t) + ¢ we get u(t,xz) = e* — E satisfying
ou % d%u o2\ Ou .
E—F?W—F <r—q—7> %—ru:Er—qe”” in Qo.

One has reached a contradiction. Due to the uniqueness of viscosity solution to (2.2), the whole
sequence converges to p (t) .
Remark 2. The proof of Theorem 5 implies the convergence of any uniformly bounded,
monotone and consistent explicit scheme satisfying assumption (4.3).

Now we introduce the following lemma:

Lemma 9. Let Q) C R™ and f, (z1, 2, -, Zm) be pointwise convergent to the continuous func-
tion f(x1,72, -, zm) on Q. Assume fy (T1,%2, -, 2m) and f (21,22, -+,Tm) are monotone
on Q. Then fn (x1,%2, -+, Tm) converges uniformly to f(x1,x2, -, Tm) on Qo CC .

Proof. Without loss of generality, we assume n = 2 and f,, (21, z2) is monotonically increas-
ing with respect to z; and decreasing z». Since f (z1,22) is continuous, then Ve > 0, Py =
(29, 29), there exists §(P) > 0 such that for all (z1,22) € B&® = {|z; — 29| < 6, |22 — 29| < 6},

|f(z1,22) — f(a?,23)| < e/2. (4.9)
Due to the monotonicity of f(z1,z2) and f,(x1,x2), we have
max |f (21, 22) = fa(21, 22)|

< max{|f(a] +(Po), 23 — 6(Fb)) = fala} — 6(Po), 25 + 8(Fv))l,
[f(2] = 6(Po), 23 + 6(Po)) — fulal + 6(Po), 25 — 6(Po))[}- (4.10)
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Since f, (z1,z2) converges to f (z1,z2), there exists N (P) such that when n > N (FPp)
(2} F 8(Po), w3 £ 6(Ro)) — fulal F 0(Po), w2 £ 6(Ry))| < /2. (4.11)
Combination of (4.9), (4.10) and (4.11) gives

Ig?gqf(wl,w) = falzr, 22)| <e.

Then for Qy CC €, there are finite {Béi(Pi,é(Pi)}],v

., such that Qo C U, B3 (P;,6(F;)).
Therefore when n > max; N(P;),

|f(z1,22) — fu(z1,22)| <e, for all (z1,22) € Qo,

which comes to the conclusion.

Theorem 10. As At tends to zero,
(1) uat (t,x) converges uniformly to u (t,x) on any semibounded domain [0,T] x (—oo, M).
(2) pat (t) converges uniformly to p(t).

Proof. Due to Lemma 3.1 and Lemma 5.1 of [10], u (¢, z) is continuous and monotone with
respect to ¢ and . From Lemma 1, ua:(¢, ) is a monotone function of ¢ and . Then Lemma 9,
together with Theorem 5, implies conclusion (1). Similarly, due to the monotonicity of pa(t)
and p (t), we get conclusion (2).

5. Convergence of the Binomial Tree Method

This section is to extend the results of the explicit difference scheme to the binomial tree
method. Due to (2.5), the binomial tree method can be regarded as an explicit scheme defined
on the lattice Q with o AAxtz = 1. Assume 0 < p < 1, then scheme (2.5) is monotonic.

Let V;* and U represent the values computed by scheme (2.5) and (2.4) at (nAt,jAxz),
respectively. Without loss of generality we assume Sy = 1 in (2.5). Then

. 1 . . .
e*]Az‘/]’n — max{; (peAzef(]+1)AzV}7j_—iil + (1 _ p)efAzef(]fl)Az‘/jn_—iil) ’engz(pj ’

. 1 . . .
e—]AmUJn — max { A (aeAace—(]+1)AzU]n++ll + ce—Ame—(j—l)AzU](lel) ’e—JAij} )
Therefore
3% vy - 07|
1 . )
< ; (peAzef(]+1)‘/jrri1 + (1 _p)efAzef(Jfl)‘/jnjil)
Az _—(j+1 +1 —Az _—(j—1 +1
1+ rAt (“e PeTUHIURY! + cemSremUmDURY )‘
1 —(J n n — —(j— n n
= |5 (b DT - U + (1= plemAre U Uﬁf))\
p a Az ,—(j+1)prn+1 I-p ¢ —Az ,—(j—1)prn+1
+‘(p 1+7“At)e € Ujsr + 1 p 1+7“At)e € Uit
LA -A +1 +1 3/2 +1
< ;(pe T4 (L-pe i vt —un “lgo(z) +CAtY lon ”zgo(z)
< IRt ||V"+1 — Un+1||zoo(z) + CA? for small At.



380 L.S. JIANG AND M. DAI

Here [|-[|; () s defined by (3.3), the last inequality is due to (3.4) and (5.2), C' stands for a
positive constant independent of At. Since V¥ = U¥, then

iA 3/2 V& A CABS 1/2
=0
namely
I U”“le(z) < CA/2, (5.1)

Owing to Theorem 5, Theorem 10 and (5.1), we have

Theorem 11. The binomial tree method is locally uniformly convergent for American call
option if 0 < p < 1.

For the binomial tree method, we have the following equality similar to (3.5),
peAac + (1 _p) e—Az — e(r—q)At- (5_2)

By using (5.2) and the same arguments as in section 3, we can show that

Lemma 12. For the binomial tree method, if 0 < p < 1, there exists an optimal exercise
boundary.

Theorem 13. The optimal exercise boundary in the approzimation of the binomial tree method
converges uniformly to the true optimal exercise boundary.
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