Journal of Computational Mathematics, Vol.22, No.5, 2004, 633—-640.

A STABILITY THEOREM FOR CONSTRAINED OPTIMAL
CONTROL PROBLEMS *

M.H. Farag
(Department of Mathematics and Computer Science Faculty of Education, Ibri, Sultanate of Oman)

Abstract

This paper presents the stability of difference approximations of an optimal control
problem for a quasilinear parabolic equation with controls in the coefficients, boundary
conditions and additional restrictions. The optimal control problem has been convered to
one of the optimization problem using a penalty function technique. The difference ap-
proximations problem for the considered problem is obtained. The estimations of stability
of the solution of difference approximations problem are proved. The stability estimation
of the solution of difference approximations problem by the controls is obtained.
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1. Introduction

Optimal control problems for partial differential equations are currently of much interest.
A large amount of the theoretical concept which governed by quasilinear parabolic equations
[1-4] has been investigated in the field of optimal control problems. These problems have
dealt with the processes of hydro- and gasdyn amics, heatphysics, filtration, the physics of
plasma and others [5-6]. Difference methods of solution of optimal control problems for partial
differential equations are investigated comparatively small [7-11]. In this paper, the stability
of difference approximations of an optimal control problem for a quasilinear parabolic equation
with controls in the coefficients, boundary conditions and additional restrictions. The optimal
control problem has been convered to one of the optimization problem using a penalty function
technique. The difference approximations problem for the considered problem is obtained. The
estimations of stability of the solution of difference approximations problem are proved. The
stability estimation of the solution of difference approximations problem by the controls is
obtained.

Let @ = {(z,t) : x € D =(0,1),t € (0,T)} where I, T are given positive numbers. Now, we
need to introduce some functional spaces as follows:
1) L2(D) is a Banach space which consisting of all measurable functions on D with the norm
lzllLapy = [fp 1217 da ]2. 2) Ly(0,1) is a Hilbert space which consisting of all measurable
functions on (0,1) with

[
<21722>L2(0,l) :/0 z1(z) 22 (w)dz, ||Z||L2(o,z) =/ <272>L2(0,l)-

3) L2(9) is a Hilbert space which consisting of all measurable functions on Q with

l T
<Z1>Z2>L2(Q) :/ / Zl(l’,t)ZQ(l',t)dl’dt, ||Z||L2(Q) = <Z,Z>L2(Q).
0 JO
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4) W (Q) = {z € Ly(Q) and 22 € Ly(Q)} is a Hilbert space with

821 82‘2
lelhwgom = [ 1o+ G252 do
Z 1
(21, 22) w0 = 2117, 0) + ||£“%2(Q)]2-

5) Wyt (Q) = {z € Ly(Q) and 22 € Ly(Q), % € Ly(N)} is a Hilbert space with

ox
o 621 622 621 622
||Z||W21'1(Q) = /Q [ 2122 + a—% + — ot ot —] dz dt

0z 1
(21, 22)wrr (o) = a1l + || ||L2 + 1157 o)
6) V2(Q) is a Banach space consisting of elements the space Wl’O(Q) with the norm

. 1
Ilhvatay = vraimazoci<r||z(@, )l ) + ( / 223

7) V,°%(Q) is a subspace of V5(Q), the elements of which have in sections D; = {(z,7) : & €
D, =t} traces from Ly(D) at all t € [0, T],continuously changing from ¢ € [0,7] in the norm
Ly(D).

2. Problem Formulation

Let V = {v:v = (v1,v2,...,08) € En,||v|lExy < R}, where R > 0 are given numbers. We
consider the heat exchange process described by the equation

ou 0 ou ou
S = SO0 50) + Bluy) 5t = f(,1), (2,1) € 0 1)
with initial and boundary conditions
u(z,0) = ¢(x),x € D (2)
0 0
A(u,v)8—Z|m:0:Yg(t),/\(u,v)a—Z|I21:Yl(t),Ogth (3)

where ¢(x) € La(D), Yo(t),Y1(t) € Ly(0,T) and f(z,t) is given function. Besides, the func-
tions A(u,v), B(u,v) are continuous on (u,v) € [r1,r2] x En, have continuous derivatives in u

and VY(u,v) € [r1,r2] x En, the derivative w, % are bounded. Here 1,75 are given
numbers.
On the set V, under the conditions (1)-(3) and additional restrictions
1Z0) S )\(U,’U) S Ho, 140 S B(U,’U) S Ho, T S u(x,t) S T2 (4)

is required to minimize the function
T

T
Ja(v) = ﬁo/g [u(0,1) — fo(t)]*dt + By /0 [u(l,t) — fi®)]dt + ollv — wl|E, (5)

where fy(t), f1(t) € L2(0,T) are given functions, a > 0, vg, o > 0, fo > 0, 51 >0, Bo+ 51 # 0
are given numbers, w € Ey is also given: w = (w1, ws, ..., wN)-

Definition 1. The problem of finding a function u = u(z,t) € V;"°(Q) from conditions (1)-(4)
at given v € V is called the reduced problem.

Definition 2. The solution of the reduced problem (1)-(4) corresponding to the v € V is a
function u(z,t) € V;’O(Q) and satisfies the integral identity

Jo o w22 — Au,v) 3252 — B(u,v) 8% + 0 f (x, t)]dedt =
—fo a:Oda:—fO (0,8)Yo (¢ dt+f0 (I, )Y1(t)dt, (6)
Y n=n(z,t) € T/V21 1(Q) and n(z,T)=0.
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The solution of the reduced problem (1)-(3) explicitly dependes on the control v, therefore
we shall also use the notation u = u(z, t; v).

On the basis of adopted assumptions and the results of [12] follows that for every v € V' the
solution of the problem (1)-(4) is existed, unique and |u,| < Cp ,V(z,t) € Q, Yv € V | where
Cy is a certain constant.

Optimal control problems of the coefficients of differential equations do not always have
solution [13]. In [14], we proved the existence and uniquness of the solution of problem (1)-(5)
as follows:

Lemma 1. At above adopted assumptions for the solution of the reduced problem (1)-(5) the
following estimation is valid
1

I6llyz ) < CL NI 0 + 138 Il o] ™)
where C1 > 0 is constant not depending on 61}.
Lemma 2. The function Jo(v) is continuous on V.
Theorem 1. The problem (1)-(5) at any o > 0 has at least one solution.
Theorem 2. The problem (1)-(5) at o > 0, at almost all w € En has a unique solution.

The inequality constrained problem (1) through (5) is converted to a problem without
inequality constraints by adding a penalty function [15] to the objective (5) , yielding the
following ®, s(v, A,) function:

as(v A )E (v):Ja(v)+Ps(v)7 (8)
where
DUV (u,v) = [max{vy — A(u,v); 0}]* + [max{\(u, v) — po; 0}
BUV (u,v) = [max{vo — B(u, v);0}] + [max{B(u,v) — io; 0}
Q' (u) = [max{r, —u(z,t;v);0}]*, Q*(u) = [max{u(z, t;v) — r2; 0}]*
L T
Ps(v) = As/ /0 [DUV (u,v) + BUV (u,v) + Q" (u) + Q*(u)]dxdt
and A, , s=1,2,... are positive numbers, lim,_ o As = +00.

3. Approximation of the Control Problem

In this section, we shall find the difference approximations problem for (8), (1)-(3). Fr
[16], We give the net norms for the net functions [Z] = {(Z1)],---,(Zw)]}, i =0,N,j = 0,
with m components:

E

N-1 M

N-1

1

[ PR hTZZ (21} max||Z| 1. o) = max(h 3 (2],
i=1 i=0

for the net functions [Z] = {(Z1)i,- -, (Zm)i},i = 0, N and also for the net functions [Z] =
{(Z1)j, -+,(Zm);},7 = 0,M the norms are

N-— M
1 .
121l s@) = hz )12 12 oz = (7Y (Z)°]2 correspondingly.
i=0 j=1

For discretization the optimal control problem (1)-(3),(8) in Q we introduce the net @y, =
Wh X W, where
Wy ={z; =ih,i=0,N,Nh =1}, Wy ={tj=4j1,j=0,M,Mr=T}.
Here and further for arbitrary net functions v = u! = u(zx,t) = u(wi,t;) = v,z = z; €
Wh,t =t; € D, adopt denotations [17]:

U= U(:L’i,tj+1) ’Uz]+1, u* = u(xi)tjfl) = ’u’gil
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u” =u(zio1,t) =ul_y, ut = u(wiy,ty) = “g—i-l
ut —u u—u” a—u u—u*
Uy = h , Uz = h , Ut = - , Ug = .
The given functions in (6) approximate as follows:

t; wz+1 tj z+1
J
A hT/ / u(z,t),v))dzdt, f] = e / / f(z, t)dzdt,

) Tit1 i+1
Bl = h—/ / B(u(m,t),v))dwdt,/ f(o,)dadt, =0 N—T,j=T10,
T tji—1Jw Ti

1 [T S
o; = E/ ¢(x)de, i=0,N—1,

. 1 ti+% . 1 tit+3
v =1 [T a7 =1 [ v, =TT
tji—% tji—%

The discrete analogy of the integral identity (6) writes in the form
EDIed Sl T{UTED Srired S BV CARCHRES HCHR R HE
=—h Eﬁiol ping — 7 E]A/i1 n(])(YO)j -7 Zj:l 77N(Y1) ) 9)

for any network function nlj ;M =0.
From [18], we have

hTE Z;V[11“](771) :_hTZ Z] 1 (u Z) 771 +th 0 “ nM

—h Yyt udn? +hTZJ (e (10)
—hT Yy Sy N(ud)a () = b 000 00 (N () a)am
-7 Ej:l >‘3V—1(UN—1)9677N +7 Ej:l A{)(Uo)xno- (11)

Using (10), (11), from (9) we obtain
W N Y = (e + (N (ul)e)e — B (). + filn] = h 3205 udn?
~hr ¥l 1(“’0)t770 + 7 Y I ()ami) + My (uly_y)amh] = B din?
+7 Y0 (Vo) — A (Y1)9] + hr 3 [BE (ud) oty — i £3)- (12)

Hence, equality to zero the coefficients of ni , we obtain the difference approximations prob-
lem for (1)-(3):

(w])s = N (u])e)z + B] (u])e = f] = 0,i =T, N =1,j = T, M, (13)
9:¢ =0,N—1 (14)
X ()e = (Vo) = h(ud)g = hfg + hB(uf)e = 0,j =T, M (15)
A?\ffl(U’Nfl)m -y =0,j=1,M (16)
But the functional (8) is approximated by the following way [19]:
1) = fo TiZalug — (VTP + 81 Sl [uk = (VP +a iy for — wnl®
+A, SN S DUV (ul,v) + BUV (uf, ) + Q (ul) + Q2 (ul)] (17)

4. The Estimates of Stability for (13)-(16)

In this section, we shall prove the estimates of stability for the difference approximations
problem (13)-(16).
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Theorem 3. Suppose that the all functions in the system (1)-(3) satisfy the above enumerated
conditions. Besides, \(u,v), B(u,v) satisfy the Lipschits condition on v with constant L ,
Y(z,t) € Q and for any v € V. Then the estimates of stability for the difference approximation
problem (13)-(16) are

ll .., < ColldIR, ., + 1712, + YOI, . + IV, )] (18)
el ., < CollOl, g, + 1712, @, + ||Yo||i2@) SNl (19)
max /]2 ) < Calll61 ) + 112, + VOl + IV )] (20)

where C is a constant depending only on the constants in (1)-(3) and L.
Proof. Using the arbitrariness of choice i} at every layer j > 1 and from (9), we obtain

—hZ Dl + X (ul) o (n))e + Bl (ul)en? —nl 1] = i (Yo)? — i (V)7 (21)

Put n/ = 27u’ and M >y >0, Bl > v >0, we have
Wil ()’ +2hTzN X)) + 20 S5 B (ul)eu] <
2hr 30t wd f 4 2[ud (Vo) — uly (Y1)7], (22)
Applying e— inequality, we obtain
NS @) + 20 NG M (ud)? + 2hreo NG (B2 (ul)2+
% Zi:O (Uz) < htey Zi:O “Z + I;_: Zivol(fz )?+
+ear(ug)” + (uhy)?] + Z1(Y0))? + (Y1))?]. (23)
Using the estimate from [20,p. 290], we have
W () + 2hr UG M (ud)? + 2hreg Y01 (BY)? (ud) 2+
ey W) < hrey YL ul 4+ A T (f»J) + Z[((%)!)? = (V1)7)*]+
+2e2(e3 + h)hr Yicy (ul)? + 2e2(2 + H)hr Y, (ul)?. (24)
Summing the inequality (24) on j from 1 to M; < M we have
PTG )2 + 2 TG B M + 2hreo T T (B2 )+
2 S i () < h S ) + hrey R 0T
e S () +52£ia[(( 0))? = (1)7)?)
+2e5(e5 + W)hr 105" 00 (ul)? + 260(E + P)hr S S (ud)? (25)

Taking into hZi:o (ud)? = hz ' ¢? and summing the inequality (25) on M; from 1 to
My < M and multiply by 7, we have

hr N Z | (ul)? < ~Tavg + vy — 2ea(es + )hT Y0y E (ul)?
+2Toh Yot 8% + Taler — 2)hr Y1yt SO0 (ul)? + Tii”Z PR (F)+

Lz 0 [(Y0)7)? = (V1)9)2] 4+ 2ea(L + 1) Tohr Y100 300 (ud)?, (26)
where T2 = TMQ.
At sufficient small 7, h, we may always choose Ma, €9, €1, €3 5o that [V +vieg—2e2(e3+h)] >
0, Tz[(e1 — %) + 282(% + 4)] < 1, we have

B Yoot S (ul)? < Ca{h o 67+ b I ST (1) +
+7 I [(V0)7)? = (1))}, (27)
where C3 = (1 —T2Cy)~ max{2T2, 2,C5To}, Oy =[(e1 — —) + 2 ( +1)],Cs = max{é}.
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In (25), put M; = M, we have
hr NS wl?)? < Cl{h NG 62 + hr NG M ()2 +
+7 XM 1((%)7)? = (1))}, (28)

where C§ is a constant depending on vg,v; and T5.
Summing (27) on j from M; + 1 to M3, and on M3 from M> + 1 to 2M>, we obtain

hr Y S W) < Cs{h Y (u] )2 4 hr Nt S e L (FD)?+

M L (Y))? = (M)7)]). (29)
hr o M) < Colh oo (ul™)? + hr N M ()2 +
+7 z?f@m[((m )2 — (v1)7)2]}- (30)

Then from (29) and (30) we have
i ()2 < (Co){h oy (60)? + hr g Y02 (f)?
+7 22 (090))” = (PP + Co{hr £ szi@H( %
+r e G [(Y0)7)? = (V)9)2]}. (31)

Not treating the generality for shortness of arfunents, set % = K is an entre. Then obtaing

sucessively the estimations for hr Zfigl(uf )2 at j = 3My,4M>, -, M analogously as it was
made at obtaing of (31), we have

ht Yo W) < CT{h g (90)> + hr X0yt S (F)2+

+7 7L [(Y0))? = (1))}, (32)
where C; = Cg if Cg > 1,C7 = (CB)K if Cg > 1.
Then from (32) follows (20).
It is obvious that inequality is valid, if in the left part to substitute M to M; < M. Summing
this inequality on M from 1 to M and multiply by T, we have

WYyt St (u])? < CrT{h 0050 (00)? + hr 050 S50, ()7 +

+7 50 [(Yo))? — (1))}, (33)
Then from (33) follows (18).
Put M; = M in (33) throwing the term at left part and using (25) we have

h syt Sl ()2 < CsT{h Yy (0:)? + hr Yy S (F)2+

+7 M [(Y0))? — (Y1)9)*]}- (34)
Then from (33) follows (19). The Theorem is proved.

5. An Estimate of Stability on v

In this section, we obtain the stability estimation of the solution of difference approximations
problem (13)-(16) on v.
Theorem 4. Suppose that the all functions in the system (1)-(8) satsify as above enumerated
conditions. Besides, \(u,v), B(u,v) satisfy the Lipschits condition on u and v with constant
L, Y(x,t) € Q and for any v € V. Then the stability estimation of the solution of difference
approximations problem (13)-(16) on v are

N-1 N-1 M N-1 M
h Z (6u?)? + hr Z 2(5u2)2 + ht Z Z 2 < Colldvl|%, (35)
i=0 i=0 j=0 i=0 j=0

where Cy is a constant depending only on constants in (1)-(4), L and du is the increment of u
corresponding increment of ov for v.
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Proof. Let v obtain an admissible increment of dv. Corresponding increment for uf denote
by du?. It is obvious that increments which are obtained for X!, B! are equal to X! (u! + dul, v+
dv) — X (ul,v),B! (ul + 6ul,v + dv) — Bl (ul,v).

The components of the function ﬂf = ug + 6ug satisfy the equality (9) with functions

X =X +6)M, B =Bl +4Bl. |
Substraction from (9) for w’ the equality (9) for u!, we obtain
—h7 St Xt Gu)en] + hr Yo" 3L [ (] + dul v+ 0) ()
+(0ul)e) + M (ul,v) (W) ](n))e + hr Zﬁigl Ejjvil[—Bg (u! + dul, v + 6v)
((u))e + (8uf)e) + B (u], v)(u])a]n] = 0. (36)
Put nlj = 2T(5ug, we obtain

=20 5555 @udan] + 2hr S5 (=X (] + Gl v + 6v) A
M (ud 0 (ud) ) (0ul), + 2hr SN =Bl (ud + dud v + dv) A,
+BI (ul,v)(ul),]0u! = 0. (37)
where Ay = (u?),+(du?),.. Taking into account that 27 (5u? );0ul = (§u?)2—(ul )2+ ()2 (6ul)?,
we obtain
AN Gu)?2 + R YN S w2 <

+2hr SN ot (0l ) [N (ul + 6ul v + 6v) — X (u] + dul,v)](ul)a
+2hr YN ot (0wl [N (ul + 6ul,v) — M (ul, v)](u])?
+2hT Zil\;_ol 6uZ[BZ(uZ + 6ug, v+ 6v)Bg(uZ + 6ug, v)](ui)x
+2hr NS 0wl [BI (ul + dul,v) — B (ul,0)](ud),- (38)

Taking into account, that A(u,v), B(u,v) satisfy the Lipschitz condition on v, the second and
fourth terms in (38) become

2ht iy (ul) o [N (ud + 0ud,v) — N (ud,v)](u))?
< 20t SO |(0ud) s (ul) o | LSl
< 2hrL YNV |(6ud) 0ul|

< Llhr NG (0ud)2 + hr NG (0ul)?). (39)
N71 . . . . . . . . N71 .
2hr Y dul[B](ul + 0ul,v) — B (ul,0)](ul),ul| < 2h7L Y (5ul)>. (40)
=0 =0

Appliying the e— inequality for the first and third terms in (38), we have

2hr NS (6ud) o [N (ud + 6ud, v+ Sv)M (ud + dud, v)](ud), <
50 (Gun)i o eahr S5 TN (] o duf, 0+ 6v) = X (] + G, v)] ()3

N— i F —N— i
< erhrLloull, SN ()2 + 22 YN Gud)2. (41)

2hr YNt oud [BY (ul + oud v + 60) B (uf + dud, )] (ud), <
b SV 0ud)? + exhr SN G B (ul + dul v + 6v) — B (ul + dul,v)](ul)?
< eshtLl|dv]|%, Y NG ()2 + 22 2V (0ud)?. (42)
From (39)-(42) and (38), we have
RN 0ul)? < h NS w2+ (2 + Db YN (0ul)?

)T Xito' (6u])? + Ler + e2)l|0v[f, r 30" (u)2. (43)
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Summing (43) on j from 1 to M> < M and multiplying to 7, we obtain

N-1 N—1 M j

h ity (6u™)? < (2L + i)hT Yico 2 (0u)®
+L(er + &) |0, hr 5 (). (44)

The reasoning used in the proof of theorem 5.1 applied here, proves that the estimation (35) is
true. The Theorem is proved.
Acknowledgments. The author gratefully acknowledges the referee, who made useful sugges-
tions and remarks which helped me improve the paper.
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