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Abstract

In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the
quadrilateral case. Optimal H' and L? error bounds independent of the plate hickness are
derived under a mild assumption on the mesh partition.
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1. Introduction

We consider the finite element approximation of the solution of Reissner-Mindlin (R-M
hereinafter) model, which describes the deformation of a plate subjected to a transverse loading
in terms of the transverse displacement of the midplane and the rotations of fibers normal to the
midplane. As it is well-known, standard finite element approximation of this model usually fails
to yield good results when the plate thickness is small, which is commonly referred to locking
phenomenon, so some numerical stabilization tricks such as reduced integration or the mixed
variational principles are needed to overcome this difficulty. MS elements proposed in [9] seem
the simplest rectangular elements in such category [3]. However, quadrilateral elements are
far more flexible than rectangular elements, so it is quite important to construct quadrilateral
R-M plate elements, or extend the existing rectangular R-M elements to the quadrilateral case.
On the other and, it is noticed recently that the extension of rectangular R-M elements to
isoparametric quadrilateral R-M elements is not so straightforward [10]. The goal of this paper
is to extend MS elements to the quadrilateral case and give a mathematical analysis.

We conclude this section with a list of some basic notations used in the sequel. In §2, the
R-M plate model and its varational formulation of Brezzi and Fortin [4, 6] are recalled. In
83, we describe the quadrilateral version of MS elements and the method we used is recast
in the variational formulation of Brezzi and Fortin based upon a kind of discrete Helmholtz
Decomposition. The error estimates are included in §4.

We use the standard notation and definition for the Sobolev spaces H*(Q2) and H*(9) for
s > 0 [1], the standard associated inner products are denoted by (-,-)s and (-,-)s 90, and their
norms by || - ||s and || - ||s,aq, respectively. For s = 0, H*(Q2) coincides with a L*(2). In this
case, the norm and inner product are denoted by || - ||o and (-, -) respectively. As usual, H§(2)
is the subspace of H*(2) with vanishing trace on Q. Let L2(£2) be the set of all L?(Q2) functions
with zero integral mean.
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Throughout this paper, the generic constant C' is assumed to be independent of the plate
thickness ¢ and the mesh size h.
Finally, we use the standard differential operators:

v (o) = ()
divep = Oy /0x + O /Dy, rot ) = Otha/Ox — Oth1 /Oy.
We also need the following vector spaces
Hy(rot, Q) = {q € L*(Q) | rotq € L*(Q),q-t =00n 0N },
where t is denoted as the unit tangent to 912, and
H(div,Q) = {q € L*(Q) | divg € L*(Q) }.

The norm in H(div, ) is given by

. 1/2
Il exaiv) = (Imll§ + I divallo) "

2. Reissner-Mindlin Plate Model

Let Q be a convex polygon representing the mid-surface of the plate. Assume that the
plate is clamped along the boundary 9). Let w and ¢ denote the transverse deflection and the
rotations, respectively, which are determined by the following

Problem 2.1. Find (¢,w) € H(Q) x HY () such that
a(¢, %) + (v, Vo —4) = (g,v) ¥(9h,v) € Hy(Q) x Hp(Q). (2.1)
The shear strain v is defined as
v: =M (Vw - ¢).

Here g is the scaled transverse loading, ¢ is the plate thickness, A\ = Ex/2(1+ v) is the shear
modulus with Young’s modulus E, v the Poisson ratio, and & the shear correction factor. The
bilinear form « is defined as a(n,¥) = (CEn, E), here Ct is defined for any 2 X 2 symmetric
matrix 7 as

E
CT. = m [(1 — l/)T + l/tr(T)I] .
Following [4] and [6], Problem 2.1 can be written into the following decoupled system as
Problem 2.2. Find (r,¢,p,a,w) € HY(Q) x H5(Q) x L3(Q) x Hy(rot, Q) x HE (), such that

(Vr,Vu) = (g,1) Vu€ Hy(Q),

)=
a(¢,¥) — (p,rotp) = (Vr,9p) Vop € Hy(),
—(rot ¢,q) — X't (rot e, q) =0 Vg € L3(Q),
)
)

(a,0) — (p,rotd) =0 Vd € Hy(rot, ),
(Vw,Vs) = (¢ + X\ 12Vr,Vs) Vs € Hy(Q).
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It is not difficult to show that Problem 2.1 is equivalent to Problem 2.2. The existence and
uniqueness of the solution of Problem 2.2 and the following regularity result can be found in
[4], [9, Theorem 2.1] and references therein.

Lemma 2.3. If (r,¢,p,o,w) € Hy x Hy x L3 x Hy(rot) x H} are the solutions of Problem
2.2, then we have the following a-priori and regularity estimates

lI9ll2 + ll7llo + [lwlly < Cllgll-1,

Irlle + [lpllx + #pll2 + lleello + tledlly + #[[roterllo < Cligll -1, (2.2)
lwllz < C(llgll—1 + #[lgllo), (2.3)
IV E(aiv) + [I7[l2 < Cllgllo, vl < Clllgll-1 + tllgllo)- (2.4)

3. Finite Element Approximation

Let 7, be a partition of Q into convex quadrilaterals K with the mesh size hx, define
h: = maxgeT;, hix. The usual regularity assumption for 7}, is assumed in the sense of Ciarlet
and Raviart [7, pp. 247], the quasi-uniformity of 7}, is also assumed. We denote the distance
between the middle points of two diagonals of K as d.

Definition 3.1. (1 + a)—Section Condition (0 < a <1) [12]
dix = O(hit®),
uniformly for all elements K as h — 0.

In particular, we recover the Bi-Section Condition [14] if a = 1.

Let K = [—1,1]? be the reference equare. Then there exists a bilinear mapping Fx from
K onto K with Jacobian DFg and determinant Jx. Denote Jo = Jk(0,0). Let Q;; be the
space of polynomials of degree no more than ¢ for the first variable and no more than j for the
second, and set Q; = Q; ;.

We use the conforming bilinear element space

Wh:={ve Hy|v, € Q(K) VKeT,}
for the approximation of the deflection. Let
Q1:={qo Fg' | q € Span(l,z,y,2° — y°) }.

For any edge F C 0K, the edge functional Jr is defined as
1
Jr(v): = —/ vds, Yv e L*(K).
\F| /7

A local interpolation operator Jg is generated by Jr with jK‘f = Jr for all F C 0K. The
following NRQ; space [13] is used for the rotations:

Np:={veL*(Q) |v, € Q; andvis continuous regarding 7 }.
The corresponding homogeneous space is defined as

Nopn:={veN,|Jr(v)=0, forF CON}.
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Let
1/2

/
Pollae = (3 Molizie) ™ and folons= (30 i), 1=12

KeTn KeTh

It is obvious that |-|1 is @ norm on Ny p.
Define

Vht = NO,h X Wh.

As V', is nonconforming, so when differential operators such as &, div, curl,rot and V may be
applied to functions in V', we shall write &, divy, curly, rot, and Vj, in all these cases, which
are defined in a piecewise manner.

We summarize some interpolation results for J# and its global version which is defined as
Up) = Ik

Lemma 3.2. [13] The forgoing defined interpolation operator Jr and I1j, admit the following
estimates

I = Tr(©)llo.r < Chi* ol Vv € HY(K). (3.1)
Moreover, if the (1 + a)—Section Condition holds, then
lv — Tpollo + Allv — Tpollin < CRM||v|ls Yo € Hy N H?. (3.2)

At last, we use the lowest-order rotated Raviart-Thomas space for approximating the shear
force as follows:

Ty = {x € Ho(rot,Q) | x o Fx = DF %, X € Qo1(K) x Q10(K) VK € Tp}.

The lowest-order rotated Raviart-Thomas interpolation operator Ry, is defined as Rh| « =Rk
and

/(¢—RK¢)-tds:o, VF C 0K,
F

for any ¢ € H'(Q) N Hy(rot, Q). Clearly, we have

(rot9) o Fr = Jy'rotap,
[ rot Rtp dx = [}, rot ¢ d. (3.3)

Since f]_-'(/J -t is well-defined for b € V7, so does Rp1p. We list some interpolation error
estimates for Ry, in the following lemma.

Lemma 3.3. For any ¢ € H' N Hy(rot), we have
1Y — Ravpllo < Chlels. (3.4)
Moreover, if the (1 + a)-Section Condition holds, then
[[rot(¢h — Rutp)llo < C(hlrot 3|y + h®||rot 3p|lo).- (3.5)

Proof. Proceeding along the same line of [8, Lemma 7.1], we get (3.4). Noting that (3.5) is
already included in [10, Theorem 3.1].
O
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Further we denote Q), the subspace of L3(2) with piecewise constant on each element and
I19 the corresponding L? projection operator. Let II} be the standard bilinear interpolation
operator and its vector counterpart ITy: = (II;, IT}).

With these notations we have the following finite element approximation:

Problem 3.4. Find (¢}, wn) € Vi, x Wy, such that
an(Pp,P) + X2 (Vwp, — Rugpy, Vo — Rptp) = (g,0)  V(h,0) € Vi x W, (3.6)
The shear force is defined locally as
Yp: = MT2(Vwy — Ruy,).
The operator curly, : Qp — I’y is defined by
(curly ¢,¥) = (q,rot ) Vi € T'y,.

Our analysis is based upon the following Discrete Helmholtz Decomposition. Its rectangular
version has been proved in [9, Lemma 3.3].

Lemma 3.5. For any q € Ty, there exist unique r € Wy,p € Qp and a € T'y, such that
q=Vr+a, (3.7)
and (o, s) = (rot s,p) Vs €Ty,
Proof. Consider the following mixed problem: find (e, p) € T';, X Qj such that
(a,8) — (rots,p) =0 Vs eTy,
(rota,m) = (rotq,m) VYm € Q.

Notice that (T'y, Qp) is a stable pair for such mixed approximation, so there is a unique pair
(o, p) satisfies the above equations. Using (3.3); and Jg > 0, we have rot(a — q)|, = 0 iff
rot(c — q) = 0 on K. Defining m on each element as m = rot(a — q)/Jo and putting it into
the second equation of the above formulation, we obtain rot(c — q) = 0, so rot(c — ) = 0.
Notice that VW;, C Ty, and therefore, there exists r € W}, such that & — q = Vry, which
completes the proof. O

|x

Using the above lemma, we have
At*Q(th — Rh(,bh) = Vry, + ap

with rp, € W}, and o, € T',. Proceeding along the same line of [5, 6], and using the following
equations

(I'Ot Rh'l:b:q) = (I'Ot’l,b,q) V’l,b € H(} and /S Qh:
(rotn Ratp,q) = (rotn¥,q) VY € V) and g€ Qp, (3.8)

we obtain the following alternative variational formulation of Problem 3.4:

Problem 3.6. Find (1, ¢y, ph, on,wp) € Wi X Vi, x Qp x T, x Wy, such that

(Vry, Vo) = (g,v) Yv € Wy, (3.9)

an(@Pp, V) — (pr,rotp ) = (Vrp, Rptp) Vi € Vi, (3.10)
—(rotp @y, q) — X't (rotap,q) =0 Vg € Qp, (3.11)
(ap,0) — (pr,r0t0) =0 V4 € Ty, (3.12)

(Vwn, Vs) = (Rupy, + X 12Vry, Vs) Vs € Wy (3.13)
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As before, we can rewrite the equations (3.10)-(3.12) into a compact form as
An(bn> an; $,0) + Bu(9, 0;pn) = (Vrn, Rutp)  V(1,0) € Vi x T
Bu(pp,an;q) =0 Vg € Qp,
where
Ah(d): «; 1/)5 6) = (Cgh(;b: ghd’) + >‘_1t2(aa 6)7
Bu(4,6;): = —(vot 1, q) — A~ '#*(g, 10t 8).
The above two bilinear forms are bounded with respect to the following norm
I, 8lll: = NIl + ¢[18115 + t*]] rot &[5

Remark 3.7. (3.8) is crucial to derive the above variational formulation (3.9)-(3.13). Notice
that in the rectangular case, we have the following simpler form (Cf [9, (3.21) and (3.22)])

rot Ryyp = Moty Ve € HY, rot Rpap = Igroty ¢ Vap € V.

3.1 Well-posedness of M-S 1 Element

The well-posedness of Problem 3.6 hangs on the following two assumptions

1. K-ellipticity. There exists a constant C' > 0 such that

for all

('(/J,(S) € Zy: = {('(/J,(S) eV, xIy | Bh(z/:,é;q) =0Vq € Qh}
= {(¢,6) eV, xTy | rot, Ry = 2 2 rot 6} (315)

2. B-B condition. There exists a constant C such that
B(1,0;q)
sup

— s = Cllalle Vg € Qn. (3.16)
w.)evaxr, P, 0]l

Proceeding along the same line of that in [9, Theorem 5.7], we need the Poincaré inequality
and the Korn inequality for V', to ensure the K-ellipticity. The former can be found in [11]
and the latter in [9, Theorem 5.1.8]. AS to the B-B inequality for the finite element space pair
(V'h,Qpn), a proof is included in [9, Theorem 5.2.7]. Consequently we have

Theorem 3.8. Problem 3.6 admits a unique solution (rp, @y, ph, @n,wn) € Wi, x Vi, X Qp X
Ty, x W}, such that (3.9)-(3.13) hold.

3.2 Energy error estimate for M-S 1 Element

Here follow the energy error estimates which can be derived literally as [9, Theorem 5.8, The-
orem 5.9].

Theorem 3.9. Let (¢p,w,) and (¢, wn,},) be the solutions of Problem 2.1 and 3.4, respec-
tively. Moreover, if the (1 4+ a)—Section Condition holds, then
1P — Pullin + Il = yall-1 < Ch¥|gll-1,
IVw = Vwallo < C(h%|lgll-1 + hmax(t?, h%)]|g]lo)-

Remark 3.10. Obviously, if the Bi-Section Condition holds, i.e., « = 1, in view of the above
theorem, the optimal error bounds for all variables with respect to the energy norm are obtained.
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3.3 L? Error estimate for M-S 1 Element

Now we consider the L? error estimate for the rotations and the deflection by employing a
super-approximation results proved in [10, Lemma 3.6].

Lemma 3.11. Let v € Hy N H? and ¢ € H(div). If the (1 4+ a)— Section Condition holds,
then

(¢, 9 — RypII4p)| < CH**(IC| prcaiv) [[9]]2- (3.17)

With the above lemma and Theorem 3.9, proceeding along the same line as that in [9,
Theorem 5.10], we obtain

Theorem 3.12. Let (¢p,w) and (¢py,,wn) be solutions of Problem 2.1 and 3.4, respectively. If
the (1 + a)—Section Condition holds, then

16 = @ullo + llw — wrllo < CH**[|g]lo.

4. Error estimates for M-S 2 Element

We now turn to error estimate of M-S 2 element. The only difference between M-S 1 and
M-S 2 is the approximation of the rotations. We define the approximation space as

Vh: = NO,h X NO,h-
Proceeding along the same approach of [2], we obtain

Theorem 4.1. Let (¢,w,y) and (¢, wn,y,) be the solutions of Problem 2.1 and 3.4, respec-
tively. If the (1 + a)—Section Condition holds, then

¢ — dpllin + IV(w —wh)llo < Ch* max(1,t*/B%)|gllo,
Iy = vpll-1 < Ch*(1 + max(1,t/h))||gllo,
lp — bullo + [lw — whllo < Ch** max(1,2*/h)||gllo-
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