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Abstract

Let Th,, be an n x n unreduced symmetric tridiagonal matrix with eigenvalues

A< A <o < A

and
T k-1 0
Wi, = ’
g ( 0 Tit1,n >
isan (n — 1) x (n — 1) submatrix by deleting the k** row and k** column, k =1,2,---,n
from T,.
Let

1 Spe <o < g

be the eigenvalues of T -1 and
e < pet1 < S et

be the eigenvalues of Tx41,p.

A new inverse eigenvalues problem has put forward as follows: How do we construct an
unreduced symmetric tridiagonal matrix 71, if we only know the spectral data: the
eigenvalues of T} ,,, the eigenvalues of T} ;—; and the eigenvalues of Ty 1, 7

Namely if we only know the data: A1, A2, -+, An, p1, p02, -+, prk—1 and g, k41,5 fhn—1
how do we find the matrix 71,7 A necessary and sufficient condition and an algorithm of
solving such problem, are given in this paper.

Key words: Symmetric tridiagonal matrix, Jacobi matrix, Eigenvalue problem, Inverse
eigenvalue problem.

1. Introduction

Let
ar B 0
Br oz P
Tn = ﬂQ

- - ﬂn—l
0 6n71 Qp,
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be an n x n unreduced symmetric tridiagonal matrix, and denote its submatrix T}, 4, (p < q) as
follows

ap By 0
Bp  apr1 Bpti
Ty = Bpr1 p<gq
- : - ﬁqfl
0 Ba-1 oy

We call an unreduced symmetric tridiagonal matrix with 8; > 0 as a Jacobi matrix.
Consider Ti , and T} 4 to be Jacobi matrices. The matrix

o Tip— 0
Wi = ( 0 Tet1,n )

is gained by deleting the k" row and the k*" column (k = 1,2, ...,n) from T,,. We put forward
an inverse eigenvalue problem to be that: If we don’t know the matrix 71 ,, but we know all
eigenvalues of matrix T3 1, all eigenvalues of matrix T;41 ., and all eigenvalues of matrix 17 ,,
could we construct the matrix T ,,. Let w1, pio, - -, fbe—1, bk, k41, n—1, and Ay, Ag, - -+, Ay
are the eigenvalues of matrices T y—1,Tk+1,, and 71, respectively.Our problem is that from
above 2n-1 data to find other 2n-1 data:

a17a2>"'7an7and 51)627'“7ﬁn71

Obviously, when k=1 or k=n this problem has been solved and there are many algorithms to
construct T1 ., [1],[2],[4],[5],[10] . When we delet the k* row and the k'* column from T ,,
in cases k = 2,3,---,n — 1, it means to delet three numbers ay, 8;_1,and [y ,while in case
k=1,or n, it only delets two numbers ay,3; or a,,B,-1. So there is a difference betweem
them. For simplicity, we call the case k = 2,3,---,n — 1, above inverse eigenvalue problem as
(k) jacobi matrix inverse eigenvalue problem.We also call (1) Jacobi matrix inverse eigenvalue
problem, (n) Jacobi matrix inverse eigenvalue problem when k£ = 1,k = n respectively.More
simple we call them as (k)problem, (1)problem and (n)problem, respectively. In sectin 2, some
basic theorems such as secular equation, separation theorem are discussed, and the sufficient
and necessary condition for (k) problem has an unique solution, when T4 1 and Ty, have
no common eigenvalue, are given. In section 3, a discussion of the special case, when T} ;3
and T}y1,, have common eigenvalues, is given. There is a sufficient and necessary condition for
(k) problem. The interesting fact is that in this case, if (k) problem has a solution, then there
are infinite solutions. In section 4, an algorithm and numerical examples are put forward.

2. The Basic Theorems

Theorem 1. LetTy , = T}, be nxn unreduced symmetric tridiagonal matriz, whose eigenvalues
are A1 < Xy < +++ < \p. The matrix

o Ty 0
Wi = ( 0 Trt1,n )

is gained by deleting the k'™ row and the k' column from T, for k = 1,2,---,n. Let p;,i =
1,2,---,k—1 are the eigenvalues of T j,_1 and the corresponding unit eigenvectors are Si(l), =
1,2---,k—1. Let p;, i = k,k+1,---,n—1 are the eigenvalues of T} 11, and the corresponding
unit eigenvectors are Si@),i =k,k+1,---,n—1. Denote the (k — 1)!" component of Sl(l) to be
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S,(Cl_)u and the first component of SZ@) to be Sfi), then
n—1 k-lg g 2 nol % S22
i=1 i=1 ¢ i=k ¢

Proof. Permute the rows and columns of T},, such that the k** row and the k" column are
changed into the n* row and the n** column. Denote the matrix of the permutation

1, 2, -, k=1, k, k+1, ---, n
1, 2, -+, k=1, n, k, ey o n—1
by P,, then
0
Ty g1 :
0
Br—1 _
k
0
Tk+1,n :
0
0 --- 0 Br_1 Bk 0 --- 0 Qg
k-1 k

is denoted by A,, which is similar to the matrix T, and whose n — 1 order leading principal
submatrix is just Wj. Let

yT:(O,O,"',O, ﬁkfla 61@) 07)0)

k-1 k
then
o Wi oy
An= ( y" oo )
_ I 0 A — Wk )
det(M — A,) = det K PRI ) ( I )]
_ A — Wk -y
= det( 0 A—ap—yT\ — W)ty )
therefore
det(A\[ = T,,) = det(\] — A,,) = det(A\] — Wi)(A — ap — yT (A — Wi) " 1y)
n—1
= IO = m) = ax —y" (AL = Wi) ).
j=1
If the n — 1 linear independent unit eigenvectors of Wy, are x1, %2, -+, Tn—1,then due to the
construction of Wy, for ¢ = 1,2,---,k — 1, z; are the vectors corresponding to eigenvalue u;

with the following forms

s
0 Y
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and fori = k,k+1,---,n—1, x; are the vectors corresponding to eigenvalue u; with the following
forms
0
s& -
(Al — W)~ ! can be expressed as
n—1 1
A —W) ™t = T

therefore, y”(\I — W)~ly = St @ Note that (z'y) = Br_1 x 51(9131,i: when i =

1,2,---,k—1,and (2]y) = B x Sfi), when i =k, k+1,---,n — 1, so the Theorem is proved.

Theorem 2. If T ;1 and Tyy1,, have no common eigenvalue,then any root of following
equation:

(2)

kf (Be—s x S, )7 _”i (B x SED?N _,
A— i A— i -

F()\) = ()\ - Qp —

i=1 i=k
is an eigenvalue of T\,. On the other side any eigenvalue of Ty, is a root of the above equation
(2). If Ty p—1 and Tit1,n have common eigenvalues,then each of such common eigenvalues is
an eigenvalue of Ty,,and each of the rest eigenvalues of Ty, ,if and only if is a root of the above

equation (2).

For simplicity we call the case 1 that T} ;—; and Ty, have no common eigenvalue, while the
case 2 that they have common eigenvalues.

Proof. As Ty _1,Tky1,n are both unreduced symmetric tridiagonal matrices, both of the
first elements and the last elements of whose eigenvectors cannot be zero (see [9] and [6], p.55),

hence (1 X S,(gl_)u # 0, and [, x SSZ») # 0. Thus from (1), we know

e (D y2 ,

I I (Br—1 x S, ;) when j <k,
det I — Tn = P — ;) X J 3
. : i:li;éj('u] pi { (Br x 5£2]))2 otherwise. 3)

In case 1,0obviously,
det(ujl - Tn) 75 0.

It means that any p; is not an eigenvalue of T;,. So

det(M —T),) =0

k—1 (1) 2 n-1 (2)\2
(A o — Z (Br—1 % Sk—l,i) _ Z (Br x Sl,i) ) —0. (4)

i=1 A= p ik A= b

if and only if

Hence the first half part of this Theorem has been proved.
In case 2, if y; is a common eigenvalue, then H?:_fi# (j — pg) = 0, so from (3)

det(p;I —T,) = 0.

namely p; is an eigenvalue of T;. Further more if p; is not such common eigenvalue, then

H?;lt’;éj (1j — pi) # 0,50 from (3)
det(p‘jI - Tn) # 0.
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They are not the eigenvalues of T,. For any eigenvalue A; of T}, has to

n—1

P(N) = [Ty —m) =0

i=1
or
F()\) =0

If P(\;) = 0, it means there is a p;, such that A\; = p; and p; is a common eigenvalue of
Tik—1 and Thi1,n. So if Aj # pi,i =1,2,---,n — 1, then F(A;) = 0. On the other hand for
any A, if F(A) = 0, from Theorem 1, A is an eigenvalue of T,,, from the construction of F'()\)
A# pi,i=1,2,--- n—1. So the Theorem is proved.

Let p;,© =1,2,-,n — 1 be reordered as pj,,¢ =1,2,---,n — 1, such that

Hjy < Hjo < Hjg =~ < Hijr 2 < Hjn 1>

and if pj, = pj,,,,then let pj, is an eigenvalue of T1 ;1 and pj,, is an eigenvalue of Ty i1 5.
So that 71,72, -, Jn—1, 1S @ unique permutation of 1,2,--- n — 1. We have following roots
separation theorem for Jacobi matrices.

Theorem 3. For k=1,2,...,n, in the case 1, the following inequalities hold:
AL < gy <Ao< gy <o < gy < g,

and in the case 2, above inequalities also hold except for any common eigenvalue i, = pj, ., ,there
05 [j; = Ait1 = [bj;,,, instead of above inequalities pj, < Xip1 < pj;, -

Proof. We first consider the case 1, where pq, o, -, tn—1 are distinct each other. The
eigenvalue of T), satisfies equation (2)
F(\) =0.

We can rewrite F'()) as

A — Wi

F(\) = (A—ak—z—: G ) (5)

where ¢; > 0,i=1,2,---,n—1.
For sufficient small positive number e,

F(Mji_€)>0) F(Mji+6)<07 i:172)"'7n_]— (6)

F(-00) <0, and F(4+00) >0, (7)
hence it holds
AL < gy <Ao< gy <o < gy < g,

Now consider the case 2, if the least common eigenvalue is p;; since T4 y—1, Tk4+1,, are both
unreduced, the multiple number is at most two.So pj, = i, < fhj; -
Because

F(p‘js_e)>07 F(p‘js+€)<07 s=1,2,---,i (8)
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and (4),we have
A1 < Wj, < Ag < Wjo <"'<>‘i<uji-

By Theorem (2),we know pj, = pj,,, is a eigenvalue of T} ,,and this one must be A;y1.So we
have

At < gy <o <A< g = it = g

By same argument, we can prove this theorem completely.

Remark: This is a roots separation theorem. When & = 1 or k = n this is well known ([6],
and [12],p.300). Fork = 2,3,--,n — 1, this is new and more usefull and we can specially use it
in bisection method and divide and conquer method for finding eigenvalues of a Jacobi matrix
parallelly. We have discussed this in others papers([7]), ([8]).

Now let’s turn to the (k) problem. First

n n—1
ay, = trace(Ty ) — trace(Wy,) = Z i — Z 7 9)
i=1 =1

. So ay,a diagonal element of T,,, is known. Look at equation F'(A) = 0 in Theorem 2, where

Niyi = 1,2, mspiyi = 1,2, n—Land B 1S4, 5, = 1,2, k=15 8817, j =y ooon—1
are connected. Thus we have following basic theorem for solving (k) prblem.
Theorem 4. Let
Al < pgy < Ao < gy <o < gy < A, (10)
then the following linear algebric equations system:
T o Tp—1
+ +oo =Ny 11
Ai = A — 2 Ai = Hn—1 (11)
i = 1,2,"',17,,
has unique solution x = (x1,%2, "+, Tn—1) and
n
. Ai - )
m] — _ Hz:l( /"LJ) > 0 (12)

n—1
Hi:l,i;éj (i — py)
j:1727"'7n_17

Proof. The above equations system (11) has n equations and only n-1 unknown,so it is an
overdetermined system. We consider the system of the first n-1 equations:

1 Z2 Tn—1
Ai—p1 A — 2 Ai — fn—1

= >\i — O (13)

i=1,2,,n—1,

Denot, A to be the coefficent matrix of system (13),4 = ((A\; — p;)~*). It is easy to prove

det(A)=( J[ Qi=m)) ' x I i=x)x II w-nw) (14

1<i,j<n—1 1<j<i<n—1 1<i<j<n—1

From condition (10), det(A) # 0. So the system (13) has unique solution z. Now we need
to prove: this solution x satisfies the n-th equation of (11). For this aim, we will prove the



An Inverse Eigenvalue Problem for Jacobi Matrices 375

determinant of following n x n matrix G is equal 0:

(At — )™, (M — p2) ™, sy (M= pnmn) AL — ag
(A2 —pa) 1, (A2 — p2) 7, ey A=2= )T Aoy
G = .
(An—1 — u1)_1, (An—1 — u2)_1, ey (Aot — lin—l)_la An—1 — o,
(An — )7, (An — p2)™", oy (A = pnen)™h An — Qg
Firstly,
det(G) = ( [ =)™ x det(Gh),
1<i<n
1<G<n—1

and

fith)  fa(M) o0 fami (M) g(M)
G, = fl(/\Z) f2(>\2) fn71(>\2) Q(Az)

where f;(\) = [T/2} (A= )/ (A\— ;) and g(A) = [1;5 (A= ) x (A\— a). Let n x n bidiagonal

matrix

1, -1 0o ---, 0 0
0, 1 -1 -+, 0 0
El = 3 : )
0, 0 0 , 1 -1
0, 0 0 , 0 1
andiagonal matrix
()\1 — )\2)_1 0 0 0
0 Ay — A3) 7t 0 0
D, =
Azt — )"t 0
0 0 0 1
then
f1(>\1,>\2) fn—1(>\1:>\2) g(>\1,>\2)
JFi1(A2,A3) o fam1(A2, Az) g(A2,A3)
G2:D1E1G1:
f1(>\n—17>\n) fn—1(>\n—17>\n) g(>\n—1:>\n)
fi(An) o fami(An) g(An)
where
fi(Ap:Aq) = (fi(Ap) - fi(Aq))/O‘p - >‘q)
is a difference quotient. By this argument,similarly denote E;, D;,i = 2,3, -+, n — 1, as follows:

s (5 %)
E2f1 E2f2
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where Efq is an (n — i) x (n — i) upper biagonal matrix

1 -1 0 --- 0 0

. 1 -1 -~ 0 0
) -

1 -1

1

E% is an (n — ¢) x ¢ matrix which all elements of are 0 except element (n-i,1) is —l.Eg1 =0

Dy = D) o
o I’

where Dgl)l is an (n —i) x (n — i) diagonal matrix

and Eég is a ¢ x 7 identity matrix I.

DY) = diag((\ — Misi) ™ o = Aosd) H -, i = An) 7).

)

Then we have

fl(A17A2An) g(A17A2An)

fl(AZ’ABAn) g(A2’A3An)
Gn=Dn_1Ey_1---D1EG =

Fi(An—1,n) 9(An—1,An)

fi(An) g(An)

So
det(Gr) = [ (= \j) x det(Gn).

1<i<j<n

Let pm(A) = A™it is easy to prove that

0 iftm<n—-1
pm(AlaA%"'An): 1 ifm=n-1
SN ifm=n.
Hence
fi(Ah)‘Z)"')An) :O,Z: 1,2,...,71—].,
and

n n—1
gL A, A) =Y Ni—ak— Y i = 0.
i=1 i=1
All elements of the first row of G,, are 0,s0
det(Gr) =0 and det(G1) =0,

and z;,7 =1,2,---,n — 1 satify the last equation of system (11) is proved.
Now turn to prove expression (12) of z;.By Cramer’s rule

x1 = det(B)/det(A)
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where
AL —ayg (At — o)t (At — 1)t
B— Az — ay (A2 — po)t (A2 — pn—1)*
Aot — ok (Aot — p2) ™t (A=t = fin—1)™"
det(B) = II (A — p) "t x det(By)
1< ¢+ <n-1
2< j <n-1
where
g(A1) f2(A1) e fao1(Ar)
g | 9Q2)  folre) e faa(Re)
1 - PR ’
gAn-1) fa(An1) Jnc1(An—1)
and
n—1
gN) = JIO=m)x(A—aw),
i=2
n—1
£y = [T = pa) /(A= wy).
=2

We do difference quotient process as before,then

where
g(>‘1;>‘27"')>‘n71) Ty fj(Ah)‘Z)"')Anfl)
B L= g(>‘2;>‘37"')>‘n71) Ty fj(A2>>‘3)"')>‘nfl)
g(An-1) T, fj(>‘n—1)
and
Cc1 = H (>\z —>\j).
1<i<j<n—1
Because
n—1 n—1
gL A2, A1) = ZN - Zﬂj —ap = p1 — A,
i=1 j=2
fj(AlyA%"':Anfl) - 0>
jo= 23,1
SO
det(Bl) =cC1 X (/1,1 — >\n) X det(Cl),
where
f2(A27A3)"'>>‘n71) [ fnfl(A%A?n"':Anfl)
Cl — f2(>\37>\47"'7>\n—1) y T fn—1(>‘37>\47"'7>\n—1)
fZ(Anfl) [ fnfl()\nfl)

det(Bl) =cC1 X det(Bn_l),

S7T
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Using
(N = A=) Fi(Xis Aiets o Anm1) + Fi ik, Aiay o Anmt) = (A -+, Anz2)
we have
f2(>\27A3)"'7An72) y T fnfl(A2;>‘37"'7An72)
f2(>‘37>\47"'7>\n—2) y T fn—1(>\37>‘47"'7>\n—2)
Co=H; xC; = AR
f2(>\n72) y T fnfl(An72)
f2(>\n—1 sty fn—1(>\n—1)
where
A — A1) 1 0 - 0 0
0 A3 —Ap1) 1 - 0 0
H1 = .

By the same argument,at last we have

det(Cr)= [ i=x)x ] wi-w)/ JI i=X)

2<j<i<n—1 2<i<j<n—1 2<i<j<n—1

and

det(B)=(-1)"x [ Oi=d)x  TI (ui—m) % (u = M)/ (i = 1)

1<j<i<n—1 1<i<i<n—1 1gign-1
Therefore
n n
21 = det(B)/det(A) = — [[n — m)/ T[ (i = m)-
i=1 i=2

Similarly,we can obtain

i=1 i=1,#j
;7 = 1,2--- n—1
It is easy to verify
z; > 0
) = ]-7 2> e, — 1
Theorem 5. If there is no common number between i, fa, - -, phg—1 ond
Why b1y * *y Bn—1, then the necessary and sufficient condition of the (k) problem having a
solution is
AL < pgy < Ao < gy <o < gy < A, (15)

Furthermore, if a given (k) problem has a solution, then the solution is unique.
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Proof. The necessity has been proved in Theorem 3. Now we prove that it is sufficient too.
Under this condition the equations system (11) has a unique solution z;i = 1,2,--+,n — 1. Let

k—1
B = 4D i (16)
i=1

n—1
B = in, (17)
i=k

then
515717)1’]' = \/ZU_j/ﬂk—laj:LQ,"‘,k—l (18)
$E) = VEi/Bei=hkk+1,n—1 19

where S,(Cl_)L j is the last element of the unit eigenvector of T 1, corresponding to

the eigenvalue p;,and Sﬁ) is the first element of the unit eigenvector of Tj11 p,

corresponding to eigenvalue ;.

Let gr—1 be a (kK — 1) x 1 vector ,its j-th element is S,(gl_)m, then it is well known that by
M1, 2, -, p—1 and gr_1 can construct the matix 77 x—1 uniquely [10] [3].

Similarly let h; be an (n — k) x 1 vector,its i-k+1-th element is Sfi), then by ug, tg+1,
-+, pn—1 and h; we can construct the matrix Ti41,, [10]. So after remembering

n n—1
ap = ZN - Z i
i=1 i=1

the matrix T ,, is constructed completely.
Since (13) has unique solution, it is easy to know that the solution of (k) problem is also unique.

3. Solve (k) Problem in Case 2

Given three real numbers sets

S1 = {>\17>\27"'7>\n}7
S2 = {/1’17/1’27"'7/'“6—1}
and S3 = {ptk, Prt1s s a1}

each set Si,i = 1,2,3 has diferent elements, if S2 and S3 have common elements, we want
to find a matrix T4 , such that the eigenvalues set of T} , is S1, and the eigenvalues sets of
submatrix 71 ;1 and Tjy1,, are S2 and S3 respectively. For simplicity we consider only one
common element for example p; = pi. By Theorem 2, one and only one eigenvalue of T} ,,,A4,
is equal to p1. The elements of S1,52,53 must have the separation property of Theorem 3.
Firstly a, = 320 A — 77, i is same with the

case 1. Furthermore we have

F(AZ):071217277q_17q+177”

Consider equation (11) for ¢ # g,because the coefficient of z; is equal to the coefficient of xy,
namely

/(N — 1) = 1/ (N — pe),
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so the equation can rewrite as

k—1 n—1

zl + zk T T
A ST S e =
Ai—p A S A

i:172)"'>q_]—7q+]—7"')n

Let yy =21 +2 and y; = 24,1 =2,3,---,k—1,k+1,---,n—1, then we have equations system

k—1 n—1
U Yp Yp

+) + Y T = Ni—a (20)
Ai—pr gy S A

i:1)27"')q_1>q+1>"'7n' (21)

This is a system of n-1 equations, with n-2 unknowns and it is reduced to equation(11l), in
the case 1. By Theorem 4 it has unique solution (y1,y2, ", Yk—1,Yk+1, " >Yn—1) and all its
elements are positive.

Now for any 6 € (0,1), let 1 =8y, 21, = (1 —0)y; and x; = y;,i =2,3,---,k — 1,
k+1,---,n— 1. We compute

k—1
(Br-1)® = sz (22)

G = S (23)
i=k

Sl(cl—)u = zi/(Be1)%i=1,-k—1, (24)
SE = Val@)%i= k-1 (25)

By pi,p2, -, ur—1 and S,(cl_)1 ;4 = 1,---,k — 1,we can construct a matrix 7131 and by

Wy Bkt1," "y Hn—1 and Sfi),i =k,---,n — 1, we can construct a matrix T41,,. From T} ;_1,
Tht1,n, a, Br_1, and (B we obtain T -

Obviousely, the eigenvalues set of T ,,, T3 ;-1 and Tjy41,, are S1,S52, and S3 respectively.

So we have proved the following theorem:

Theorem 6. Given three real numbers sets
S1 = {>\17>\27"'7>\n}7

S2 = {ul:u?:"':uk—l}
and S3 {bks ohs1s -5 o1}

that each set has diferent elements and
A< XA <o < Al1 < A,

My < gy Syt S gy S MGy

where (ji,j2,*, jn—1) is a permutation of (1,2,---,n—1), if pj, = pj, .., then the sufficient and
necessary condition which the (k) problem has a solution is that the following strict separation:

A< gy < Ao < frjy <o < gy < A, (26)
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holds except j1;, = Agy1 = 1j,,, instead of above pj < Agy1 < pj . Furthermore if the (k)
problem has a solution then there are infinite solutions.

4. Algorithm and Numerical Examples

Summarize above discussion,we can give following algorithm for solving (k) problem:

Step 1 Find «af from (9).

Step 2 Find z = (21,22, -+, Zp—1) by solving the system (13) or from (12) in case 1.
In case 2, first merge some zx; to be a vector y,and find y by (13) or (12).
Then split corresponding elements of y and obtain = as show in section 3.

Step 3 computef;_1 and Bifrom (16),(17).

Step 4 compute Sy ;i=1,2,---,k—1and S{i=kk+1,---,n—1.
from (18),(19).

Step 5 Compute T4 ;—1 from S,(Cljl’i,i =1,2,---,k—1and p1, 2, -+, k-1
by Lanczos Process or Givens Orthogonal Reduction Process [3],[5] .
Compute Tj41,, from Sfi),i =kk+1,---,n—1and g, fbget1, s fn-1
by Lanczos Process or Givens Orthogonal Reduction Process.

Example 1.

Let
1100 0 0000
12100 0O0O0O0
013 1000O0O0
001 410000

Ti 000151000

000016 100
000001710
000 0O0O0T1281
000 0O0O0OO0OT129

Its eigenvalues are

A1 = 0.25380581710031 A» = 1.78932135473495

A3 = 2.96105907080106 A4 = 3.99605612592861

As = 5.00000000000000 A¢ = 6.00394387407139

A7 = 7.03894092919895 Ag = 8.21067864526505

Ao = 9.74619418289969

Pick k=5,and delet 5th row and 5th column from 77 9. There are two submatrices 77 4 and
T6,9.The eigenvalues of them are

w1 = 0.25471875982586 e = 1.82271708088711

p3 = 3.17728291911289 gy = 4.74528124017414

and
s = 5.25471875982586 g = 6.82271708088711

pr = 8.17728291911289 g = 9.74528124017414
respectively.
Now we reconstruct a Jacobi matrix by these eigenvalues according to the above

algorithm.
Step l.as = E?:l Ai — E?Zl i = 5.00000000000000
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Step 2.After solving the equation system (13),obtain

1 = 0.00390189193968
3 = 0.30610888364033
x5 = 0.60520705317831
r7 = 0.08478217124167

T2 = (0.08478217124168
4 = 0.60520705317831
z6 = 0.30610888364033
zg = 0.00390189193068

Step 3.Compute

4 8
(84)* =Y x; = 1.00000000000001and (35)* = Y z; = 0.99999999999999.

i=1 =5

Obtain
B4 = 1.00000000000000

Step 4.Computed SEZ») and 5522 as follows

Bs = 1.00000000000000

S{1) = 0.06246512578778  S\') = 0.20117378185832
S{') = 0.55327107609230 S|} = 0.77795054674337

and
S©) = 0.77795054674337

S©) = 0.55327107609230
S{%) = 0.29117378185831

S = 0.06246512578775

Step 5.From u; and SSZ»)Z. =1,2,3,4 we compute 77 4 and from uiandei),i =5,6,7,8 compute
Ts,9 by Lanczos Process. At last we get 1 9 reconstruction as follows:

a; Bi

0.99999999999997

1.00000000000001

2.00000000000004

1.00000000000001

2.99999999999994

1.00000000000001

4.00000000000002

1.00000000000000

5.00000000000000

1.00000000000000

5.99999999999994

0.99999999999997

6.99999999999996

0.99999999999987

7.99999999999963

0.99999999999987

9.00000000000051

O O[O = | WD | e

Example 2.
Given spectral data:

S1 = {0.98044571894161,1.34987354061316, 1.81383673188837, 2.00000000000000
2.78435327623025, 3.41147477897885,5.66001595334776}
S2 = {1.00000000000000, 2.00000000000000, 3.00000000000000}
and
S3 = {1.50000000000000, 2.00000000000000, 3.50000000000000}

we construct a Jacobi matrix T 7.
Because 52,53 have common element 2.00000000000000, so it is (k) problem in case 2. The



An Inverse Eigenvalue Problem for Jacobi Matrices 583
data satisfy the sufficient and necessary condition of Theorem 6.

The algorithm of case 2 is different from that of case 1 only at step 2. In step 2, consider a new
(k) problem:

S'1 = {0.98044571894161,1.34987354061316, 1.81383673188837,
2.78435327623025, 3.41147477897885, 5.66001595334776}
S'2 = {1.00000000000000, 2.00000000000000, 3.00000000000000}
and S'3 {1.50000000000000, 3.50000000000000}

Solve the system (13) under S’1,5°2.S’3,0btain the solution

y1 = 0.04465819873852 y» = 0.66666666666666 y3 = 0.62200846792815
ya = 0.33333333333333 y5 = 0.33333333333334

Then let

1 =y To = 6 xyo T3 = Y3

ra=ys w5=(1-0)*xy> 26=ys.
We pick 2 kind of 8, one is # = 0.5 and the other is § = 0.4. After running Step 3, Step 4 and
Step 5, we get 2 Jacobi matrices T'p; 7 for § = 0.5 and T'q; 7 for § = 0.4

The a; and B; of T'p; 7 are as follows:

Q5

Bi

1.42264973081038

0.57735026918963

1.99999999999999

0.57735026918963

2.57735026918963

1.00000000000000

5.00000000000000

1.00000000000000

2.33333333333335

0.84983658559880

2.78205128205126

0.39970403251589

1.88461538461540

| o ot x| wo| po| =

The a; and B; of T'q1 7 are as follows:

Comments

Q4

Bi

1.46706128997881

0.57563959796522

1.91434913588945

0.57587555344990

2.61858957413174

0.96609178307930

5.00000000000000

1.03279555898865

2.31250000000000

0.82679728470769

2.81607142857142

0.41991252733426

1.87142857142857

| o) ot x| wo| ro| |~

1. The numerical results are get by Matlab 5.2

2. The algorithm can also use to solve (1) problem and (n) problem.
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