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Abstract

In this paper, we show how to use wavelet to discretize the boundary integral
equations which are both singular and ill-conditioned. By using an explicit diagonal
preconditioning, the condition number of the corresponding matrix is bounded by
a constant, while the sparse structure speed up the iterative solving process. Using
an iterative method, one thus obtains a fast numerical algorithm to solve the
boundary integral equations.
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1. Introduction

The application of wavelets to signal and image processing has been successful. But
there are few results about numerical solution for the partial differential equations.
We think that it is enough only to use the coefficients {h,} (as a filter) in signal and
image processing, but it is not sufficient for numerical computation[”/®ll1% where we
consider wavelet as a special function series instead of a filter. Then it brings some
problems such as the complication of function value computation and the difficulty to
handle the boundary conditions[®/*3], etc. For the first problem, we have solved in [16].
For the second problem, some researchers consider the periodic problems to escape
the complicated boundary [3], others consider the boundary integral problems. In [3],
the author discussed the potential integral equation of the 2D Laplace operator, as we
know, the kernel is no-singular and well-conditioned.

In this paper we examine the feasibility of applying wavelet based numerical meth-
ods to solve elliptic equations. We use compactly supported wavelets and develop a
wavelet boundary element method to handle the boundary conditions. The boundary
element method has been firmly established as an important alternative technique to
the prevailing numerical methods of analysis in continuum mechanics!*7 and many
others which can be written as a function of a potential and whose governing equation
is the classical Laplace or Poisson equation. It reduces the problem’s dimension and
can be used when the domain is infinite. In contrast to the finite difference methods

* Received June 26, 1996.
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and finite element methods, the classical discretization of the boundary integral usually
has slow decay away from the diagonal and leads to a large non-sparse linear system.
As we know, directly applying a dense matrix to a vector requires roughly N? oper-
ations. Therefore, the efficiency induced by lowering the dimensions is distroyed by
the cost brought by the dense matrices. This problem can be solved by the wavelet
method proposed by Beylkin, Coifman and Rokhlin in [1]. According to the framework
of Zygmund-Calderon operators studied extensively in [1], if we project the integral
operator in a wavelet basis, since the basis function satisfies the vanishing moment
condition, the coefficients away from the diagonal will be small. Neglecting these small
entries yields a finger-like sparse linear system.

In this paper we mainly discuss two kinds of integral induction methods: single-layer
induction and natural boundary induction. Both of them are ill-conditioned and have
singularity in their kernels. In order to avoid these problems, we construct numerical
algorithm to avoid the singularity, and find an easily inheritable matrix D such that
D~ 'M D! will have a better condition number x. We prove that using the wavelet
basis, a diagonal matrix D yields k = O(1).

2. Boundary Integral Equations

Let Q be a domain in the plane R? and T its boundary, we discuss the Laplace
equation:

Au =0, z € (), (2.1)

with boundary conditions of Dirichlet type

u(z) = f(z) on T, (2.2)
or the Neumann type
0
g(;) —g(z) onT, (2.3)

where n is the unit outward normal to surface I'.
The Neumann problem (2.1) and (2.3) has a solution only if the consistency condi-
tion

/ g(x)dS; =0 (2.4)
r

holds and this solution is unique only to within an arbitrary additive constant.

It is well known that the above elliptic boundary-value problem can be reduced into
several kinds of integral equations. To obtain an integral equation for the solution of
the Dirichlet problem, the classical approach is to assume that the unknown function
u may be expressed solely as a single-layer potential with unknown density o,

1
w(z) = [ o(y)lIn——dS, + C, x € Q, 2.5
(@) = [ o)n s, (2:5)

where C' is a constant which will be determined later. Since the kernel in this equation
is continuous as = passes through the surface, the limit of equation (2.5) as z is taken
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to I' gives
fz) = / o(y) In ——dS, + C, onT. (2.6)
r |ﬂlC -yl

and the density o satisfy the consistency condition

/F o(2)dS, = 0. (2.7)

Equation (2.6) is a Fredholm equation of the first kind, as the unknown appears only in-
side the integral. For many Dirichlet problems, formulations using such equations have
been proven to be more illuminating physically and more convenient mathematically
than using equations of the second kind.

Taking the derivative of equation (2.5) in the direction of the outward normal to T,
as z is taken to I', we get the boundary relation for the Neumann problem

1

g(z) = —mo(z +/ 8% |x_y|dsy. (2.8)

Equation (2.8) is a Fredholm equation of the second kind, as the unknown appears
both inside and outside the integral. After solving the system of corresponding algebraic
equations, values of u at any interior or boundary points can be calculated by using
equation (2.5).

The following Theorem and its proof can be found in Zhu’s book [,

Theorem 2.1. b(o, p1) is an elliptic symmetric bilinear form on the quotient space
1

V(') = H, >(T), there are constants Cy > C > 0, such that
b(o,0) > Cl||a||)2/(r), Vo € V(T). (2.9)

b(o, u) < Callollymyllullvay, — Vo,u € V(T). (2.10)

b(o // y)In|z — y|dS,dsS,

H, %(r) = {a € H’%(F),/Fadsx = 0}.

where

A conceptual disadvantage of single-layer or double-layer potentials is the introduc-
tion of formal source densities which usually bear no physical relation to the problem.
This can be overcome by using the direct reduction of the boundary element method,
where values of the function and its normal derivative over I" play the role of the source
densities in generating u through 2. Among all the methods of direct reduction, the
natural boundary reduction introduced by Feng[a seems a good one for it faithfully pre-
serves the essential characteristics of the original problem, such as the self-adjointness,
the coerciveness and the variational principle, and can be fully compatible with the
Finite Element Method.
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Applying the natural boundary reduction suggested by Feng and Yu [%, Neumann
problem (2.1) and (2.3) can be converted to the following natural integral equation on
the boundary I':

Ko =g, onT (2.11)

and the equivalent variational formulation is: find 0 € H 3 (I"), such that
D(o,u) = F(u),  Vu e H3(D), (2.12)

where

Dio.) = [ (Ko)(x) - wla)d,

= [ g@n(z)ds

then the solution of the Neumann problem can be given by the Poisson integral formula
—G( d 2.13
/ on, (z,y)o(y)dy, (2.13)

where G(z,y) is the Green function.
The following Theorem and its proof can be found in Yu’s book 4.

Theorem 2.2. D(o,u) is an elliptic symmetric bilinear form on the quotient space
1
UT) = HZ(T), there are constants Cy > Cy > 0, such that

D(0,0) = Cillo iy, Vo €UT), (214)

D(o,p) < Collollymllpllumy, — Vo,u e U(T), (2.15)
where

HE(T) = {0 € H%(F),/Fadsx = 0} .

For the natural boundary method, we will mainly consider two cases:
1. When  is the half plane, the natural integral operator is

o0 !/
’CO‘ = _l/ Lkdxl,

T J oo (x—x')

and the Poission integral formula is

1 fo° y
U(xay) = ; /_oo mO’(fL‘,)d(I/, Yy > 0. (216)

2. When (2 is the domain outside a unit circle, the natural integral operator is

1 2« a(6) ,
Ko =- E/U W‘”’
2
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and the Poission integral formula is

(9)—i/27r (° —1) (6')de’ > 1 (2.17)
AT = 0r I 1+7’2—2rcos(9—0’)0 ’ e ’

3. Compactly Supported Wavelets

We begin with a function ¢(z) belonging to L?(R)?M such that
oz — k), keZ

is an orthonormal sequence in L2(R). Let Vj denote the closed linear subspace of L?(R)
generated by this sequence. More generally, define Vj; in terms of Vj by simply changing
scales, that is to say,

flz) € Vo <= f(2z) €V

for function f € L?(R).
Other hypotheses on V; are as follows: 1. the Vj, j € Z, form a nested sequence; 2.
o0 o0

their intersection ﬂ V; reduces to {0}; and 3. the union U Vj is dense in L*(R).
— 00 — 00
To analyze further details, let’s denote the orthogonal complement of V; in Vjq

with W, i.e. V11 = V; ® Wj. Then there exists at least one function 1 belonging to
Wy such that ¢ (z — k), k € Z, is an orthonormal basis of Wy. The function v (z) is
called the mother wavelet. Denote

pjk(@) =@z —k), G k€2,

Yie(z) =229z — k),  jkeZ,

and let h,, g, be the wavelet filters, i.e.

Qi—1k(@) =Y hipji()
kez

Pic1e(@) =D guesk(@).

keZ

(3.1)

In the space spanned by wavelets, we have two orthogonal basis, namely B and B,
where

B' = (psk)ks
B=J W)k
i<

3.1 A periodic wavelet

To apply wavelet theory on an integral equation along a closed boundary, we should
construct an orthonormal basis on the closed curve I' C R2. The following ”brutal
periodization” of an orthonormal wavelet was introduced in Dorobantu’s paper [4].
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Assume the supports of ¢ and 7 are no longer than the length of I', otherwise we
substitute them with a scaled version 270/2¢(270z) and 2/0/2¢)(2/0z). For convenience,
let’s consider the interval Iy = [0,27]. We only retain all the basis functions who are
fully supported in Iy. If the support of a basis function, say 1; x, is out of Iy at the left
end, the missing part is matched by 1, ;5 at the right end. Add the two functions
and restrict the sum to Iy. It is easy to see that the new function is also orthonormal
on all the other basis functions and satisfies the two-scale relation (3.1) which is the
key to the fast wavelet transformation (FWT). Therefore, we get periodized versions
of ;1 and 1 . Let’s denote them with ¢, and Jj,k.

Theorem 3.3. ¢;; and @ijk defined above form an orthonormal basis in L?(Iy).
For each j > 0 they generate a sequence of subspaces V; and W; such that

Vigr =V + W, VLW, U Vi = L*(Io).

Let f be the periodic extension to the whole real azis offE L?(Iy), then

(Frpi) = (F, @)
(i) = (s 32)

The proof can be found in [4].

(3.2) shows that the wavelet decomposition of f € L?(Iy) can be regarded as the
standard decomposition of f by those wavelets whose supports intersect Iy. According
to it, we can also define the number of vanishing moments of Jj,k, which is actually
equal to that of ¢ ;. From now on we drop the notation "~” and directly call the
periodized basis a wavelet basis.

3.2 Characterization of Sobolev spaces

The wavelet 1);; constitute an unconditional basis for H*(R),s > 0, i.e. there exists a
characterization for function f € H®(R) using only the absolute values of the wavelet
coefficients of f. In other words, given f, we can decide whether f € H*(R) by looking
only at the |(f,9;x)|. The characterization of Sobolev spaces by means of wavelet
coefficient is

feH (R) <= [(f,jr)*(1+4°) <400, s>0 (3.3)
Jk
for s < r, where r is the vanishing moment of the wavelet. The proof of (3.3) can be
found in Meyer’s book [12].

We have a same result for the Sobolev space H*(Iy) with the periodic wavelet
instead of the orthonormal wavelet basis.

Theorem 3.4. The characterization of Sobolev spaces H*(Iy) by means of wavelet
coefficient is

feH (L) <= Y {f, (1 +47°) < +oo, s>0 (3.4)
7.k
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for s <.
Proof. Let J be the set of sum. We define
Jv={{j,k}; suppypjr C In},

Jo={{j,k}; 0 € suppyjr}

and
J3 = {{]7k + 2]}7 0€ Supp’(:b]k)}a

where Iy = [0,1], we have J = J; | J2. Then

> IF i P(L+47)

JUJs
= > W dmlP(L+47)

JUJs
< 2Z|<fa";[;j,k>|2(1+4js)

J

< 400

it is easy to know
f = fa on IOa

by (3.3), we have f € H*(R), and so f € H*(Iy).
On the other hand, let f be the periodic extension to the whole real axis of f , and
¢ € C§°(R) such that
p(z) =1, —l<z<2,

then ¢f € H*(R). Using (3.3), we have
STUF i) (1 + 47%)
J
< D USSP (1 +477)
Jk
< 0.
This completes the proof.
4. Sample in the Wavelet Basis

In the following four sections, we show how to use wavelet to discretize boundary
integral equations for the Laplace equation. We only consider two kinds of boundary
reduction: single-layer and natural reduction which are discussed in section 2.
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4.3 Sample for single-layer boundary integral
If we suppose that I' is smooth, the kernel of Fredholm equation of second kind (2.8)

0 I 1
ony |$ - y|

S(z,y) =

will lose singularity. The sample in wavelet basis B’ is similar to the Nystrom’s
method[?.
Here, we mainly study the kernel of Fredholm equation of first kind (2.6). Suppose
I' can be expressed as z(«), a € [0, 2], rewrite (2.6) as
2w

flz(a) = ; S(a,d)o(z(d))do' + C (4.1)

where
1

S(a, ') = lnm.

Project equation (4.1) onto V

SjPjo = P;SPyPjo :P]f,

or
Z Sp,qTq = Up» (4.3)
q
where
Op = / ) erp(a)da, Up = /f ))erp(a)da,
/ / : (@)psale)dada’ -
Spq = In ——————pjp(a)p;q(a)dada.
i jz(e) — z(a)| 7 !
At first, let’s consider the simple case when I' is an ellipse,
z1(a) = acos a,
zo(a) = bsina.
We have
S(a, o) = ln;
() — z(a')|
"2 . . no i (4:5)
= —1In|(acosa —acosa)* + (bsina — bsina')?|2
= 81 (Oé, al) + 82(01, 0/)7
where .
Si(a, ) = —In|2sin a-a

/ I\ 2
Sz(a,a') = —In <a2 sin? & J; @ 4 b2 cos? %)
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Notice that Sy (a, ') is sigular at o = ', whereas Sz(a, @) is smooth. Such decompo-
sition can be extended to general cases.
For a smooth boundary I', let

S(a, ) = S1(a, ) + So(a, @), (4.6)

where

. a—
2sin

Si(a, ) =—1n

Sa(a, ) = S(a, ') — Sy (a, ).

As we know, S(a, o) and Si(a, ') are sigular only when o = ', so Sa(a, ') is smooth
except a = o/, when o — «a, we have

_ !
lim Sy, 0) = — lim In 2@ = 2]
o' —a o Sa o — o |

|2 sin
1
o <d:1c1(a)>2 N <d$2(a)>2 2 ’
da do
thus we have proved that Sy(«, /) is smooth.
Therefore, we have

Spg = //Sl(a, a')goj,p(a)wj,q(a')dada'—i—//Sz(oz, o p(a)prq(a)dadd

1 2
= sput + Spa

From Yu’s book 14, the kernel S;(a, o) can be expressed as

In 25 a| 1 i 1 e
—In|28in—| = = —e ",
20 2 |n|

—00,n#0

If we suppose that the wavelet basis ¢ (a) can also be expanded in Fourier series:

pap(a) = 3 bPem,

—00,n#0
then we have
> 1
31(7{1)1 = 27 Z ﬂb,(zp)b(,qzb.
—00,n#0

By the smoothness of the kernel Sz(a, ')
1 = [ [ S0 a)esn(@)pala’)dada
1
~ 278 (Cp, Cp) ~ NSQ(%’%)

when N = 27 is sufficiently large. It is not surprised since the basis B’ is very "near”
the uniform grid basis on fine enough scales.
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4.4  Sample for natural boundary integral

Wau studied the sample in the wavelet basis B’ on the half plane in [15]. Project equation

(2.11) onto V;
]CJPJO':PJICPJPJO':PJQ

or

E :ap,ng = 9p>
q

where

o= [o@psp@idz, g = [ g@)pup(a)ds,
i = | [ ~smgeess@es)dady.

(4.8) is a Hadamard integral, we will get the matrix by Fourier method.
For the half plane case

B / / 2<PJ,p( )¢.1,4(y)ddy
B QJ/ / mE —— (27 z — p)p(2’y — q)dzdy
_QJ/ /oo 7r:L'—y_|_p Jr P @)ely)dady
B 2J/ o) (= (1, o P
0

=5 | PO ag

27 [ 5(C)|2etP—a)¢
— = [ Klleper s,

where we have used the Fourier transform

fo = [ sweia

— 00

Since |¢(¢)] is an even function, let

1 [ . .
D=5 [ IR cos(iC)dg
T™Jo
then
Gp,g = 2/ R (p - q).
For the domain outside the unit circle, the natural integral operator is

1 r g(6) ,
’C““E/O WC””

2

(4.8)
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we will get the matrix through Fourier series

1 2T 27w 1 , ,
a=-1= | [ —g—gera®psalt')avit

0
i 02
sin” —
Since the natural integral kernel can be expressed as [14]
1 =1 -
——g = Z %|n|em .
4rsin? = oo
2
so we have
oo
apq =2m Z |n|b£{’)b(,q%.
— 00

5. Condition Numbers of the Matrices

Let’s first consider the single-layer integral equation (2.6). Denote by W the discrete
wavelet transform from the space B’ to B. Let S; be the matrix of S; in the basis B.
Then the wavelet discretization of the equation (2.6) is

Sjw=f,  S;=wWS;Ww L, (5.1)
where f is the wavelet transform of Py f,
w = (wjyk)T.
As an orthonormal transformation, YW doesn’t change the condition number, so
K(Ss) = K(Sy) = O(N).

We are going to show that the simplest conceivable preconditioning, namely a diagonal
matrix Dg yields
k(Dg'SyDg") = O(1).

Let ¢ = > w; x4k, by (5.1)
w''Syjw = (¢, S¢) = b(o,0).
By theorem 2.1, we have
CrllgllHry < w”Syw < Col| ¢l
Using (3.3), we get

C1 Y 1277w < w'Syw < Cy Y 1277 2 .
Gk Ik
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Hence, if Dg is the diagonal matrix defined by

(D). ky = 2797285,30) 8k ) (5.2)

for any vector w,
Cullull® < w"Dg'S1Dg" w < Collw]|?.

Therefore, we have proved the following Theorem.

Theorem 5.5. Using standard wavelet basis to approxzimate the solution of integral
equation (2.6), the condition number of D§18JD§1 1s bounded, independent of the step
size.

For the natural boundary equation (2.11), Yu ' has proved its condition number
is O(N). Wu ] proved the same result for the sample matrix with the wavelet basis
B'. Let K, be the matrix of K in the basis B. Using theorem 2.2 and noticing that o
in (2.11) belongs to the space H%(F), with some obvious modification to the proof of
theorem 5.1, we can find a diagonal matrix Dx with the elements

(Di) iy k) = 2777%603.30y Sk (5.3)
such that _
k(D'KyDt) = O(1),
where B
K= W’C]W_l.

So, we have the following theorem:

Theorem 5.6. Using standard wavelet basis to approzimate the solution of natural
boundary integral equation (2.11), there is a diagonal matriz Dx defined by (5.3), such
that the condition number of D’EIICJD’EI is bounded, independent of the step size.

Remark. For the finite element method using wavelet basis to solve elliptic equa-
tions, Jaffard proved the similar results, see [8].

6. Sparsity of the Matrices in the the Standard Wavelet Basis

In this section, we show that the integral kernels under wavelet transform are sparse.
The result is by no means new, it is known for Calderon-Zygmund kernels.

For a Calderon-Zygmund kernel T, the elements of the matrix representing 7 in
wavelet basis B are of the form

Trrr = (Tjg Vi g, (6.1)

where I and I' denote the supports of the wavelet function ;5 and 1 5 respectively.
In [1], Beylkin etc. proved the following estimate for 7, the standard form of 7 in

wavelet transform
|~ <C <|1|>%< 1] >M+1 62)
I,I’ | I| (‘l ? ‘ZI) , .
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where C}y is a constant depending on the property of 7 and the choice of the wavelets,
M is the vanish moments of the wavelets, d(I,J) denotes the distance between I and
I', and it is assumed that |I| < |I'| and d(I,I") # 0.

A similar estimate also holds for the periodic wavelets, but d(I, I') must be consid-
ered as the distance between two intervals on a unit circle.

Given a threshold ¢ > 0, for large N, only O(Nlog N) elements of the matrix
(6.1) which concentrate near the diagonal of each block (for fixed j and j') will be
greater than e. If we discard all the elements that are smaller than a predetermined
threshold, we compress it to O(N log N) elements. Directly applying the estimates to
the boundary integral kernels discussed in the above sections, we see that the matrices
§J and ’E] are sparse.

Remark. For the periodic wavelets, we view the matrices as periodic and thus a
block diagonal band also contains the lower-left and upper-right corners of the block.

7. Numerical Methods and Experiments
In this section we discuss the numerical methods for solving boundary integral
equations by wavelets and present some numerical results.
7.5 Description of the numerical methods

Rearrange the order of wavelets, we have a set of orthonormal wavelet basis functions
Pi(x), (1 = 1,---,N). Here, we only describe the algorithm for the integral equation
(2.6). The numerical method for natural integral equation is similar.

By wavelet transform, the singular part of the integral operator (2.6) is

g} = Wé’lW*l

whose elements are

A
511] ://—log|2sina 2a i ()p;(e)dada’

:/¢i(a) l i Lemo‘*q/;j ()da
2 oo I (7.1)

_ / pi(@)F (%flpj(n)) (@)da

—wir (L (F)m)

i

where, W and F denote the discrete wavelet and Fourier transform respectively, and
W f is the ith component of W f. As we know, the numbers of computations for FWT
and FFT are O(N) and O(N log, N) respectively, so using (7.1) to compute the matrix
g} only need O(N?log, N) computations, much less than the ordinary method which
is O(N*%).
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By the discussion in section 6, if a threshold ¢ is given, only O(N log N) elements in
the matrix S} whose absolute values are greater than ¢ are to be computed out. Under
this circumstance, we would like to compute these elements by the following method

00 1 o
s =2m S V), (7.2)
—00,n#0

n| ™
where b} are coffecients of the Fourier series for P;(t)
o - .
Pi(t) = Z bg)emr.
—00,n#0

Compared with (7.1), it also needs O(N?log, N) computations to produce the kernel
S}, but some inverse Fourier transforms are saved.

Set N
S;=WSWw,
Sy=38}+83,

and B

A=Dg'S;Dg,
we have the linear algebraic equation

Az =y, (7.3)
where
y=Dg'Wf

Dgs is the preconditioning which is introduces in section 5. Then we can derive the
unknown density function by
o =W !'Dgz.

We use the preconditioned conjugate gradient method to solve equation (7.3) and
have the following iteration algorithm:

() =y — Az,

p(k+1) = /r(k) + ﬁk+1p(k)

Remark. Because of the sparsity of the matrix Sy, the number of computations for
the matrix-vector multiplication Az, can also be reduced from O(N?) to O(N logy N).
So truncation outside the diagonal bands can make the algorithm very efficiency.

\
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Figure 1. The curve I' used in example 1.

7.6 Numerical experiments
Example 1: In the first example, we compute the Dirichlet problem
Au(z,y) =0, in Q,
{ u(z,y) = f, on T,
by solving the single-layer integral equation (2.6). T' is an analytic curve (see Figure

1), determined by

r = cos2a + 1/1.3% — sin? 2« 0<a<2m,

Q is the outside area of I', and

fla) = cna 0<a<2m

cos 2 + 1/ 1.3% — sin® 2a

by some simple computations, we can find

82(0(, al)

1/2

— o 2. !
=—1In 4sin2(a+a’)c082a “ < cos(ata

)\ o
2 U7 f(a)+f(a/)> o (cos 20-+ f (@) (cos 20+ £ (o))

where

f(a) =1/1.3% —sin? 2a.

The analytic solution for this problem is:

x .
’LL(IL', y) = m in Q.
For this example, we compute the kernel of Sy. Setting to zero all the entries whose
absolute value are smaller than 10~7, we obtain the martrix shown in Figure 2. In the
figure, the grey level represents the logarithm of each element’s absolute value.
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For different discrete increments da: and numbers of points N, the computing results
are shown in Table 1. We select the 10th wavelet in Daubechies orthonormal wavelet
series?, always chose the initial g = 0, and the iterations are stopped when the
residual’s norm is less than 107%. From Table 1, we see the number of iterations are
only slightly variant when N is changed. This due to the preconditioning D which
makes the matrix A well-conditioned.

Figure 2. The matrix Sy in example 1.

Number of | Increment | Maxmum of the | Average of the | Number of
points N da relative error relative error iterations
32 0.196 1.48 x 1073 8.75 x 1076 9
64 0.098 1.28 x 107° 3.52 x 10~7 10
128 0.049 5.21 x 1076 1.29 x 1076 10
256 0.025 4.67 x 1077 9.42 x 1078 11

Table 1: Computing errors of u(z,y) at 3200 points outside I

For N = 256, we truncate all the entries of matrices below a given threshold £ and
solve the problem. The results are shown in Table 2.

Truncation | Density of | Maxmum of the | Average of the | Number of

threshold ¢ matrix relative error relative error iterations
1072 0.55% 4.85 x 10~2 2.08 x 10~2 8
1073 2.46% 4.39 x 1073 7.78 x 107* 10
10~ 7.85% 9.07 x 107 7.45 x 10~ 10
10-° 13.4% 8.23 x 1076 9.24 x 107 10

Table 2: Computing results for different truncation threshold.
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Example 2: In the second example, we compute the Neumann problem outside the
unit circle

Au =0, r>1,0<a<2r
ou

—_— = < a<

o gla), 0<a<2r

by natural boundary method, where
g(a) = —cos(a).
The analytic solution for this problem is

u(r, ) = cosr(a) ’

o(a) = u(l, a) = cos(a).

For different discrete increments da and N, the computing results are shown in table

3.
Number of | Increment | Maxmum of the | Average of the | Number of
points N da relative error relative error | iterations
32 0.196 9.73 x 107° 3.59 x 107° 4
64 0.0982 4.55 x 107° 2.41 x 1076 4
128 0.0491 3.75 x 107° 1.38 x 1076 4
256 0.0245 4.61 x 1076 6.88 x 1078 5

Table 3: Computing errors of u(z,y) at 3200 points outside T
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