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Abstract

We give a new justification of the linear membrane and flexural shell models.
We prove that the sequence of scaled energy functionals associated with the scaled
problem T'-converges to the energy functional associated with a two-dimensional
model. This two-dimensional model is a membrane or flexural one, depending on
the geometric and kinematic conditions. Then, a classical argument allows to give
a new proof of the convergence theorems recently obtained by P.G. Ciarlet, V.
Lods and B. Miara.
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Introduction

The deformations of an elastic body submitted to forces are governed by three-
dimensional mathematical equations. This means that the unknown, which is the vector
formed by the components of the displacement, depends on three variables. however,
when the elastic body is “thin” in one dimension, for instance when it is a shell, one
can use two-dimensional shell models, such as those of Naghdi, Koiter, Budiansky-
Sanders etc. Thus, the important point is to explain which model is the “good” one in
a given situation and why. Hence, an important aspect of the mathematical analysis in
elasticity consists in studying the validity of the two-dimensional equations to describe
the physical behavior of a three-dimensional body. This is what is called the justification
of the model.

Deriving lower-dimensional models can be achieved through a formal asymptotic
analysis. The method is the following: first, one has to make the “scalings” on the
unknown and the “right” assumptions on the forces in order to set the problem over a
fixed domain, i.e, a domain independent of the thickness €. Next, it is assumed that the
scaled three-dimensional displacement field obtained in this fashion can be expanded
in powers of the small parameter €. Finally, replacing this formal expansion in the
variational equations, one can identify the leadin term by equating to 0 the coefficients
of the powers of ¢.
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In the study of linearly elastic shells, the first contribution of that kind is due to [1].
Then, [2] pointed out the importance of the geometry of the shell: depending on the
geometric and kinematic conditions, the formal asymptotic analysis leads to identify
one of two distinct models: the “membrane” model or the “flexural” model. Thus, it
is not possible to derive these two models simultaneously for shells, unlike the case of
plates. For other works in this spirit, see [3-6].

Essentially, a two-dimensional model is considered justified when one can prove
convergence of the three-dimensional unknown to the leading term of the asymptotic
expansion, as the thickness € of the shell goes to zero. In the linear case, the articles
of [7, 8], [9] give the complete justification of the membrane and flexural models by
using the techniques of asymptotic analysis. For nonlinear membranes, such results
were obtained by [10], using I'-convergence and following the approach of [11].

Here, we give another method to obtain convergence theorems in the linear case
using ['-convergence theory. A similar approach was done for linearly elastic plates by
[12].

We study separately the membrane case and the flexural case. First, we recall the
main notations about the geometry of the shell, and we make appropriate scalings, in
order to define the scaled three-dimensional problem. Next, we prove the I'-convergence
of the energy functionals associated with the scaled three-dimensional problem to a
functional corresponding to a variational problem posed over a two-dimensional domain.
We then deduce the weak convergence of the displacements, the strong convergence
being obtained as in [7], [9].

1. The Three-Dimensional Shell Problem in Linearized Elasticity

We begin with geometric preliminaries. Throughout this work, Greek indices and
exponents (except €) belong to the set {1,2}, Latin indices and exponents (except
when used to index sequences) take their values in the set {1, 2, 3}, and we use the
summation convention on repeated indices and exponents.

Let w be a bounded, open and connected subset of R?, with a Lipschitz-continuous
boundary . We note y = (y,) a generic point of w, and J, := 0/0y, the partial
derivatives. let ¢ : @ — R> be an injective mapping, at least of class C3. We assume
that the two vectors

aq(y) == Oatp(y)

are linearly independent at all points y € @. They form the covariant basis of the
tangent plane to the surface S = ¢(w) at the point ¢(y); the two vectors a®(y))
defined by

a®(y) - aply) = 55
constitute the contravariant basis at this same point p(y). We also define the vector

3 a| X a2
a3 =a’ ;= ———,
|a,1 X a,2|
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The covariant and contravariant components of the metric tensor are given by

a®® .= a%.af

(ng = Q¢+ ag, ,

the covariant and mixed components of the curvature tensor are
bas = a’. J3aq, b§ = aﬂabaom
and the Christoffel symbolds of the surface S are defined by
ap = a’ - Ogag.

Since the metric tensor is symmetric and definite positive at all points of W, there exists
a constant ag such that:

a(y) := det (ans(y)) > ap >0 forally € w.

The area element along S is \/ady.
For each € > 0, we define the sets

V7 :=wx [—¢,e] and [V 1=y x [—¢,¢].

We let 2° = (z5) denote a generic point in the set Q°, and 0f = 0/0z5, so that we have
x5, = Yo and 0, = 0y. Let the mapping ® : " = R? be defined by

®(z°) := p(y) + z5a3(y) for all 2° = (y,25) € Q.

The three vectors
g; (z%) = 0; ®(z°)

form the covariant basis at the point ®(z¢), with which we associate the contravariant
basis formed by the vectors g*¢(z°) given by

g (o) - g5(a°) = .

The covariant and contravariant components of the metric tensor, and the Christoffel
symbols are
gfj = gZE . g§7 g”va = gl78 . g]a57 Ff]’g = gpaE . 8595

The volume element in the set ®(Q°) is /gdz®, where
g° = det (gj;).

For all € > 0, the set ®(2°) is the reference configuration of an elastic shell with middle
surface S and thickness 2¢ > 0. We assume that the elastic material constituting the
shell is homogeneous and isotropic, and that the reference configuration is a natural
state. The Lamé constants of the material are A°* > 0 and p® > 0. We assume that
the shell is clamped on a portion I'f§ := 7y x [—¢, €] of its lateral surface, where vy C ~y
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satisfies length vy > 0, and that it is subjected to volume forces with density f“*g*®,
where fi¢ € L2((Q).

The covariant components u$ : ° — R of the displacement ug(z%)g"¢(z¢) of the
points of the shell are the unknowns of the three-dimensional shell problem. In linearized
elasticity, this problem can be written as (see e.g. [13]): Find

u® € V(QF) := {v° = (vf) € H(Q);v° = 0 on T}, (1.1)
such that

o Aijkl’seinl(u‘g)ef”j('ug)\/gfdxs = /QE foui/gda®  for all v® € V(Q°),  (1.2)
where the covariant components of the three-dimensional elasticity tensor are defined
by

Az]kl,s .= )\egzg,sgkl,s + us(gzk,sg]l,s +gll,€ +gll,€ ]k,€)7 (13)

and the covariant components of the linearized strain tensor are

5 (v°) = %(82%5 T 00F) — T, (1.4)
The definition of the mapping ® implies that I'}5=I"5=0 in 0", A49735= 433320 in
. For ease of exposition, we do not consider surface loads. Taking them into account
would not add any essential difficulty.
The variational problem (1.1)—(1.2) has one and only one solution for each ¢ > 0;
this follows from the V' (Q¢)-ellipticity of the bilinear form appearing in (1.2), see [13].
From now on, we will not work with the variational formulation (1.1)—(1.2) (which is
the approach of [7], [9]) but with the formulation in terms of energy. Indeed, the vector
field u® = (uf) can also defined as the unique solution of the following minimization

)

problem: Find u*® such that

u® € V(Q°) and J*(u®) = inf J°(v°), (1.5)
vecV ()
where .
JE(v°) = 2 Jo A”’“l’gezul(vg)ef”j(1;5)\/9_561.76E — /QE FoouiN/geda®. (1.6)

Of course, formulations (1.1)-(1.2) and (1.5)—(1.6) are equivalent.

2. Justification of the Two-Dimensional Membrane Shell Model

In this section, we assume that the shell is clamped along its whole lateral face
®(I), i.e, v = 0, and the displacements vanish on ®(I'*). We also assume that the
middle surface of the shell is uniformly elliptic in the sense that there exists a constant
b > 0 such that

|bas(y)62€7] > bE™E® (2.1)
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for all y € @ and (£€*) € R?. For instance, a portion of a sphere or a portion of an
ellipsoid are uniformly elliptic surfaces. Inequality (2.1) means that the principal radii
of curvature R;(y) and Ra(y) have the same sign at all points ¢(y) € S and that there
exists a constant p > 0 such that

p ' <Ry <p, a=1,2, forallyc€a.

2.1. The Scaled Three-Dimensional Problem.

As in [7], we first set the three-dimensional problem (1.1)-(1.2) over a domain
indpendent of ¢, and we next make appropriate scalings on the components of the
displacement and assumptions on the data. We let

Q:=wx[-1,1], T:=~vyx[-1,1],

and with any point 2° = (25) € @, we associate the point z = (z;) € Q defined by
To = 25(=ya) and xz3 = (1/€)a§.
Then, for all z° € Q°, the scaled displacement u(e) = (u;(€)) is defined by

ui(e) (@) = S (a°), (2.2
and with the vector field v* = (v]) € V(Q°) we associate the scaled vector field
v = (v;(x)) = (vi(zf)) forall z° € Q.

We next assume that there exist constants A > 0 and p > 0 independent of ¢, and
there exist functions f* € L?(2) independent of € such that

>\E g )\, ME = M’ (23)
fo(zf) = fi(z) forall z € Q.

The choice of these scalings is of prime importance in order to find the “right” two-
dimensional model; in particular, one has to make different assumptions in the flexural
case.

Finally, with the functions I‘ff,gg,Aijkl’E : Q° — R, we associate the functions
I7:(e), gle), AM(e) : Q" — R defined by (cf. [7]), for all z € Q,

[5(e)(@) =T (a%), g(e)(z) = g°(z°), ATM(e)(z) := ATH(2%).  (2.5)

In addition, for any vector field v = (v;) € H'((2), we define the symmetric tensor
(eqy;(€)(v)) € L*(Q) given by

ealo(6) ) = & (D + D) — (=)o, (2.6
ea|3(e)(v) = %(&ﬂm + %831)04) —T?%.(c)v,, (2.7)

e313(6) (v) =~ (28)
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One can easily check that eZ”]( °) = e (e)(v).
We then have the following results:
Theorem 2.1. The scaled unknown u(e) = (ui(€)) defined in (2.2) satisfies

u(e) € V(Q) = {v = (v;) € H(Q);v =0 on T}, (2.9)
J(E)(u(e)) = inf J(e)(v), (2.10)
veV (Q)
where
=3 / AT (e)egyu(e) (v)ey)j(e) (v)\/g(e)dz — L(e) (v), (2.11)
and

L(s)(v):/ﬂfivi g(e)dz. (2.12)

Remark 2.2. We give another expression for the functional J(g). Using (1.3) and
(2.5) we can write

2)\,u

>\+2M g*’ 5)90T(6)}ea\lﬂ( )eo|r (€ Fdx
+3 /Q (2019° (€)0°7 () eaio (£) () (¢ r o1
+%/Q{(>\+2'u)[)\+2 gaﬁ(g)ea\lﬁ(f)(”)‘f‘g%( g)es)z(e ]2}\/75133

+%/Q{4Mgw(6)933(6)6a||3( )(v)eq3(e)(v)}/g(e)da. (2.13)

Note that a similar expression was used for the scaled functional of the three-dimensional
plate problem to study via I'-convergence theory the asymptotic behavior of the three-

dimensional unknown (cf. [12]).
2. A Korn’s Inequality.

We recall a fundamental result of [7] which plays a crucial role in their proof as
well as in the one we give in Section 2.4. It is a Korn’s inequality for uniformly elliptic
surfaces, which will allow us to prove a priori estimates for (u(€0):~¢.

From now on, we will suppose that one of the following assumptions holds:

¢ is analytic in an open set containing @ and v is of class C* (2.14)

or
@ € C°(@; R?) and 7 is of class C*. (2.15)

These assumptions were stated in [14] and [15], respectively, to prove existence theorems
for the two-dimensional linear membrane shell problem. In the first proof, the authors
introduce an auxiliary system which is amenable to the theory of [16], and they show
the ellipticity of the bilinear form of the variational problem. In the second proof,
the existence follows from a lemma of J.L. Lions and the uniqueness for the Cauchy
problem for certain elliptic equations is used to obtain uniqueness in that cases.
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The following theorm, whose proof is given in [7], Thm. 4.1, states a generalized
Korn’s inequality. We denote by || - [lo,a, resp. || - [l1,0, the norm in the space L?*(9),
resp. H'(Q).

Theorem 2.3. Assume that S is elliptic, and that either (2.14) or (2.15) holds.
Then, there exist constants eg > 0 and C' > 0 such that, for all 0 < e < g9 and for all
v =(v;) € V(Q)

{3 llva

where the functions e;;(¢)(v) and the space V(S2) are defined as in (2.6)—~(2.9).
Remark 2.4. Inequality (2.16) involves the H'(2)-norms of the horizontal com-
ponents (v, ), but only the L?(£2) norm of the vertical component v3.
Remark 2.5. For any n = (7;) € H¢ (w)x H (w) x L?(w), let us define the functions

ﬁ,n + [lvs

o} < e @Ba}” (2.16)
ij

1
’Yaz(rl) = 5(8a7]ﬂ + 3/377a) - Fgﬂ% — bagns-

A sufficient conditon to establish (2.16) is that there exists a constant ¢ > 0 such that
5 5 11/2 5 11/2
(X Imalfe +lImslEe} ™ < e{ 3 sl )
@ a’ﬂ

for all n € H(w) x H}(w) x L?(w). One can show that hte assumptions of Theorem
2.3 imply this condition (cf. [14] and [15]).

2.3. Review on ['-convergence

In this section, we recall the definitions and the main properties on I'-convergence
theory that we will use in the proofs of section 2.4. For a general survey, see [17] or
[18].

Definition 2.6. Let V be a reflexive Banach space, and let (T*(€))e>0 be a sequence
of functionals J*(¢) : V — R U {400}, where € is a parameter approaching zero. We
denote by rightharpoonup the weak convergence in V. We say that the functional
J*:V — R is the I'-limit of the functionals J*(g) if the following propertie hold:

(i) If (v(€))e>0 is a weakly convergent sequence in V), then

v(e) ~v eV = J*(v) <liminf J*(¢)(v(e)). (2.17)

e—0

(ii) For any v € V, there exists a sequence (v(e)) in V such that
v(e) =0 v and J*(e)(v(e)) — J*(v). (2.18)

Remark 2.7. When the I'-limit exists, it is unique. This is an easy consequence of
Definition 2.6. One can prove the existence of the I'-limit by verifying the properties
(2.17)—(2.18): then the functional has to be known in advance. This is the approach
we use in Section 2.4. For nonlinear membrane shells, [10] proceed by first extracting
a ['-convergent subsequence.
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Remark 2.8. We gave the definition using the weak topology of V as it is best
adapted to our analysis.

The following theorem will allow us to prove weak convergence results on the dis-
placements once we have a I'-convergence theorem for the energies.

Theorem 2.9. Assume that the sequence (J*(g))eso is T'-convergent to J*, and
assume that there exists a compact subset U of V independent of € such that, for all
e > 0, there exists u(e) satisfying

u(e) e and J*(e)(u(e)) zgrg/J*(a)(v).

Then there exists w € U such that

u(e) ~esou and J'(u) = Qljrg} J*(v).

In addition, one has
J*(e)(u(e)) =m0 J*(u).

2.4. Convergence Theorems
We first establish the I'-convergence of a sequence of energy functionals by identi-
fying its I'-limit. Let V be the space defined by

Vi={v = (v;);vs € Hj(),v3 € L*(w)}. (2.19)
We extend the energies of the three-dimensional problem to V by letting, for any v € V),

(v) = { J(e)(v) ifveV(Q),

J*(e)(v (2.20)

+00 otherwise,

where the space V' (§2) and the functional J(¢) are defined as in (2.9) and (2.14), re-
spectively. Let J* be the functional given by

J(v) if v does not depend on x3,
J*(v) = ®) , P ’ (2.21)
400  otherwise,
where
1
Tw) =7 [ @01 (0) 105 0)Vado — L(o) (222
Q

L(v) :/invix/c_tdx, (2.23)

the functions a®??” are the contravariant components of the elasticity tensor of S,
defined by

4
a7 = a4 (a7 + a7, (2.24)
W

and the functions v,4(+) are the covariant components of the linearized change of metric
tensor given by

1
Yo (v) 1= 5((9&1)5 + 0gvg) — ['0>vs = bapvs  for all v € V. (2.25)
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The main result is the following:

Theorem 2.10. Let the space V = (H}(w))? x L?(Q) be equipped with the weak
topology of H'(Q) x HY(Q) x L%(Q). Then, for this topology, the functional J* is the
I'-limit of the functionals J*(¢).

Proof. 1t suffices to check that the functional J* satisfies properties (i) and (ii) of
Definition 2.6.

v(e) ~vin V= J*(v) <lim E1E>f0 J*(e)(v(e)). (2.26)

First case: the weak limit v depends on z3. By definition of J*, we have J*(v) =
+o00. It then suffices to show that lim imf0 J*(e)(v(g)) = 400. Assume that this is false,
e—

i.e, assume that liminf, ,oJ*(¢)(v(e)) < +o0. Then one can show that there exist a
constant ¢; > 0 and a subsequence, still indexed by ¢, such that J*(¢)(v(e)) > ¢;. Thus
v(e) € HY(Q) and J*(g)(v(e)) = J(g)(v(e0). It follows that there exist a constant

co > 0 such that
/AJ ekHl e)(v(e) el”] \/ g)dx < c;.

Using the generalized Korn’s inequality (2.16), we deduce that th enorms |le;;(ex)
(v (ex)llo,0s lvaler)lli,o and [Jvz(ex)|lo,n are all bounded independently of . Conse-
quently, there exists a subsequence, still denoted (v(e))e~o for convenience, and there
exist functions e;); € L?(2) such that

eij (k) (v(er)) = ;5 in L%(Q), (2.27)
v (er) = Vo in H'(Q)and vy(eg) — vq in L (), (2.28)
v3(er) = w3 in L*(Q), (2.29)

where the function v = (v;) is the weak limit in (2.26). It follows from the convergences
(2.27)—(2.29) that the functions v; are independent of 3 (see Theorem 5.1 of [7]), which
is a contradiction. Thus liminf,_,oJ*(¢)(v(e)) = +o0.

Second Case: the weak limit v does not depend on z3. If liminf. ,oJ*(¢)(v(e)) =
+o00, then (2.26) always holds. Assume that liminf._,oJ*(¢)(v(e)) < 4+o00. As in the
first case, it follows that, for a subsequence still indexed by ¢, we have v(e) € H'(9Q),
and there exist functions e;); € L*(2) such that the convergencs (2.27)—(2.29) hold.
Using the convergences 'y 3 — I'7 5, Fgﬁ(e) — bag in C°(Q) (see Lemma 3.1 of [7]), we
get

€allp = Yas(v). (2.30)

The expression (2.13) of J(e), combined with the positive definiteness of the tensor

(g¥(¢)), implies

1w 25 [ Aﬂfg‘ugaﬂ( heaps(©)( Fdw
%/{2“9 7(£)9°" () Yeayjs () (v) o+ () (v)[9(e)dz — L(e
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With the convergences ¢*?(¢) — a® and g(¢) — a in C°(Q), this inequality becomes

lig J()(0() 2 § [ ™ 03(0)70r (0) Vads — L(v).

e—0

This means that, for any convergent subsequence J(¢)(v(¢)), we have

lim J(e)(v(e)) > J(v).

e—0
Then relation (2.26) is satisfied.
(ii) We now show that, for any v € V, there exists a sequence (v(e)) in V such that

(v(e)) = inV and J*(¢)(v(e)) — J*(v). (2.31)

First case: the weak limit v depends on z3. Let (v(e))z>0 be the sequence defined
by v(e) = v for all ¢ > 0. Then it follows from the first part of the proof that

J*(v) = lim inf J*(e)(v(e)).

e—0
On the other hand, since v depends on z3, the definitiomn (2.21) of the functional J*
implies J*(v) = +00. Thus

J*(v) = lim inf J*(¢)(v(e)),

e—0

and property (2.31) is verified in this cae.

Second case: the weak limit v does not depend on z3. We consider a sequence
(v(€))eso in the space V() where, for all € > 0, the function v(e) is the unique
solution of the minimization problem:

v(e) e V(Q) and Jy(e)(v(e)) = 'weian(Q) Jy () (w),

where, for all u,w € V(Q),

To()(w) 1= 5 Ble) (w,w) — L) (v,w),

the bilinear form B(e) being defined on V' (2) x V(Q) by

= / AW e)exu(e) (w)ey);(e) (w)y/ g(w)dz,

and the linear form L(¢) being defined on V' (2) by

L w,w) = 5 [ 790 ()0 5(2)(w) Vads.

We recall that the function v is fixed.
Equivalently, the function v(g) solves the variational problem

B(e)(v(e),w) = L(e)(v,w) for all w € V(). (2.32)
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Since Jy(e)(v(e0) < Jy(e)(0) = 0, we deduce that there exists a constant C(v)
depending on v, such that

>_lleq @) (wE)5a < Co).
2Y)

This, together with Korn’s inequality (2.16), implies that the norms [le;;(¢)(v(€))[l0,;
lva(€)]l1,0 and |[v3(e)[lo,o are all bounded independently of . Consequently, there exists
a subsequence, still denoted (v(e)), and there exist functions e;; € L*(Q), 0, € Hg ()
and 93 € L?(Q) such that

eifj(e)(v(€)) = e;; in L*(1), (2.33)
Va(€) = Uy in HY(Q) and v,(g) — 04 in L3(Q), (2.34)
v3(e) = 03 in L*(Q). (2.35)

These convergences imply that (see step (i)) the functions v; are independent of z3 and
that

Calls = Yap(P) (2.36)
where v := (7;).
We fix w = (w;) in the space V' (Q2), we multiply equation (2.32) by e, and we let &
tend to 0. Using the weak convergences (2.33)-(2.35), we get

{2Maaaea 303wq + [AagTeJHT + (>‘ + 2“)63H3]8w3}\/ad$ =0. (237)
A ||

By letting w vary in V' (), we obtain

A
A+2u
€a|3 = 0. (2.39)

eg3 = — ao‘ﬂeauﬂ, (2.38)

Next, in equation (2.32), we choose w € V(2) such that dzw = 0, and we let ¢
tend to 0. We find that the function v satisfies

2\
/Q {ﬁaaﬁa” + p(a®al" + aaTaﬂU)}%T(ﬁ)%B(w)\/adx

—5 [ 8 s (0)v0s(w0) Vad.
Since the functions ¥ and w do not depend on z3, this equation can be written as
B(v,w) = B(v,w) forw €V (w), (2.40)
where the space V') is defined by

Vu(w) = Hi (w) x H} (w) x L*(w), (2.41)



348 K. GENEVEY

the bilinear form B is given by

B(z®) = [ a7 (2)10(@)Vady for (2,0) € Vi) x Var(w), (242

and where, if w is a function defined almost everywhere on Q, we denote by w = (@;)
the function defined almost everywhere on w by

=3 / w(y, z3)dzs. (2.43)

In particular, if w does not depend on z3, then

w(y, z3) = w(y).

Under either one of assumptions (2.14) and (2.15), it was shown by [14] and [15]
that the bilinear form B is coercive on the space V j;(w). Thus, equation (2.40) implies

v =w.

Therefore, since v is unique, the whole sequence v(¢) weakly converges to v in H ().
Finally, we have

J(e)(v(e)) =5 B(e)(v(e),v(e)) — L(e)(v(e)) = 5 L(e) (v, v(e)) — L(e)(v(e))

1
>
1 [ 0 )5 (0(0) Vads — LE)(v(:).

Hence

TEWE) = [ a0 Vads - L(v) = I (o),

as € — 0, which we may write as

T (e)(v(e)) = J*(v).

O

This proof justifies the choice of the function spaces. Indeed, the estimates give

bounds for the norms ||v,(€)||1 and |vsz(e)

corresponding to the functionals J(¢) are equi-coercive on H'(2) x H(Q) x L?(1).
The spaces and the topology are thus “natural” for this problem.

Remark 2.11. The last step of the proof is a bit “artificial” since we use the

existence and uniqueness of the two-dimenional linear problem: the coercivity of the

low. In other words, the bilinear forms

bilinear form B is a certral argument. In [19], we give two variants of the proof, which do
not require this result, and we show that an approach similar that of [10] in the nonlinear
case leads to the result of Theorem 2.10: Consider the function W : M3 3 — R defined
by

A
W(F) = %HF + P21 + Sler(F + FT - 2D)P,
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where M3 3 is the space of 3 x3 real matrices equipped with the norm || F|| = |/tr(FFT),
and [ is the unit matrix of M3 3. Then it is easy to check that W is convex and satisfies
the following growth property: There exists a constant ¢ > 0 such that W(F) <
c(1+ ||F||?) for all F € M33. If z;, i = 1,2,3, are three vectors of R, we denote by
(z1|z2|23) the 3 x 3 matrix which i-th column vector is z;. Let us introduce the function
Wy :w x M3s — R by letting

Woly, F) = inf W((FI2)47" (1)),

where A= (y) = (a'(y)|a®(y)a®(y))! for all y € . Then the I'-limit functional J of
the sequence J(g) can be written as

J(v) = /QWO(yJ (@1 + 01vlas + 0ov))Vady — /ngivi\/ady

for all v € V, v independent of x3. This is another expression for the functional J
defined in (2.22). The main difficulty of the proof remains the same as in that of
Theorem 2.10, since Korn’s inequality is used. Note that in the general nonlinear
case studied by [10], the function W is assumed to satisfy a coerciveness property:
W(F) > c1||F||* = ¢y for all F € M3 3, with ¢; > 0 and ¢z > 0. The function W that
we choose does not satisfy this relation, but it is in fact Korn’s inequality that plays
that role, as a property of “coercivity after integration”.

Note that the functional J defined in (2.22) is that which is associated with the two-
dimensional membrane problem for a linearly elastic shell: for v € V, v independent of
T3, we have

J(v) Z/Q)a"ﬂ”vw(v)vaﬂ(v)\/ady—/u)(/_11 fidxa)vi\/&dy-

Now, we deduce a convergence result for the displacements:
Theorem 2.12. The sequence (u(e))e>o where, for all € > 0, u(e) is the solution
of the scaled minimization problem (2.9)—(2.10), satisfies

Ua(€) =t in HY(Q), uz(e) = uz in L*(),

where the function uw is independent of x3 and w s the solution of the minimization
problem
J*(u) = inf J*
(w) = inf J*(v),
the functional J* being defined in (2.21). The function @ is the solution of the two-
dimensional membrane shell problem in linearized elasticity.

Proof. We infer from Korn’s inequality (2.16) that [|uq(¢)|o,n and [Juz(e)|lon are
bounded independently of e. Thus the vector fields u(e) belong to a compact set of V
for the weak topology of H'(Q) x H'(Q) x L?(2). We can also show that any weak limit
of u(e) is independent of x3. Theorem 2.7 implies that there exist a function w € V and
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a subsequence (u(eg)) such that u(ex) = w in V and w satisfies J*(u) = infyey J*(v).
Thus, the function w is unique and the whole sequence (u(g)) converges to u in V.
The strong convergences are then obtained as in [7], Thm 5.1. O

3. Justification of the Two-Dimensional Flexural Model

We proceed as in the membrane case. There is no geometric assumption on the
middle surface S and the shell may be only partially clamped on I'§ := vy x [—¢,¢].
The “right” choice of scalings is then (cf. [9]):

u;i(e)(x) = uj(z®) for all z € €, (3.1)
and the forces must be O(¢?) in the sense that:
foe(2f) = 2fi(x) for all z € Q, (3.2)

where ° € 2° and x €  are in the correspondence defined in section 2.1. The energy
functional corresponding to the scaled three-dimensional problem is

J(e)(v) = 2i6/Q{Aijkl(5)ek||l(6)('u)ei||j(5)("’)}\/9(6)d$ — L(e)(v); (3-3)

see (2.5)—(2.8) and (2.12) for the definitions of the functions AY*(¢), e;;(¢), and L(e).
Let V (g) be the space defined by:

VW) :={n=(n) eH'(w) x H'(w) x H*(w),
+ 03, (9sn0 — LBonr) + b3 lane — capnss (3.4)
where
bg|a = Babg + FgTbg - Ea 7,
Cap ‘= bgbgﬁ.

For any v € V() := {v = (v;) € HY(Q); v = 0 sur [y}, the functional J*:
V(2) = R is defined in the following way:

T (0) = J(v) ifwvis i‘ndependent of z3 and v € V(w), (3.5)
400 otherwise,
where
T/ 1 afor - > T
T) = 1) = [ a7 pyr (®)pas(o)Vady - L(©) (3.6)
w

L(®) ::/w( _lfidxg)fii\/ady, (3.7)

and v is the average associated with v (see (2.43)).
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We use the following Korn’s inequality (see [9], Thm. 5.1):

lv

C 1/2
o < { Xl @@)5af © forallv € V(Q), (3.8)
,J

to prove the I'-convergence of the functionals J(e).

Theorem 3.1. The functional J* is the I'-limit of functionals J(e) in V()
equipped with the weak topology of H'(Q) x H* () x H'(Q).

For a proof, see [19].

As in the membrane case, we deduce from this result a weak convergence theorem
for the displacements. The strong convergences are then obtained as in [9], Thm. 5.1.
We call u(e) the solution of the scaled minimization problem:

v(e) € V(Q) and J(g)(v(e)) = weian(Q) J(e)(w), (3.9)

where J(¢) is defined as in (3.3).
Theorem 3.2. The sequence (u(e))e>o satisfies

ui(e) = ui in HY(Q), (3.10)

where the function w is independent of x3, u € Vp(w) and u is the solution of the
minimization problem
J*(u) = inf J"(v), (3.11)
veV (Q)
where J* is defined by (3.5). The function @ is the solution of the two-dimensional
flexural shell problem in linearized elasticity.
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