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Abstract

This paper describes practical approaches on how to construct bounding pyra-
mids and bounding cones for triangular Bézier surfaces. Examples are provided
to illustrate the process of construction and comparison is made between various
surface bounding volumes. Furthermore, as a starting point for the construction,
we provide a way to compute hodographs of triangular Bézier surfaces and improve
the algorithm for computing the bounding cone of a set of vectors.

Key words: Triangular Bézier surface patch, Hodograph, Bounding pyramid, Bound-
ing cone.

1. Introduction

A bounding pyramid/cone of a rational Bézier surface patch is a pyramid/cone which
has the property that if its vertex is translated to any point on the Bézier patch, the
patch will lie completely outside the pyramid/cone. These kinds of pyramids/cones
are useful tools in detecting closed loops in surface/surface intersections[2, 3] and de-
termining directions for which a surface is single valued[5]. While methods of find-
ing bounding pyramids and bounding cones for rectangular Bézier surfaces are widely
addressed[2, 3, 4, 5, 7], no analogous results have ever been obtained for triangular
surface patches. The purpose of this paper is to discuss the problem of computing
bounding pyramids and bounding cones for triangular Bézier surfaces. Although the
construction process presented in this paper shares some similarities with that for rect-
angular Bézier surfaces, it is still very valuable to fully describe the detailed process of
the constructions due to the specialties of triangular Bézier surfaces.

The organization of this paper is as follows. We first provide an algorithm to
compute the hodograph of a triangular Bézier surface and derive an upper bound for
any partial derivative direction of the Bézier surface in Section 2. Then in Section
3, we present methods to compute bounding pyramid/cone of a set of vectors which
are used to obtain the tangent bounding pyramids/cones of a Bézier surface in the
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next section. Section 4 describes different approaches to construct surface bounding
pyramids/cones based on the tangent bounding pyramids/cones, and comparison is
made between these different bounding volumes. Finally in Section 5, an example is
illustrated to demonstrate the whole construction process.

2. Hodographs of Triangular Bézier Surfaces

A triangular rational Bézier surfaces in homogeneous form is defined by

B(P) := B(u,v,w) := (X(u,v,w),Y (u,v,w), Z(u,v,w), W(u,v,w))
= Z PijkBlnjk(u,v,w) (1)
i+j+k=n

where Py = (Xijk, Yijk, Zijk, Wijk) are homogenous control points, and Bg‘jk(u,v,w)
are Bernstein bases with (u,v,w) being the barycentric coordinates of points P with
respect to triangle domain T =AT;TyTs.

A direction in the domain plane can be expressed using barycentric coordinates
H
as o = («a1,a9,a3) with g + ag + a3 = 0. For example, T1Ty= (—1,1,0) and
H
TyT3=(0,—1,1).

In this section a single character in bold typeface signifies a homogenous point,
while one with tilde denotes the corresponding Cartesian point or vector. For any two
points P; = (X,;,Y;, Z;, W;),i = 1,2, we define|[6]

Dir(P1,Py) = (W1 Xy — WXy, WY, — WoY,, W1 Zy — WoZ) (2)
‘Dir’ function indicates the direction of the Cartesian vector between two points, since
DiT(Pl, P2) == W1W2(f)1 - f’g) (3)

2.1 Derivative Directions of Triangular Rational Bézier Surfaces

Let @ = (ai1,a9,a3) be any direction in domain plane. The derivative of B(P)
along direction « is

OB(P) >

=n
o i+j+k=n—1

(Pig1jk + @Pijiik + asPijri) B (w,0,w).  (4)

In Cartesian coordinates,

2 yp) _ DirBP). £B(P)
W(u,v,w)

oa

Thus the scaled hodograph Dir(B(P), %B(P)) gives the direction of %B(P).
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Direct computation yields
0
Dir(B(P), —B(P
(B(P), - B(P))
=n Z Z DiT(Pijku a1Pr+1,s,t + a2Pr,s+1,t + a3Pr,s,t+1)
i+j+k=nr+s+t=n—1
ng(ua v, w)B;}s;l (’U,, v, U))
n
= (anl) Z Z
n i+j+k=2n—17r+s+t=n—1
Dir(Pi_yj_sk—t,01Pri1 58+ @aPrsy1s+ asPrg 1) X

() e

n ~ _
= (gnfl) Z Hl]kaﬁg 1(u,v,w), (6)
n /i+j+k=2n—1

s 2 G

Dir(Pi_rj—sk—t>01Pri16¢ +2Prsi1p+ a3Prgiy1) (7)
Thus the derivative direction of rational Bézier surface B(P) is totally determined

by the vectors H;jx, ¢ +j +k =2n — 1.

The scaled hodograph generally is degree 2n — 1. For a quadratic rational Bézier

surfaces, the scaled hodograph along direction o' = (1, —1,0) is a degree three Bézier

surface with control points

H3o0 = 3Dir(P110, Paoo),

Hy19 = Dir(P110, Pago) + Dir(Po2o, Pano),

His = Dir(Pos, P11o) + Dir(Po2o, Paoo),

Hoso = 3Dir(P110, Poso),

Hao1 = Dir(P1o1,Pago) + 2Dir (P 110, P101) + Dir(Poi1, Pago),
Hi1 = Dir(Poi1, Pago) + Dir(Pozo, Pio1),

Ho21 = Dir(Posg, Poi1) + 2Dir(Poi1, Pi1g) + Dir(Poz, Pig1),
Hig = Dir(Pooz, Pago) + 2Dir(Poi1, P1o1) + Dir(P1io, Pago),
Hoi2 = Dir(Poo2, P11o) + 2Dir(Poi1, Pig1) + Dir(Poz, Pog2),

where

Hooz = 3(Dir(Pooz, P1o1) + Dir(Po11, Pooz))- (8)
We especially note that, for polynomial Bézier surface (1), its derivative is simply
given by
0

8_B(P) =n Z (a113i+1,j,k + 052f)z',j+1,k; + a3f’i,j,k+1)B%E1(Ua v, w), (9)
« r+s+t=n—1
so its derivative direction is completely determined by vectors a11~3i+17j,k + a215i7j+1,k +
asPijki1, i +j+k=n—1

2.2 Bounds of Derivative Directions By convex hull property, the derivative
direction of triangular Bézier surface is bounded by the convex of n(2n + 1) vectors
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I:Iijk, i+ j+k=2n—1 defined by (7). Especially if the triangular Bézier surface is
a polynomial surface, the derivative direction can be bounded by the convex hull of
n(n —1)/2 vectors a1 Piiq jp + 2Pk + sPijrr, i +j+k=n—1

It is possible to bound the derivative directions using smaller number of vectors by
playing some tricks as was done in [6], but it generally gives looser bound.

3. Vectors Bounding Pyramids and Cones

Given a closed planar polygon Pg and a point P not in the plane of the polygon,
the surface generated by all the lines through P and the points on the polygon Pg
is called a pyramidal surface, the infinite volume enclosed by the surface is called a
pyramid generated by Pg and P. We denote it as Pyrd(Pg, P). The polygon Pg is
called the directriz of pyramid Pyrd(Pg, P) while point P the pyramid’s vertez. The
lines from P to points on the polygon Pg are called the generators of the pyramid.

A conical surface is identical to a pyramidal surface except that its directrix is
a smooth curve, such as a circle or an ellipse. A right circular conical surface has a
circular directrix, and the line from the vertex to the center of the circle, which is called
the axis, is perpendicular to the plane of the circle. The volume enclosed by the conical
surface is called a cone. In this paper, we mostly deal with the cones generated by right
circular conical surfaces since they are easy to control in practice, and when we say a
cone, it refers to a right circular cone. Any cone can be uniquely represented by its axis
and half vertex angle, and if we always set its vertex at the origin, then the cone can
be represented by a point P which is the intersection of the axis and the unit sphere
and its half vertex angle #. We denote this cone as Cone(P,#). The complement of a
cone is the locus of all lines through a common vertex, none of which is perpendicular
to any line inside the given cone. It is easy to see the complement of Cone(P,@) is
Cone(—P,m/2 —0).

Both pyramids and cones are comprised of two symmetric nappes which meet at
the vertex. According to different situations, we sometimes make use of just one nappe
of a pyramid/cone. This will be made clear in the context.

An essential step to construct a surface bounding pyramid/cone is to construct
a pyramid/cone(called wvectors bounding pyramid/cone) which bounds a given set of
vectors whose tails are at the origin. In this section, we provide methods to compute
such a vectors bounding pyramid/cone (We assume it contains just one nappe).

Firstly, we describe a method to compute vectors bounding pyramid.

Given n vectors O—]>31,O—]>32,...,O—>Pn, where O is the origin, the pyramid which
bounds this set of vectors is denoted by Pyrd(Py,Ps,...,FP,). It turns out that
Pyrd(Py, Py, ..., P,) can be obtained by applying the algorithm of constructing convex
hull for the set of points {O, P, ..., P,}[1]. Suppose OF; ,OF;,,...,OP; are edges on
the convex hull of the set of points {O, P, ..., P,}, then the generators of the pyramid
Pyrd(Py, Ps,...,P,) are OP;,0OPF,,,...,OF; .

Next we consider constructing bounding cones for a set of vectors. In [2], Sederberg
etal. presented an algorithm to compute such a bounding cone. In the following, we
give two improved algorithms, one’s time complexity is linear in the number of vectors
but not necessarily gives best bounding cone, while the other is quartic in time but
produces best solution.

Algorithm 1.



Bounding Pyramids and Bounding Cones for Triangular Bézier Surfaces 613

Input n vectors OP;, 0P, ...,OF,. Without loss of generality, we assume points
P, P, ..., P, are on the unit sphere.

—  — —
Output Cone(Q,0) which bounds vectors OP;,OP,,---,0P,.
Procedure

Step 1. Let m < n,Q; < P;,0; < 0,7 =1,2,--- ,n;
Step 2. If misodd, m < m+1,Q, + Pp_1,0, < 0;
Step 3. For i vary from 1 to m/2, there are three cases:

Case 1 If cone Cone(Q2i—1,02;—1) encloses cone Cone(Q2;,02;), let Q; < Q2i—1,
0; < 02;_1;

Case 2 If cone Cone(Q2;,02;) encloses cone Cone(Q2i—1,602-1), let Q; <+ Qi,
0; < ba;;

Case 3 Otherwise, find a cone Cone(Q;,0;) which exactly bounds two cones
Cone(Q2i—1,02;—1) and Cone(Q2;,62;). This can be done as follows.

Assume the angle between vectors OQ—QZ,l and 0522' be «;. Let 0; < (62i-1+
a+609;)/2, and choose point ); on the unit sphere such that it lies in the plane
OQ2;1Q2i, and the angles /Q2; 10Q; = (a + 02 — 02;1)/2, LQ;0Q2; =
(O2i—1 + a— 62;) /2. It is easy to see Cone(Q;,0;) bounds Cone(Q2;—1,62i—1)
and Cone(Q2;,02;) exactly.

Step 4. Let m < [m/2], it m = 0, go to Step 5, else go to Step 2.
Step 5. Let Q < )1 and 0 < 6.

We test Algorithm 1 through tens of examples which are constructed according
to random numbers, and the result shows that, in almost all cases, the vertex angles
of cones obtained by Algorithm 1 are 8-10% smaller than those obtained from the
algorithm in [2].

We can go even further. In fact, we can get the best vectors bounding cone. Before
describing the algorithm, we point out a simple fact.

—  — —
Lemma 1. If Q is the tightest cone which bounds vectors OPy,OPs, ..., OP,, then
there are at least two points among P; lying on Q, and if there are only two points lying
on Q, then the directriz center of cone QQ must be in the plane through these two points
and the origin.
Proof. The proof is a little tedious though the result is obvious. We omit the details.
Remark. The smallest cone which bounds a set of vectors is called the cone spanned
by this set of vectors.
Algorithm 2.
The input and output are the same as in Algroithm 1.
Procedure

Step 1. Find two points P;, and F;, from the given set of points such that the cone
H

H
spanned by vectors OF;, and OF,, is the smallest cone which bounds all the given
set of vectors. Denote this cone by Cone(Q1,0;). Note that Cone(Q1,0;) may
not exist.
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Step 2. Find three points P;,, P;, and P;, from the given set of points such that the
- — T —

cone spanned by vectors OF;,OF,;,, OF;, contains all the other vectors and it
is the smallest. Denote this cone by Cone(Q2,63), where Q2 can be found by
computing the interior center of triangle AFP; P;, P;,.

Step 3. If 61 < 02, set Q < @1, 0 < 01, else let Q) < Q2, 0 < Os.

The computation complexity of Algorithm 2 is O(n?), but it produces best bounding
cone for a given set of vectors by Lemma 1.

4. Surface Bounding Pyramids and Cones

When we have computed the hodograph of a given surface patch along any direction,
we can get the tangent bounding pyramids/cones by applying the vectors bounding
pyramid/cone algorithm presented in the last section. It turns out that the surface
bounding pyramid or cone can be constructed from these tangent bounding pyramids
or cones through some kinds of geometrical operations.

4.1 Tangent Bounding Pyramids and Cones

Given a rational triangular Bézier surface patch B(P), and a direction « in the

base triangle T, the tangent bounding pyramid Pyrd,(B) of the surface patch B(P)

along direction « is the pyramid which contains all the tangent directions g—g (P) for all

P € T. By the convex hull property and (6), the pyramid which bounds the n(2n + 1)
vectors I:Iijk,i + 7+ k =2n — 1 defined by (7), also bounds all derivative directions of
surface B(P) along a, and thus can be served as the tangent bounding pyramid(Similar
to the vectors bounding pyramid, we assume tangent bounding pyramid is composed
of just one nappe). Three special tangent bounding pyramids which are along three
special directions o! = (1,-1,0), o® = (0,1,—1) and o® = (—1,0,1) are essential to
the construction of the surface bounding pyramid/cone. We denote them by Pyrdy,
Pyrdy and Pyrds respectively. Similarly, we can construct three tangent bounding
cones Cone; along directions o, i = 1,2, 3.

A useful property of tangent bounding pyramids/cones is expressed in the following
theorem.

Theorem 1. If pyramid Pyrdy( or cone Coney) is translated so that its vertex
lies at B(ug,vg,wp), then the isoparametric curve segment B(u,v,wp), u+v =1 — wy,
u > ug and v > 0, lies within Pyrdy (or Coney). In fact, similar result holds also for
any tangent bounding pyramid(or cone).

Proof. Similar to the proof of theorem 2 in [7].

4.2 Bounding Pyramid of a Surface Patch

We first construct a surface bounding pyramid based on the tangent bounding cones.
Before proceeding, we give a simple lemma.

Lemma 2. The partial derivative of a triangular surface patch along any direction
can be represented by the convexr combination of the derivatives of the patch along two
directions among o', o and o®.

Proof. For any direction « in the base triangle, there exist two directions o' and
o among o', & and o? such that

o = Aa™ 4+ Aa'?,
where A; > 0,7 =1,2. Thus

OB oB oB
Z(P)=\—(P
804( ) Al@a“( )+ A
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which completes the proof.
Now we are ready to construct a surface bounding pyramid based on the tangent
bounding cones as follows.

Let
¢ — = -,
Cij: {PG]R3| OP= \v*+ XvI, Ay + X2 =1,
A >0, A2 > 0, ok € Coney, k =i, 4}, (10)
(27.7) = {(172)7(273)7(371)}
and

Ci23 = C12 U Cy3 U O3y (11)

(Here A means the complement set of A). Then we have

Theorem 2. (1) If Ci2, Cy3 and C3y are translated so that their vertices lie at
any point B(ug, vy, wy) on the surface patch B(P), then the entire patch B(P) will lie
completely within Co U Cosz U Cl3y.

(2) Cia3 is a bounding volume of surface patch B(P), and it is composed of two
nappes of two (possibly) different pyramids.

Proof. (1) Consider an arbitrary curve segment B(ug+ (u; —ug)t, vo+(v1 —vo)t, wo+
(w1 —wp)t), t € [0,1] on the surface patch B(P), where (u;,v;,w;) is a point in the
base triangle T. By Lemma 2, there exist constants A; > 0, 1 = 1,2 and two directions
o™ and o2 (i1, is = 1,2,3) such that

Bt(uU + (Ul - UO)t,Uo + (1)1 - vo)t,wo + (’(Ul - ’(Uo)t)

0B
= Alw(Uo + (Ul - U())t,vo + (1)1 - Uo)t,’u}o + (W1 - wg)t)

+ AQ%(UO + (w1 — wp)t, v + (v1 — vo)t, wo + (w1 — wo)t).
From the above equation and Theorem 1, curve segment B(ug + (u; — ug)t, vg + (v1 —
vo)t, wo + (w1 — wp)t) must lie in Cj ;,. Thus the whole patch B(P) lies within C1a U
Ca3 U C3;.

(2) Obviously, C23 bounds surface patch B(P) in the sense that if the vertex of Cjo3
is translated to any point on B(P), the patch will lie entirely outside of Ci23. Notice
that Clo3 is generally not a pyramid, but is comprised of two nappes of two (possibly)
different pyramids P;(B) and P»(B), and these two nappes do not intersect except
meeting at a common vertex. However, this fact doesn’t influence the convenience of
C123 as a bounding volume.

If we intersect P;(B) and P»(B), we will get a surface bounding pyramid P(B)
which generally has a hexagonal directrix since both P;(B) and P»(B) have triangular
directrices.

Remark. In the following, we will call Ci23 a bi-pyramid and Cj; the convex set of
Cone; and Cone;.

To actually compute Cio3, we should notice the fact that the planar faces of the
two nappes of (93 are in fact those planes which are tangent to two of the three cones
Cone;, 1 =1,2,3. Thus to get the explicit representation of the two nappes of C}a3, it
is enough to determine the plane which is tangent to two arbitrary cones.

Suppose we are given two cones Cone(P;,0;) and Cone(P, ;) whose vertices are
at the origin. The normal of the plane which is tangent to both of Cone(P;,6;) and
Cone(Py,6) must be the normals of these cones along the tangent lines. Hence the
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intersect of the complement cones of Cone(Py,01) and Cone(P;,,03) gives the normal
of the tangent plane. Recall the complement cones of Cone(P;,01) and Cone(Py,6s)
are Cone(—Py,w/2 — 61) and Cone(—P,, /2 — 63), the normal of the tangent plane
can be easily computed as

— o 5 5 5 5 5
OP= \v! + A1 (v! x v2) 4+ Ao[(v! x v2) x v!], (12)
where
5 — o N
vl = — OPl, v =— OPQ, (13)
and
Xo = sinfy, Az = [sinfy — sind cos 6]/ sin By, A = /1 — A2 — M3 sin? 6y / sin .
(14)

Here 6y is the angle between vt and v?. Notice that there exist two normals which
correspond to two tangent planes of cones Cone(P;,01) and Cone(Ps,6s).

For each nappe of Cia3, there are three planar faces whose normals N, ¢ = 1,2,3
can be computed as above. The three generators of the nappe are simply Nj x N,
Ng X Ng, Ng X Nl.

If we use tangent bounding pyramids instead of tangent bounding cones, we can
construct another surface bounding bi-pyramid by taking the similar process as before.

Let

gt - -
F)ij: {PG]R3| OP= \v* 4+ \gvd,
Mo =1, A >0, A2 >0, ok € Pyrdy, k =1i,5}, (15)
(27.7) = {(172)7(273)7(37 1)}

and

Pio3 = P1o U Po3 U P3y (16)

Then we have

Theorem 3. Pjo3 is a bi-pyramid which bounds surface patch B(P), and each of
the two nappes of Pyo3 has a triangular directirz.

Proof. Essentially the same as the proof of Theorem 2.

Remark. The intersection of the two pyramids corresponding to the two nappes
of Pja3 is a surface bounding pyramid whose directrix is generally hexagonal.

To compute the two nappes of P23, we also need find the three pairs of planes,
each of which are tangent to two of the three pyramids Pyrd;, 1 = 1,2,3. The details
of the algorithm are omitted.

4.3 Bounding Cone of a Surface Patch

Because cones are more easily controlled than pyramids, one may wish to construct
bounding cones instead of bounding pyramids sometimes. One way to obtain a surface
bounding cone is to first compute a surface bounding pyramid according to the algo-
rithm presented in the last subsection, and then find the largest cone which is enclosed
in the pyramid.

Suppose we are given a pyramid P with a triangular directrix whose vertex is at
—

the origin, and the generators of P are unit vectors OF;= v;, ¢ = 1,2,3. Denote the
angle between v; and v; by 85, ¢,7 = 1,2,3.
Theorem 4. Let

— - = -
OP=7=wv! sin Ba3 + V2 sin G317 + v3 sin f19, (17)
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and
vl x v2) .03

151]

v = arcsin (18)
Then Cone(P, ) is the largest cone bounded in the pyramid Pyrd(Py, Py, P3).

Proof. Let m;; be the plane which is through OF; and OP;, (i,5) =
{(1,2),(2,3),(3,1)}. The distance from P to m;; is

dij = (v_2 X vd - 17)/“1)_; X v_5H = vl x 02 v_é,
that is, the distances from P to three planes 7;;, (i,7) = {(1,2),(2,3),(3,1)} are the
same. Thus ¥ is the axis of the cone which is tangent to the three planes 7;;. Obviously,

such a cone is the largest cone enclosed in the pyramid Pyrd(P;, P2, P3), and its half
vertex angle v is determined by

dij = ||V]| - siny = ol x 023,
The theorem is confirmed.

Based on the surface bounding bi-pyramid obtained in the last subsection and
Theorem 4, we can easily get a surface bounding volume which is composed of two
nappes of two different cones Cone(P,0;) and Cone(P,,0;), and each of the nappes
is enclosed in the corresponding nappe of the surface bounding bi-pyramid. We call
such a bounding volume a bi-cone. However, if we want to get a surface bounding
cone, we have to intersect Cone(P;,61) and Cone(P,,60;) and find a cone enclosed in
the intersection. Such a cone Cone(P, ) can be simply computed as

— — —
OP= )X\ OP, +)3 OP,, 0= (91 + 6y — 90)/2, (19)
where
A = [cos(f; — 6p) — cos B cos(By — 0)]/ sin? by, (20)
Ay = [cos(fy — 6y) — cos by cos(6; — )]/ sin® Oy, (21)

and 6 is the angle between 0—151 and 0—152. Note that the above solution doesn’t account
for the trivial cases where Cone(P1,01) C Cone(Py,03) or Cone(Py,03) C Cone(Py,6).
For these two cases, the solution is simply Cone(P,0) = Cone(Py,0;) or Cone(P,0) =
Cone(Py, 6).

Of course, we can also find a surface bounding cone by finding the largest cone
enclosed in a surface bounding pyramid(which generally has hexagonal directrix).

4.4 Comparisons

We have provided two kinds of surface bounding volumes-surface bounding pyramids
(bi-pyramids) and surface bounding cones(bi-cones). While the surface bounding cones
have the merit that they are easier to handle in practice, they suffer from the disadvan-
tage that they have smaller volumes than surface bounding pyramids. In fact, it can
be shown that the volume of a surface bounding pyramid is at least 1 — 7/3v/3 ~ 40%
larger than the volume of the corresponding surface bounding cone. Thus, in practice
the users have to determine which bounding volume is to be used.

We also derived two different surface bounding bi-pyramids Cj93 and P23 depending
on whether using tangent bounding cones or tangent bounding pyramids as the bases.
Since tangent bounding pyramids are generally smaller than corresponding tangent
bounding cones, the surface bounding bi-pyramid Pjo3 are generally larger than Co3.
Of course, it is a little more convinent to construct Cjo3 than to construct Pjs3.
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5. Examples
In this section, we give an example to illustrate the process of constructing bounding
pyramids(bi-pyramids) and bounding cones(bi-cones) for a triangular Bézier surface

patch.
We consider a degree three triangular Bézier surface patch(Fig. 1) whose control

points are as follows

P30 = (0.0,0.0,0.0), P10 =(1.0,0.0,0.4), Pi0=(2.0,0.0,0.5),

Pyso = (3.0,0.0,0.0), Pyo,1 =(1.0,1.0,0.3), P, = (1.8,1.2,0.6),

130,2,1 (3.0, 1.0,0 2), Pios = (2.0,2.0,0.5), Pyi9=(3.0,2.0,0.5),
03 = (3.0, .0).

Figure 1. A cubic triangular Bézier surface patch
By computing the directional derivatives along o' = (1,—1,0), o = (0,1,
a® = (—1,0,1), we get three tangent bounding pyramids
Pyrd; = ((~1.0,0.0,-0.4), (—1.0,0.0, —0.1), (—1.0,0.0,0.5
(—0.8, —0.2, —0.3), (—1.2,0.2,0.4), (—1.0,0.0, 0.0
Pyrds = ((0.0,—1.0,-0.2), (0.0, —1.0,—0.3), (0.0, 1.0, 0.5
(0.2, -1.2,—0.1), (~0.2, —0.8,0.1), (0.0, 1.0, 0.1
Pyrd; = (1.0,1.0,-0.5),(1.0,1.0,0.2), (1.0, 1.0,0.3),
(1.2,0.8,—0.1), (0.8, 1.2,0.2), (1.0, 1.0, —0.3))
The convex set of Pyrd; and Pyrds is computed by using the convex hull algorithm][1]

—1) and

~

?

~—

)

?

— ~—

)

as
Py, = Pyrd((-1.0,0.0,-0.4),(-1.2,0.2,0.4),(—1.0,0.0,0.5),
(0.0,-1.0,0.5), (0.2, —-1.2,-0.1), (0.0, —1.0, —0.3)),
and the normal vectors of the two planes which are tangent to both of Pyrd; and
Pyrdy are thus vi, = (—1.0,0.0,0.5) x (0.0,—1.0,0.5) = (0.5,0.5,1.0) and v, =
(0.0,-1.0,-0.3)x (—1.0,0.0,—0.4) = (0.4,0.3,—1.0).
Similarily, we can obtain the other two convex sets of the tangent bounding pyramids

and their corresponding normal vectors of the tangent planes
Py = Pyrd((1.0,1.0,0.2),(0.8,1.2,0.2),(1.0,1.0,0.3),

(=0.2,-0.8,0.1), (0.0, —1.0, —0.2)),

vas = (—0.8,0.4,0.8), v33 = (—0.8,0.3, —1.0)
P;; = Pyrd((1.0,1.0,-0.5),(1.2,0.8,—0.1), (1.0, 1.0,0.3),

(=1.0,0.0,0.5), (0.8, —0.2, —0.3)),

v, = (0.5,-0.8,1.0), v3, = (0.4, 0.7, -0.6)
From vectors vl], 1,7 = 1,2,3, £k = 1,2, we found the two nappes of a surface

bounding bi-pyramid are(Fig. 2)
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Pyrd((0.00, —1.20,0.60), (1.04, 1.20, 0.44), (—1.30, 0.00, 0.65))

and
Pyrd((0.88,0.88, —0.44), (0.00, —1.20, —0.36), (—0.88, —0.16, —0.40)).

Figure 2. A surface bounding bi-pyramid

The intersection of the two pyramids corresponding to the two nappes is also a
surface bounding pyramid which has a hexagonal directrix(Fig. 3)

Pyrd((0.80,—0.30,0.75), (0.72,0.54, 0.45), (0.44, 0.80, 0.42),
(—0.66,0.39,0.64), (—0.79, —0.30, 0.54), (—0.41, —0.72, 0.56)).

Figure 3. One nappe of a surface bounding pyramid

By theorem 4, we can also find a surface bounding bi-cone, the two nappes of which
are(Fig. 4)
Cone((—0.13,-0.08,0.99),0.80) and Cone((—0.12,—0.30, —0.95),0.81).

Figure 4. A surface bounding bi-cone
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The cone enclosed in the intersection of the two cones corresponding to the above
two nappes is Cone((0.01, —0.07, —0.68),0.58), which is a surface bounding cone(Fig. 5).

Figure 5. A surface bounding cone
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