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Abstract

A discontinuous finite element method for convection-diffusion equations is pro-
posed and analyzed. This scheme is designed to produce an approximate solution
which is completely discontinuous. Optimal order of convergence is obtained for
model problem. This is the same convergence rate known for the classical methods.
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1. Introduction

The finite element approximation of the convection-diffusin equations has been in-
vestigated using several different approaches (see e.g. [3] [4] and the references therein).
Previous analysis in primal formulation of these problems was done for two types of
approximation schemes : one which produces a continuous piecewise polynomial ap-
proximation and one which produces a piecewise polynomial approximation which are
continuous for certain number of moments accross interelement edges [2] (nonconform-
ing approximation). All these finite element methods have optimal order of convergence,
assuming sufficient regularity.

In this paper, we propose and analyze a new finite element method which produce
a completely discontinuous piecewice polynomial approximation of convection-diffision
equations. This method have optimal order of convergence as classical one.

An outline of the paper is as follows. In the next sections the method is introduced
for model problem; existance and uniqueness to the discrete problem is given, and
optimal error estimate is obtained for a model problem.

2. Model Problem and Finite Element Approximation

Let © be a simply connected polygonal domain of R?. We consider the model
problem : Find v such that
{—Au+ﬂ.Vu+ou:f in €,

2.1
u=0 onl, (2.1)
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where B € (WLt (Q))2, 0 € L®(Q) and f € L?(2). In the sequel we make the
assumption

1
0—5 div@ > v > 0.
Assume that we have a regular triangulations 7}, of the domain Q with triangular

finite elements whose diameters are less or equal than h.
First, we introduce the following spaces :

Wy, = {v € L*(Q) v € HY(T) and 38n—T € L?(dT),NT € Ty, and vigrar =0
if meas(0T NT) # 0}

ou . .. ..
where a_u is the outward normal derivative of the restriction of u to T'.
nr

Vi, = {v e L*Q): v € PI(T),VYT € T, and vjgpar = 0, if meas(0T NT') # 0}.
Let us remark, that we have

Vi, C W, (2.2)

Finally, we introduce some notation that we will need in the definition and analysis
of the finite element approximation of the model problem.

Let E7 be the set of all interior edges and E7 the set of edges of T'. For each interior
edge | we choose an arbitrary normal direction n and denote the two triangles sharing
this edge T'y and T where n points outwards 77,. For a boundary edge [ we take n as
the outward normal.

We define the jump of v € W}, on [ by

[]li(z) = v, (z) — v (7),Vz € L.
For all T € Ty, we denoted by 0T~ and 0T the set defined by :
OT = {z € 0T, such that [.n(z) <0}

and
OTt = {z € 9T, such that B.n(z) > 0}

where n is the outward normal to T'. And we set, for all v € W,

Fg) = i
Vi e Er, vt (z) Eh_r)nov(w Fef(x)), z el,

we use the convention uT =0 on I
Let (u,v) € (Wp,)2 — By(u,v) the bilinear form defined by

By( / VuVods + Z 5 _meas(l) / ([l {[o]]do

meas
TeTh

B 2/ U|T+ Z/ U\T+

leEr leEy
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where o € {—1,0,1}, and (u,v) € (Wj)? — B.(u,v) the bilinear form defined by

=y / B.Vu + ou) vdw+/ |B.n](u™ —u)vTdo.

TeTh

The ”discontinuous” Galerkin Finite Element Approximation to the solution of (2.1)
is defined by :

{ Find uj € V3, such that (2.3)

By(up,vp) + Be(un, vn) = Yper, Jp fodz. Yo, € Vy

2.1 Existence, uniqueness results and error estimates

In this section, we proceed to verify certain properties of the form B which will
be needed to prove existence and uniqueness results and to get error estimate. In
the sequel, we denoted by C' a positive generic constant not dependent of A and not
necesseraily the same in any two place.

First, let us introduce the norms on W, x W}, defined by

Yo eWh (bl = X blir+ 3 et / o]} do, (24)
TeT l€EET
Yo e Wy, [WIZ= D vl |ﬂ nl(vt —v7)%d (2.5)
TET TET
and
(W]l = [[w])z + [[v]]7- (2.6)
Lemma 2.1. The bilinear form By satisfies
Yon € Vi, Ba(on,on) > %[[vh]]g. (2.7)
and
Bafw,vp) < O{fll} + Y M 0 Ww ) € Wa x Vi (28)

e meas(l)

Proof. Let v, € V. First, we have

) = 3 it 3 32 o - 1) 3 [ X o

meas
TET = =

Using the inverse inequality

meas(l)
meas(T)

6vh

15 ot < ( )2

we obtain : for all [ € Ej

o(v e meas(e
~+ o) [ A iy > Ly - (140 22 [
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Then we have

1+«
Ba(vp,vp) > (1 -

)3 lonlt 3 (1)) 3 0 i o

P 2, meas(,
so a € {—1,0,1}, we finally obtain the inequality (2.7) :

Bafon,vn) > {[en]]3

Let (w,vp,) € Wy, x Vj,. We have
meas(
Batw,o) = Y [ Guvuds+ Y 38 [wlffo)do
TeTy

len, meas (T

Z/ w|T+ ]da—aZ/ h‘T+ lido

leEr leEy

<Ol + X ) I 3 o+ 3 ) Oy

o meas(l) B, meas(l)

Using inverse inequality, we deduce that

Ba(w,vp) < O{w]l} + 3 0 T) 003 w3
B meas(l) " On

Lemma 2.2. The bilinear form B, satisfies :
V(w,vp) € Wi x Vi,

Be(w,w) > min(o, 3) [w]l (2.9
and
Bo(w,on) < Cllll ol + ¥ [ |Bnl(wy)doys = 3 [ BVvuds - (210)
TeT, TeT,

— 1
h = dz.
where 3 meas(T) /Tﬁ x
Proof. The first inequality is classical (see e.g. [3]).
For the second inequality. Let (w,v,) € Wj x V3. Using Green Formula, we have

3] :
B.(w,vp) Z / a—dwﬁ)wvhdry—/(ﬁ B)Vvhwdx—/ BV vpwdz

TeTh

=% [ 1Bl o

TeTh

By classical result in finite elements methods and inverse inequality [1], it is easy
to see that

(8 =B Vunwda < Ol o rfonly el < Cllowlor wlog-
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Then
1 _
Bo(w,vn) < Cllolel vl + ¥ [ 1anlwy)do}s = Y [ BVvuda

TeTh TeTy
Now we are able to proove existance, uniqueness and to give a priori error estimate.
More precisely, we have the following
Theorem 2.3. The discrete problem (2.3) has unique solution uy € Vy,. Moreover,
if w € W}, be the solution of the model problem (2.1), there exists a constant C such
that

(

d(u — vp)

. T
o=l <€ ot (=l + 3 mens I,
Hlu= ol + [ |Balr - mp)de}t . (211)
ar
Sorer, Jp BVwn(u —vp)dx
+ sup
\ wpEVR [[wh”h

Proof. The first part of the Theorem follow from (2.7)-(2.9).
For the second part, remark that the solution of the model problem belong to Wy N
H{ (). Then using Green Formula, we have :

Von € Vi, By(u,vp) + Be(u,v) = Y / fondz = Bg(up,vp) + Be(un,vp).  (2.12)
TeT; T
Using (2.7)-(2.9) and (2.12), we have. For all v, € V},

Bq(up — vy, wp) + Be(up — vp, wp)

[fup, —op]ln < C ws;lé% [[fwn]]n

<C sup Bi(u — vy, wp,) + Be(u — vp, wp)
wp €V}, [[wn]ln
so by (2.8) and (2.10), we deduce that

(

)

o(u — vp) “2
an 0,l

o — s < O inf {(fu— vl + 3 o)

et meas(l)

1
Hlu= vl + [ 1By = o) do)
SoreT, T BVwy, (v — vp)dz

+ sup
\ ety Tl I
Using triangular inequality, we obtain
( ) 1)), 0(u —vp)
_ <C f _ 2 mea’s( + 2
o= wrll < i, (= ol + 32 S =G

1
Hiu =l + [ 1Bnl(ur = onr)doy

+ sup ZTGTh fT vah(u - Uh)dx}
) wh€Vh [Twn]]n
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The final Theorem of this section, is now straighforward consequence of estimate
(2.11).

Theorem 2.4. Let u € Wy, be the solution of model problem (2.1). If u € H?(12),
with 3/2 < o < 2, then there exists a constant C independent of h such that :

[[u — up]ln < Ch7 Hulsg.
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