Journal of Computational Mathematics, Vol.17, No.2, 1999, 113 124.

HIGH ACCURACY ANALYSIS OF THE WILSON ELEMENT*

Ping Luo
(Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China)

Qun Lin
(Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this paper, the Wilson nonconforming finite element is considered for solving
a class of second-order elliptic boundary value problems. Based on an asymptotic
error expansion for the Wilson finite element, the global superconvergences, the
local superconvergences and the defect correction schemes are presented.
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1. Introduction

It is well known that superconvergence estimates and error expansions for the con-
forming finite elements are well studied in many papers. We refer to [16] for a survey
on various results of superconvergence and to [10] for a fundamental work on asymp-
totic error expansions and to [1]-[3] for some techniques on high accuracy analysis.
However, for the nonconforming elements, due to the reduced continuity of trial and
test functions, it becomes more difficult to discuss superconvergence properties and re-
lated asymptotic error expansions. Naturally, people want to ask if the accuracy of the
nonconforming element approximation can be improved by means of other methods.
However, up to present, the work in this field have seldom been found in the literature.
For the relatively simple Wilson element, a result of superconvergence in the energy
norm has been obtained in [7] for a model situation and, within the same setting, in-
dependently, Chen and Li [ have obtained LP and W' (1 < p < 00) error estimates
as well as the extrapolation results. For more general equation, Chen and Lil® have
obtained the error expansions and the pointwise superconvergence error estimates for
the gradient. For the Carey nonconforming element, the superconvergence estimate of
the gradient at the element centroid has been proved in [20]. However, these supercon-
vergence results are only pointwise and particular. In order to get the high accuracy of
the nonconforming elements as that for the conforming elements, we carefully analyse
the Wilson element in this paper. We find that the Wilson element not only has the
pointwise superconvergence, but also has the asymptotic error expansions, the global
and local superconvergences, the defect corrections and the extrapolations. The key
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point of analysis is the expansions of some integral identities. And this kind of technical
details can be found in [1], [4] and the original paper [10].

It is known that the nonconforming Wilson finite element passes the Irons patch test
on general quasi-uniform quadrilateral meshes and the rate of convergence in the energy
norm is of first order. It is shown by an example in [5] that this rate of convergence
is optimal. Thus, in contrast to conforming quadratic finite element which achieves a
second-order rate of convergence in the energy norm, the Wilson finite element loses
one order of accuracy because of its nonconforming. In this paper, we present a method
that as long as post-processing on the finite element solution, i.e., using a high order
interpolation for the finite element solution, we have not only obtained the global
superconvergences of a second order or higher order rate of convergence, but also have
obtained the local superconvergence and the defect correction schemes.

2. Global Superconvergence

For simplicity, let €2 be the unit square in the zy-plane. We consider the following
boundary value problem
0 ou 0 ou
—Lu=—-——A1—) - — (42— ) = in €
“ 8:10( 18:10) 8y( 28y) ;o 4,
u=_0 on 012,

(1)

where Ay, A5 and f are sufficiently smooth functions defined on Q and Ay, Ay > a =
const > 0. Let T" = {eij}?}TL = {e} be a rectangular partition of the domain 2, where
n,m are two positive integers, e;; = [x;_1, ;] X [y;_1,y;] are rectangular elements, and

O=zo<a1<--, <z, =1, 0=y <yn <, <yp=1

are two one-dimensional partitions on the z-axis and y-axis, respectively. Define h; =
z; — i1, kj = yj —yj_1, and the mesh size h = max{h;, k;};";. As usual T" is said
to be quasi-uniform if there exists a positive constant ¢ such that

ch < min{h,, k]}f”fil

Furthermore, T" is said to be unidirectionally uniform if
hi:hl, z'zl,---,n, and k‘j :kl, 7: 1,---,m.

For the mesh T", let Nj, denote the set of vertices and we define V" to be the
Wilson finite element space which consists of all functions v € L?(Q) such that v is
piecewise quadratic over §2 and continuous on N, and v vanishes on Np N 9S), i.e., six

degrees of freedom on the element e of the Wilson element are uniquely determined by
2

0 ok
its values at four vertices of element ¢ and two integrals / 8—12)d:1:dy and / 8—2d:uly.
x e Oy

e

The Wilson finite element solution of the equation (1), Ryu € V", is defined through
the relation

an(Rpu, o) = (f.on), Veon € V", (2)
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where

We introduce the notation HHk ol

1
(X IE, 07, 1<p<oo,

ecTy

mf}}é H Hkooe b

”-”k,p,h =

i
8

Here and below, without confusion, we will use the notation ||u|s, to denote ||u||; p 5-
Furthermore, we introduce the following conforming bilinear finite element space

—h

V" defined by

V' = {v e HY(Q) | v is piecewise bilinear}.

Notice that 7" is a subspace of V. The bilinear finite element solution of the equation
(1), Ryu € V" is defined by

a(Bpu,v) = (f.v), YoeV", (3)
where 90 8 909
u Ov u Ov
A Ag——1.
alu,v) = /( 18r8m+ 28y8y)
Obviously,

ap(Rpu — Rpu,v) =0, Vo€ v (4)

Let ip: C(2) — V" be the usual bilinear interpolation operator. From [1], [8], [9]
and a(Rpu — ipu,v) = a(u — ipu,v) for v € Vh, we have

Lemma 1. Assume that A; (i = 1,2) are smooth enough, T" is unidirectionally
uniform and u € W><(Q). Then, for any v € Vh,

= k2 0*u v | h% [ 0A *udv
a(Rpu —ipu,v) = Z { /A 8:1:8y28£v+? . Or 0x2 0x

ecTh
h2 Ou v k2 [ 0Ay 0%udv

e [T2T MCT 4
0120y Oy * 3 Je Oy Oy? ay}+(’)(h )5 solvls,1-

It is easy to prove that (see [8])
Lemma 2. Under the conditions of the Lemma 1, we have

0; Ryu = T4 (05 As (p)s Rpu(p) + £ (1)) + O(B?)|f[lo,00 + O)|| Rptull, o
0? 0?

where s = 1,2, 02 = 322 02 = W and p is the center of rectangular element e.
L Yy

From Lemma 1 and Lemma 2, we get
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Lemma 3. Under the conditions of Lemma 1, we have, for all v € Vh,
Rhu — 'Lthu) ov 8(Rhu — ithu) ov
Ryu —ip(R A + A —
( nu —ip(Rpu), Z / 1 Or 8:1: 2 dy 8y}

_1 /(h ,0A1 02 Ryu Ov , Ay 0?Rpyu 81})
3 ©r 0x2 Ox ¢ oy Oy’ Oy

+ (9( ) Btly o0 02,1

1 0A; _ Ov 0Asy _ Ov
h2 | ——F k2 —F
324 ( .oz Yoz T | Ty 28y)
+ O(h4)|u‘4,oo‘lv‘2,l’
B 0A1 Ju B 0A5 Ju )
where F| = A1( o T + f) and Fy = Ag( 9y 9y + f) are functions on

independent of h.
Lemma 4. There exists a positive constant ¢ such that

(5)
[ Rrulloz < cllullz,2 (6)

and
| — < cflull2,2. (7)

Proof. Integrating by parts we come to

0

ah(uthu,Rhu) :Z{(/l — l )Al%RhU-I— (/l — l )AQ—thu}
e 2 1 v 4 3

SA(AYART TR

where we have used the expansion of Rpu — i Rpu at nodal point and l9,l; and l4, 3
are the two edges of e parallel to z and y axis, respectively. Therefore, we deduce that

HRhuH%’Q <cap(Rpu, Rpu) = cap(Rpu — u, Rpu) + cap(u, Ryu)

and from which inequality (5) follows.
Using the inverse estimate, we get

MRy = ipulli +
<ch™ (|| Ryu = ul[12 + ¢

2) +cffullao < clfufl2,z-

Hence, we deduce that
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Similarly we can prove inequality (7).
Theorem 1. If Ryu and Ryu satisfy (3) and (2), respectively, then

[Rhu — in(Rpu)ll; 5 < Ch2||u||2,2 (8)

and

[ Rt — in(Baw)ll, o0 < ch?| ][l . (9)

||1,oo

Proof. We have by (4) and Lemma 3

c|Rpu — Z'h(RhU)HiQ <a(Rpu — ip(Rpu), Ryu — i (Rpu))
=ap(Rpu — in(Rpu), Ryu — ip(Ryu))
+ ap(Rpu — Rpu, Rpu — ip(Rpu))
<ch?||[Ryu — in(Rpu) ||y ol| Ryl s
+ Ch4HRhUH2,2HRhU - ih(Rhu)Hz,Q

Thus inequality (8) follows from inequality (6) and the inverse estimate. Similarly, we
have (9).

Corollary 1. Ifu € H' and D CC (, then there exists a positive constant c such
that

[Rpu — in(Bpu)l1,2 < chllull 2, (10)
_ 1
|Bpu = in(Rpu)llo.co,p0 < ch|Inh|2{[ufl1 2 (11)
and
|1Rhu — in(Rpu)llo2 < chllulli,2. (12)

Proof. We only prove 1nequahty (11). Inequalities (10) and (12) can be proved sim-

ilarly. Using ||[G%[|12 < ¢|In h\Z, where G" € V" denotes the discrete Green function,
we get by inequality (5), Lemma 3 and the inverse estimate,

:a(ﬁhu—ithu Gh)
<ch?||Rpull2| /G212 + c(h")||Ryull2,2]| Gl ]2,
<ch|Inh|? ||ul]; 2.

|Rpu — ip(Rpu)|

We know that (see [1])
Lemma 5. There exists a positive constant ¢ such that

[ Bnu — il 5 < ch?ulls (13)

and
[Rnu = inully o < ch®|nh||lully - (14)

We assume that 7" has been obtained from T?" of mesh size 2h by uniform subdi-
viding each element into 4 congruent subrectangles of size h on any elements in 72"
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I2h

We define the high order interpolation operator on the space of piecewise bilinear

function V" and satisfying
. w—h
iy =12, Pl < lolly,, Yo €V,

lu— PPy < chflully,. 2 <q< o (15)

Hence, we get the global superconvergence as follows:
Theorem 2. If u and Ryu satisfy (1) and (2), respectively, then

| — I2h(Rhu)||L2 < Ch2||u||3,2 (16)

and
lu — I*"(Rpu)

Proof. We get by inequalities (8), (13) and (15)

< ch?Inhlllul; .- (17)

Hl,oo

lu— I*"(Rpu)|l1 2 <|lu— I*"(Rpu) |2 + 117" (Rpu) — I (Rpw) || 2
<c| " (Rpu — ipu)|lr 2 + TP (Rau — in(Bpw))l12 + 117w — ull1 2
<cl[Ryu — inully 5 + |[Rhu — inRyully 5 + ch?|lul[32 < ch?||ul5,-

Similarly, we can prove inequality (17) by inequalities (9), (14) and (15).

3. Local Superconvergence

In this section, we discuss the local superconvergence. We have
Theorem 3. If u € W (D) N H?(Q) and D CC Q, then

lu = I (Bp)lly o, p < ch®| | (ulls o, p + ull2,2.0 + 11 £]]2,00)

Proof. For all z € D, let g" = 0,G! ¢ V" denote the derivative of the discrete
Green function. We take D;, Dy and w € C§°(€2) such that D CC Dy CC Dy CC Q,
supp w CC Dy and w =1 on D;. Set uy = wu,us = u — uy. Then we have by Lemma
3 and ||g][1 < c Inh

IS U
_6368:1: 0x? Ox 3 Je Oy 0Oy? Oy
+ O(h?)|Inhl|| Ryully 5.

IR — in(Rnw)lly o p =a(Rnu — in(Rau), g7)
k2 0Ay 0 Rpu Ogh }

Hence, we deduce by Lemma 2 that

— ) h2 [ 0A, _ ORpudg" k2 [ 0Ay _ ORpu Ogh
Rpu —ip(R < E -~ | —B £+ £ | —B =
|Rpu — ip( hU)Hl,oo,D =L { 3 ], oz 1 9r O 3 /. ay 2 By Oy }

+ ch®{|[ fllg,00 + Bl Buully o g2 111 4
+O(h*)| In hl|| Ryul.,,, (18)
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1 0A(p) 1 04(p)

where B| = — , = —
' 2T Ay(p) oy

Ai(p) Oz - Using Hgng,Q,Q\D < ¢, we find by

1

inequalities (7), (6) and (18) that
ou ag dou Og"
97 O + ( Q)y 28y By }

ch?||u —

duy Ogl 8u ogh
<er{ [ (403 G0 / (42,8275,

dugy Ogh / dusy Ogh
Ap) B —— =22 (As9) ,B 2
+/Q(1) 18:1:8+ 2) 25y By}
)

+ ch?[ I h|(||ully,
SCh‘Q(Hul||1,oo,DHgg||1,1 + [uzlly 2 Q\Dng 4 2 Q\D)
+ch? [ h|([lully g0+ |1f]2.00)
<ch?|nh|([lully oo, p + ullyp.0 + [1f]l2.00), (19)
0A, 0A,

where (A1), = 2 (Ag)y, = Bu . On the other hand, we know that (see [1])
€T Y

||Rhu—zh(Rhu)||1ooD<ch/ [(A4):B1 5

+ Ch2| In hl||ul|2,2 +

lu— PMRp)ly o, p < b bl llully o + b’

(20)
Therefore, it yields from inequalities (15), (19) and (20) that
lu — " (Ryu) |y oo, p <llu — M (Bpu)lly oo, p + " (Biu — in(Baw) |1 oo, p

<||U—12h( )||1ooD+||Rh“—2h(RhU)||1ooD
<ch?[Inh([|ull3,00,0 + [|ull2.2 + || fll2,00)-

This completes the proof.
Furthermore, if we note the following relations

lu = 12" (Ryu)llo,oc,p < ch|Inh||lulli 00,0 + chlful 15
and

|lu.— I*"(Ryu)||0,00,0 < |[Bntt = in(Rpu)||o,00,0 + | — I°" (Ryu)

using inequality (11), then we have
Corollary 2. If D CC €, then there exists a positive constant ¢ such that

= I (Rpyu)|[o.00,0 < ch|Inh(| 2)-

4. Correction Schemes

The defect correction techniques for the conforming finite element were, as we know,
initiated by R. Rannacher and developed by H. Blum during the last six years. See
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a survey in this topic (see [1], [12], [14]). But so far these correction techniques for
the nonconforming finite element have not been applied. In this section, we present
correction schemes for the nonconforming finite element. It shows that these kinds of
techniques are valid for the nonconforming finite element too.
Theorem 4. If g = 2 or oo and u € WH4(Q) N H} (), then there exists a Wy €
HE () such that
Ry — in(Ryu) — B2ip Wil 5 < ch® (21)

and

|Ryu — in(Rpu) — W2 Ry W, < ch®|Inh). (22)

Hl,oo

Proof. Consider linear functional on H&(Q):

Z/ +Me(A2) Fng}

where Ao = he/h, e = ke /h. Obviously |L(v)| < %HUHLQHUHLQ.
Hence from the Lax-Milgram theorem, we know that there exists ( see [1] )

Wy e W(Q)NH(Q) (1 <q< )

such that
a(Wy,v) = L(v) Vv € Hy(Q).

Furthermore we have by Lemma 3, for any v € Vh,
a(Ryu — in(Rpu),v) = h*a(Wi,v) + O(h*)[ully o]0l
and it suffices to observe that for all v € Vh,
a(Wy,v) = a(R,W1,v).
Hence, taking v = Rpu — i, (Rpu) — h>Ry W1, this leads to
|Rnu — i (Rpu) — lLQEthHL2 < ch3. (23)

Using (see [1])
||RhW1 — Z'hI/V1||1,2 < Ch27€, (24)

and combining (23) and (24), we see that inequality (21) is proved. Furthermore, we
have

a(Rpu —ip(Rpu) — B2 RyWi,0) = O(h*)|lull, i llolly,
and taking v = 9,G! € Vh, we get

| Ryu — in(Rpu) — W2 R, W, < ch®|Inh| (25)

” 1,00

Therefore, inequality (22) is proved.
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If D cC Dy CC 9, the mesh T" is unidirectionally uniform and u is smooth enough
on D, and make use of the following local superconvergence (see [1])

IR = inWilly o < eh? (IWillg .+ Wil 0)

and

IBAW1 = in Wi oo p < b [ B] ([Wills e p + Wil 0)

and note that inequality (23) and (25), then it is easy to deduce the following results.
Corollary 3. If D CC Dy CC £, then

IRhu — in(Ryu) — B2inWhlly o p < ch® (26)

and
[Rpu — in(Rpu) — ¥y Wiy o p < ch®|Inh]. (27)

Lemma 6. There exists a positive constant ¢ such that
(I = Rn)ullo2 < chl[ull 2 (28)

and
(I = Rp)ullo,oc < ch|Inhjf[ulf1 o (29)

Proof. Let ¢ € H?(2) N H{(Q) and f € L%(Q) satisfy

—Lop=1.
Then we know that
@2 < €| fl]o-
Since
feL? £ 1o fer? [ f1lo ’
f#0 [0

we can write by Green’s formula

(—Lo,u — Ryu) =ap(¢p,u — Ryu) — Eyp(dp,u — Ryu)
=ap(¢ —inp,u — Ryu) — Ep(p,u — Ryu),

where

En(¢yu— Ryu) = g{% /l )Alg—f(u ~ Ryu) + (./M /l )AQZ—j(u - Ryu)}.

Using inequality (5), we get

lan(¢ — ing,u — Ryu)| <||¢p —in¢ 1,2
<chl|@|[2]|ullr < chl|fllo/|ullx

l12]|u — Rpu
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and similarly to the proof of inequality (5), we have

:‘;{(/lz/ll)AI%(URhU)+ (/l4/13)A2§_§(URhU)}‘

<ch|[Rpu —in(Rau)|l12]|¢ll22 < chl] fllof[ull1-

\Ep(¢,u — Ryu)

1,2

Therefore, we get inequality (28) by (30) and above all relations. Similarly, we can
prove inequality (29).
Theorem 5. If u and Ryu satisfy (1) and (2) respectively, and if we set

w* = I""Ryu+ Ryu — RI*"Ryu

then
u = lloz < b, Ju = ulloco < ch?/Inh

Proof. Let I be the identical operator and u; = (I — I*" R,)u. We get by inequality
(29) and (17)

|[u — u*[lo,00 =I[(I — Rp)uallo,co < chllnh|f|uill1,00
1oo < ch?® | Tnh?[ul|s,00

<ch|Inh|||(I — I’"Ry)u|

and, using inequality (16) and (28),

lu = |

02 < chllur|l12 < ch®||ul]s 2.

This completes our proof.

We assume that 7" has been obtained from T*" of mesh size 4h by uniform subdi-
viding each element into 16 congruent subrectangles of size h on any elements in 74",
We define the high order interpolation operator I*" on the space of piecewise bilinear

function V" and satisfying

. —h
i =1 10|y, <ol YoeV",

4h 4
I ], < ch*llull;,, 2<q< o
Now we define another correction scheme. Set
w* = I*"Ryu + I*"Ryu — 1" R, 1" Ryyu

then we get
Theorem 6. Under the condition of the Lemma 1, if u € C°(D) N HL(Q) N H()
and D CC Qo C Q, then
|[u — u**| |1 00.p < ch®|Inh] (32)

and
|lu — u™*[l1 20 < ch®. (33)

Proof. We know that (see [1])

Rhu — ihu = hQ'L'hMl + qp.
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From inequality (21 ), (26) and (27), we have
Ryu — ip(Rpu) = i, Wy + 73,
where M; and W, € H}(Q) are smooth in D and
73111 00,0 + lanlly o0, p = O(R* |0 R]),
7alli 0+ llanlls o = O(B).
Thus, we deduce that
w = I*"Ryu —u :(I4hﬁhu —u) + I4h(ithu — Rpu)
=h2M, + (I'"u — ) + I*"qp, + (1" My — M;)h?
— h2Wy — hW2(I*hwW, — W) — 1Yy, = B2 M, — BEW, + By,
where
B = (I'"u =) + Iy + h* (1" My — My) = B2(I"Wy = W7) = Iy,
1Bnll1o < ch® Bally po,p < ch®|Inh].
Now, multiplying u; by I — I*"R,, we have
(I — I*"Rp)uy = h2(I — I*"Ry)My — h*(I — I*"Ry,)W1 + (I — I*"R},) By
Furethermore we have by Theorem 3
Wi — IRy Wi |1 000 < ch?| Inh|?

and

18h — " RuBilly o> < 1nll1.00,0 < e[ .

Therefore, we deduce that

™~ ully oo,p = I~ " Rp)uslly oo p < ch®[Inhl.

Similarly we can prove inequality (33)
Next, we discuss the L™ defect correction. Set
u™** =I*"Ryu + I*"Ryu — I*" R, I Ryu + I*' Ryu
— I"Ry(I*"Rpu + I'""Ryu — I’" R, I'"Ryyu),
then we get the following result:
Theorem 7. Under the conditions of the Theorem 6, we have

kR

|l — u***||0.00.p < ch*|Inh|?.

Proof. Let ug = (I*"Ry, — I)(I*"R}, — INw and D cC Q. From Theorem 6 and
Corollary 2, we obtain
(I = I Ry)uz[o,00,0 <ch| A/ ([[uzl 1,000 + [Juzlhi.2.0)
<chl T B|(Ju = w™[]1.00,0 + [ — w™|[1.20) < ch?|In 2.

Therefore, Theorem 7 follows.
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