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Abstract

In this paper, a S-CR method with inexact solvers on the subdomains is pre-
sented, and then its convergence property is proved under very general conditions.
This result is important because it guarantees the effectiveness of the Schwarz
alternating method when executed on message-passing distributed memory multi-
processor system.
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1. Introduction

Early in 1869, A.H. Schwarz introduced the technique of domain decomposition and
alternative iteration to prove the existence of the solution for some elliptic problem in
non-regular domain. In recent years, with the arrival and tremendous development
of supercomputer and multiprocessor system, this ancient and profound idea brings
about fresh vitality, becomes an important source to the research of large-scale scientific
computation.

Besides the ease of parallelization, Schwarz alternating algorithm and many other
domain decomposition methods allow one to treat complex geometries or to isolate
singular parts of the domain through adaptive refinement. They have attracted much
attention all of the world, see e.g. [1], [8] for details. But all of these algorithms are
synchronous, which will lead to great overheads in data communication, and severely
damage the efficiency of parallelization in practice.

In [5], [6], Kang put forward the S-CR algorithm (Schwarz Chaotic Relaxation algo-
rithm) which first combined the chaotic idea and schwarz relaxation alternating method.
This new algorithm was carried out in some message - passing distributed memory
multiprocessor system. Numerical experiments have showed its effectiveness!®6. In his
Ph.D. Thesis, Huang®* gave a rigorous proof for the convergence of the S-CR. This
proof depends heavily on the norm estimates of some multiplicative operators.

In this article, the author will go on with the convergence analysis of the S-CR with
inexact solvers on the subdomains. It is well known that implementation of the S-CR
is mainly at the request of the solving of subproblems assigned on certain separate and
interconnected processors. But exact solvers for these subproblems are impossible or
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improper, in practice we have to employ the inexact solvers, e.g. Gauss-Seidel method,
SSOR, PCG and other high efficient iterative methods. What influence on the global
convergence does this result in? We show under much receivable conditions the S-CR
algorithm with inexact solvers is also convergent. This result is important because it
guarantees the effectiveness of the S-CR algorithm when executed on the message -
passing distributed memory multiprocessor system.

Let Q C R? be a bounded polygonal domain, and let

{ a(u,v) = (f,v), fE€H '(Q), veHy (),

u € H&(Q), (1.1)

be the variational form of an elliptic operator defined on it. The bilinear form satisfies:
For arbitrary u,v € H{ (),

a(u,v) = a(v, ),
Callully [loll:. (1.2)

<
> Cyjv]?,

where ||.|[; is the conventional Sobolev norm in H}(f2), C; and C, are two positive
constants. We will borrow the finite element method to approximate (1.1).

Assume that the triangulation T}, is quasi-uniform!’, and let V' C H}(Q) be the
corresponding piecewise linear finite element space defined on it. Then we have the
following discretized form of (1.1).

{ a(up,v) = (f,v), veEV,

1.3
up € V. ( )

Thanks to (1.2), in what follows, we will consider V as a Hilbert space with inner
product a(-,-), its related induced norm is denoted by |[.|.

Suppose 2 is divided into m subdomains 1, Qs - - -, Q, which satisfy:

2. 09; aligns with the triangulation T}, i.e. the line of 9€2; either coincides with or
does not intersect the triangulation line of 0T.

Let V; = H{(2;) NV which can be looked upon as a subspace of V, M+ denote
the orthogonal complementary subspace of some subspace M, and Py represent the
orthogonal projection operator from V onto M. We assume that

V=>V. (1.4)

Let w € (0,2) be a relaxation parameter. The S-CR introduced in [5] and [6] can be
abstracted as follows: Let u® € V be an arbitrary guess function, the iterative sequence
{u*} for solving (1.3) satisfies that

Uy — ub—t € VT(k),
a(uluv) = (fav)a v E VT(IC)? (15)

ub = (1 — w)uF 1 + wuy,
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where 7(k) denotes the subscript of the subdomain related to the kth iteration, and
for arbitrary natural number i, 1 < ¢ < m, it appears infinite often in the index set
[r(k)}e,

From (1.5), we see that the main work to execute the S-CR is to solve the subprob-
lem defined on the subdomain €2, () at the kth step. But exact solver is not available
or improper in general, and only inexact solvers such as Gauss-Seidel method, SSOR,
PCG or other high-efficient iterative algorithms can be used. This leads to the following
scheme which describes that S-CR implemented in practice.

SCRI (S-CR with inexact solvers). let u® € V be an arbitrary initial guess function,
w € (0,2) and p € (0,1) be two parameters. Then the iterative sequence {uf} satisfies
that

(u —ub e Vo, (%)
a(uluv) = (fuv)u v € VT(k)7 (*)
Uy — ubFt € VT(k), (1.6)

lus = || < pllu®" = wi],

[ vF = (1 —w)uF ! + wus,

where uy is the approximate solution of (1.6x) via proper iterative method with initial

function «*~!, ;1 means the accuracy restriction.

Let E¥ = u* —up, By = u; — uy and Ey = ugy — uy. It follows from (1.6) that

(B, — EF' e Vg,
a(El,v) =0, (S VT(k),
Ey — EF e Vo, (1.7)
1B — B[l < | BF — By,

| EF = (1 — w)EF ! + wE,.

Obviously E; = P;(k)Ek*1 where P/ denotes the orthogonal projection operator
B2 — B

_ =0if E; = EF ), then it
HEkil — E1” (:u‘k 1 1 )7 en 1

from V onto the subspace Vll. Let py =

is clear that 0 < pp < p < 1.

In order to make out the error propagation of the algorithm SCRI more clearly,
we’d like to express (1.7) in operator form. It follows from (1.7), matrix theory and the
isomorphism technique that there exists an orthogonal operator Q¢ on V4, satisfying

By — By = mQu(E* ' — EBy). (1.8)

Here @i can be viewed as a linear operator defined on the whole space V by zero
extension, i.e. Qrv = 0, for v € VTl(k). By the way, from now on we will view an
arbitrary orthogonal operator defined on any subspace W of V as the operator on Vin
the same way. Thus from (1.6), (1.7) and (1.8) we have

By = mpQuE" ' + (1 — 1k Qi) By, (1.9a)
E* =[(1 ~ w)I + wpuQp + wP, ) |E¥ 1. (1.9b)
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2. Preparation of The Proof

In order to give the rigorous proof of the convergence property, we need the following

Lemmas.
Lemma?2.1. Suppose the constants a, p, w satisfy that0 < a < p <1,0<w < %,
then
I(1 - w)I +waQ + wP,|| < 1, (2.1)

where Q is an arbitrary orthogonal operator on Vi, 1 < k <m.
Proof. For any v = vy +wv9 € V, vy € Vi, vg € Vkl,

(1 —w)I +waQ + wPiv = (1 — w + waQ)vy + v,

and
I[(1 = w)I + waQ + wPJo[* = (1 - w + wa@)v1||* + [va*.

But

10— @+ waQu ]| =(1 — w)?ur | + 2aw(1 — w)(Qu1, v1) + a%w?|Quy |
(1 —w+wa)?|vn]? 0<w<l1 ,
_{ o wa? o2, 1<we 2 I
1+ p

Lemma2.1 then follows.

In what follows we will always assume the conditions for w,p in Lemma2.1 are
satisfied.

Lemma2.2. There exists a constant o € (0,1), such that, for arbitrary element

My of {Vi}iy (here {Vi}}y is a finite set with subspaces Vi, k = 1,2,---,m as its
l
elements), and My which is the sumspace of any subset of {Vi}}", (i.e., My = Z Vi,
i=1

for a subset {Vy,}._, C {Vi.}7 ), for any pg, 0 < py < p, any orthogonal operator Q,
on subspace My, k = 1,2, we have

2
H [T — )T + wurQs + wP]’VIk]vH <olvll, veM + M, (2.2a)
k=1
and
1[(1 = w)I + wp1Q1 + wPyy | Pyp,vl| < oljv]l, v e M+ M. (2.2b)

Proof. We only prove (2.2a), proof of (2.2b) is similar. Because of the finite choices
of My, and the continuity of

2
= sup | T - @) +wmQu+wPiJo] /o]
vEM1+Mav#£0 " 1 2

2
H [T =) +wuQr+wPyy, ]
k=1

with respect to pg € [0, u], and Qg, k = 1,2, if (2.2a) is not true, then there exist some
My, pg, Qk, k =1,2, and v, ||o"| =1, v™ € My + M>, such that

2
H TTI — W) + wpuQx + wPyy Jo"|| — 1. (2.3)
k=1
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Therefore, from Lemma2.1 and (2.3) we have
I[(1 — )T + wpaQ2 + wPy, o™ — 1.
Let v = v} + o, v} € My, v € My, then
11 = @)1 + Qs + wPhy 0" |2 = (1 = w + W@l + [

So
[P 17 + 105> = [1(1 = w + wpaQa)v} ||* = o5 ]I — 0.

But

JoR 12 = (1 = w + wp2Qa)o} |2
> min{l - (1w +wp2)®, 1 — (1 - w — wpz) 2} o] |
> minfw(l — u)(2 — w),w(2 — w — wp) o} |,

which leads to v} — 0, i.e. Pp,v" — 0. Thus from (2.3) we also have
I[(1 = )T + @@ + Pyl || = 1.

With the same argument we have Py, v" —0.
On the other hand, from Lions lemmal” there exists a positive constant « such that

loll* < a(l[Payol® + 1 Pagvl?), v € My + Mo,

These lead to v" — 0 which is a contradiction since |[v"| = 1. Thus Lemma 2.2 is
proved.

Lemma 2.3. Let {t1, to} be an arbitrary subset of {1,2,---,m}, then for arbitrary
K natural numbers o; € {t1, to}, i =1.,2,---, K, and {t;,t2} C {1, 9, -, ax}, W,

0 < pi < p, orthogonal operators QQn; on V,,, we have
K
H H (1 —-w) I—l—w,quk—i—wP H <olv|, veVy+W,, (2.4)

where o € (0,1) is defined as in Lemma 2.2.

Lemma 2.3 follows easily from Lemma 2.1 and Lemma 2.2. Now we can obtain the
following main result.

Theorem 2.4. There exists a constant o € (0,1) such that, for any integer
(2 <1 < m), for arbitrary subset {t1,to,---,t;} C {1,2,---,m}, arbitrary o €
{t1,ta,---,t1}, k=1,2,---, K with {t1,t2,---,;} C {1,090, -, ax}, we have

Hﬁ (1 =)l + o+ 0P o] < alloll, ve S v, (25)
k=1 k=1

where 0 < py, < p, Qp is arbitrary orthogonal operator on V,,, and 09 = 0, 0141 =
o+ (1 —-o0)oy.
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Proof. By induction. As [ =2, the result is followed from Lemma 2.3 directly.
Assume the result is true for [ (2 <1 < m), we want to prove the correctness for [ + 1.
For arbitrary {t1,t9, - ,t;41} C { 1,2,---,m}, arbitrary oy € {t1,t9, -+, 111},

+1
kE=1,2,--- K with {t1,to,- -, t;11} C {a1,00,---,ar}, v € ZVtk, consider the

k=1
K

estimate of H (1 —w)I +wurQy —i—wP;k]v. Without loss of generality, we may assume
k=1
that an = t1, t1 ¢ {@9,9, -, ax}. Otherwise, by the search process in order, there

exists some i (1 < i < K), such that {t1,t9, -, t;41} C {@;, @iy1, -, ax}, and o; ¢
{@it1, @iy, -+, ax}. We might as well suppose «; = ¢, then from Lemma 2.1

K K
| LI - @)1 + wpe@i + wPy,Joll < || TLI — ©)T + wpQs + wPh, o]
k=1 k=i

which is converted to the estimate of the assumption case.

Let
I+1 K

W=> V., By=]]l1-w)I+wuQk +chlyk]U-
P P

Then from induction assumption, we have
K !
|B5 — Py o] = H [Tt — )] + wukQs + wPi, ] (v — PWM)H <allv— Pyivl. (2.6)
k=2

|E5 — Py o]
Letn:m (T]ZOHJS’U—PWL’U:O). ThUS

0<n<ol (2.7)

We next introduce the following auxiliary function

1
v* = Pyiv+ —(E3 — Pyav), (n>0),
{ W n W (2.8)
v* =, (n =0).
It is easy to see that
1
|2 2 2 2
v ¢ = = ||F3 — Pyov||” + || Pwev||f = ||v]|%,
{ 12 = 51185 = Prsoll + | Pypsoll? = o] 29
E5 =nu* 4+ (1 — n) Py Lvx,
since
K U
B3 = Pyiv = H (1 = w)I + wpQp + wP,, [(v — Py 1v)
k=2

and for any v €W,

(1~ W) +wuQ +wP, v EW, k=23, K.
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Therefore,

K
HH (1= ) + wpQk + WP, Jo|| = I[(1 = )T + wi Q1 +wP,, | By

=[I[(1 — )T + w1 Q1 + wP,, |[nv* + (1 — n) Py o]
<nllo] + (1 = n)ollv] <o+ (1 = o)a]llv]

which proves Theorem 2.4. The last inequalities follow from (2.7), (2.9), Lemma 2.1
and Lemma 2.2, here we also use the fact that v* € V,, + M. This is because that
Es — Pyyiv € W (see before) and Pyiv € Vi, + W since v € V,,, + W.

Let | = m, we have the following lemma.

Lemma 2.5. For arbitrary natural numbers o; € {1,2,---,m}, i = 1,2,--- | K,
and {1127"'7 m} C {011,0[2,---,0([(},
K !
H [T1 — @) +wuQr +wPy ]| < om < 1, (2.10)
k=1

where 0 < pp < p, Qk is an arbitrary orthogonal operator on V,,, k = 1,2,--- K,
respectively.

3. Proof of The Convergence

Theorem 3.1. Under the conditions given before, i.e., V is split into m subspaces
{Vi i, satisfying

m
V=> Vi
k=1
and the relaxation parameter w and the accuracy parameter pu satisfy

2
0< <l <w< ——y,
a 1+p

the SCRI algorithm is convergent.
Proof. There is no harm in assuming that the iterative sequence {u*f} can be
decomposed into

1=1,2,------ yand {1,2,---,m} C {r(p; + 1), 7(pi +2),---, 7(pit+1)}. Then from (1.8)
and Lemma 2.5, for arbitrary &, p;_1 < k < py,

IEX | < (om) B
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Pay attention to the fact that | — oo as K — oo, the theorem is proved.

Remark. It should be pointed out that the techniques and results given in [1], [8]
can not lead to our convergence result directly.

Finally, the author is grateful for my advisor Prof. Jiang Erxiong, and Dr. Zhang
Sheng who have given me great help in this research.
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