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Abstract

In this paper, the periodic initial value problem for the following class of non-
linear Schrodinger equation of high order

Ou m 0" 0™u

i (D)™ (a@) g ) + BalulP e+ F (o = (2, )

is considered. A leap-frog finite difference scheme is given, and convergence and
stability is proved. Finally, it is shown by a numerical example that numerical
result is coincident with theoretical result.
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1. Introduction

It is well know that the nonlinear equations of Schrodinger type are of great impor-
tance to physics and can be used to describe extensive physical phenomenal'l,
In this paper,we will consider the periodic initial value problem for the following

class of nonlinear Schrodinger equation of high order:

i% + (—1)maa; (a(m)%) + B(@)q(ul)u+ f(z,u=g(x,t) (v,t)e RxI (L1)
u)t=0 = uo(x) r €R (1.2)
u(z + L,t) = u(zx,t) (x,t) e Rx 1T (1.3)

where i = v/—1, R = (—o0c,+00), I = [0,T], u = u(z,t) is an unknow complex valued
function of = with period L, and % is a conjugate complex function of u; f(z,t), g(z,t),
a(z) and ((z) are all real-valued function 2 with period L; ug(z) is given complex-valued
function with period L; ¢(-) is a continuous real-valued function with real variable,
and compound function z — ¢*(z) = ¢(|2|?) exist a continuous partial derivative to
Rez, Imz. Besides, suppose the following conditions are true:

0<m' <a(r) <M
max {|6(z)|,[f(z,1)[} = My

(z,t)eERXI

(A)
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where m/,M and M are all positive constant.

In the paper [2], there have discussed initial Value problem of system such as (1.1)—
(1.3), introduced a difference scheme of conservation type, and researched its stability
and convergence. Otherwise, it is an implicit method and its difference scheme is a
nonlinear system.

In this paper, we introduce a leap-frog finite difference scheme for the periodic initial
value problem (1.1)—(1.3) of a class of nonlinear Schrodinger equation of high order, its
difference scheme is explicit, easily solved. Its convergence and stability can be proved.

Finally, it is shown by a numerical example that numerical result is coincident with
theoretical result.

2. Establishment of the Difference Scheme

First we introduce some notations. Let Qr = [0.L] x I be a rectangular region,

where I = [0,T]. We divide the domain Q7 into small grids by the parallel lines

T
m:mj:ﬂuh:%:nkU:0J,~Mkn:&LngNLWMMJh:LFN:[El

Let Qn = {(z,t); = = jh, t = nk, 5 = 0,1,---,J; n = 0,1,---,N). And Let ¢7
(j=0,1,---,J;n=0,1,---,N) denote the discrete function on the grid point (z;,%,).
Define

At = — ), A =4 9]
n 1 n n— m g n m m _mn —zm
Digf = (g =9, 0P = AT a;_n ATG)RT

where a, m = a((j — §)h), ¢jdenote the discrete function value on the grid point
(jh, nk).

We also introduce the inner product and norms appropriate to function defined on
the lattice @y, i.e

(v,w) = (v,w), = th(xj)E(:vj) Yo, w € ¢’
=1

iz
1 = [oli = (v, 0)n = (v,v)

|lv

where C” is a J-dimensionally complex space.
Corresponding to (1.1)—(1.3),we construct following leap-frog finite difference scheme

(D7 + (~1)2m g 4 Brq(gn2)gn + fr g7 = g o
G=1,2 i =+1,42 ...

n _ n 2.3

{ rJ+j ¢]{n:0,1,---,N ( )

In difference scheme (2), if ¢]1- (j = 1,2,---,J) is given, it can be calculated level by
level explicitly. And d)]l can calculate by the scheme with same convergence order of
the scheme (2), example conservation type difference scheme in [2].
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3. Convergence and Stability

For convergence of the difference scheme (2) we have following:

Theorem 1. Assume u is the solution of the periodic initial value problem (1.1)-
(1.3), u € 3(I; C*™+V(R)), condition (A) is true, and

N —

)

0 40 1 g1 Ty —
u” = &7 + [|u ¢|‘+os£%%/k}”g ) =0(h

If there a constant o with 22" M) < o < 1, then there exist positive constants c,(s =
1,2,3) independent of k and h such that

[[u" = ¢"[| <es(k* + h* + [[u” = ¢°[ + [ju’ — o]

omax Jlg7) (=12 N = [T/k) (3.)

fork <eci,h <cy. Where A = k/h*™, M defined by the condition (A), 5;: g(jh,rk) —
g; -

Proof. Suppose ¢" = u" — ¢", T
scheme (2.1), i.e

" is the local truncation error of the difference

7' = iDyuj + (—1)’“52’”11;1 + ﬂjq(\u?|2)u9‘ + filuj — g(jh, nk) (3.2)

then expression (3.2) (2.1) obtain
7} =iDge} + (=1)"6"" e} + Bila(luj *)uf — q(l¢] *) )] + fef — g}
(1=12,---,J;n=1,2,---[T/k] - 1) (3.3)

obviously, 7" = 0(h? + k?), expression(3.3) X(E?+1

to J for 57 and taken imaginary part:

—i—E;-l*l) h, then Summation from 1

(e 1]12 = 1€ 12) /2K + T (— 1) (67, €1 4 )
:Im(,rn o fnen o ﬂ[q(|un‘2)un - Q(‘¢n‘2)¢n]+ g ’en—|—1 + 6nfl)

(3.4)
where 3, ™, q(|u™|?), g(|¢™|?) are all net function. Because
L (8%, 1 4 1) = [ (82T 1) — 1, (62T, e
Let
E" = [le" ] + [|e"|] + 2k(—=1)" L, (5*™e" ' e") (3.5)

Expression (3.4) x2k and substitute into it by expression (3.5), we obtain

B B = 2Kl (7 = e = Bla(u" )" — g(j¢" )¢+ 8 e+ ) (3.6)
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summation from 1 to N on n for the expression (3.6), then we obtain
N
ENTUS|BY 2k Y [~ e Blg(fuP)u”
n=1
~Tn
—q(|¢" )"+ 9 " 4" (3.7)

Suppose ¢*,0q¢*/0 (Im Z),0q* /0 (Re Z) are bounded provisionally, where ¢*(Z)
q(|Z|?), and let mgx{\q*(Z)\, lgx'(Z)|} = My, therefore,
zece

Bla(lu™?)u™ — q(|¢"7)[¢"], "1 + " )| < |Bg"(¢")e, e + e
+[(Blg* (u") — ¢* (¢")]u", " + e
<My([le"|[* + [ + e 1H )/2

(3.8)
where M3 = max |u(z,t)], My = My My(1 + Mj) are all positive constant.
(z,t)eRxT
Let A = k/h?™, prove easily, when 2°" M\ < 1, we have
0 <(1 -2 MA)(|le”]]” + [le"~"]1?) < E"
<(L+22"MA)([Je™]” + [[e" %) (3.9)
by expressions (3.7), (3.8) and (3.9), we obtain
(1= 22" M) ([P + [ 1eM]1?) < B
N
~M
+ 2k (17" + Mafle™ ||+ 11 g (Dl + e
n=1
1
+ Ma(lle"]]” + [le™ T + e )]
N n N M,
<EU RS (18 )+ Y (M) e
n=1 n=1
N
+k Y (2My 4+ My)(|le" P+l 1%
n=1

~T
<Ms[|e?]” + llet |+ max (|7 + ]9 []7]
0<n<[T/k]

o) (lle™ | + lle™ %)

where My = max(1l + 0,7T), Mg = max{2M; + My, 4M; + 8 + 2M,} are all positive
constant.

We can obtain by Gronwall inequality
(L=o)([[eNHH[2 +||eM]]?) < Mot/

~2
M. 0 2+ 1 2+ n 2+ g 2
sl e+ _max (77 + 119 [17)]
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So

M2 < M[||e) + [[e"[|* + og%af%k}(wn”? +[1 g "))
where My = (M5eMeT/(1=9))(1 — ¢) is a positive constant, therefore, expression (3.1)
is true.
Finally, we point out the supposed of boundary of ¢*,0q* /0(ImZ), 0q*/0(ReZ)
can be offset*l. The proof is over.
Corollary 1. Under the suppose of Theorem 1, c’s (s =1,2,3) is existent and they
are a positive constant, when h < cll, k< 012, we have

16" loo <5 m=1,2,---,[T/k].

With the proof of theorem 1, we can get the following stability theorem:
Theorem 2. If condition (A) is true, and 2°" M) < o is true for any positive

constant o < 1, and ||¢'— ¢' || < calluo— ug || is true, then difference scheme (2.1)-
(2.3) is stable on square norm for the initial value and right term, i.e Cs5 is existent
and it is independent of h and k,

R

<

16"~ ¢" || < eslluo—uo || + max }ng*g | (3.10)

0<r<[T/k

where ¢ is the solution of corresponding difference problem (2.1) (2.3), under the con-
dition that initial value and right side term of problem (1) have disturbance ug— g and
g— Z correspondly.

Note. Difference scheme (2.1)—(2.3) is conditional convergence, we must select h
and k approx satisfy 22" M\ < o < 1 to guarantee difference scheme (2) convergence
and stability.

4. Numerical Example

Consider the following problem

ity + Ugpgpzr + 6ul?u — 150(sinz)u = 0
u(z,0) = 2v2(1 + i) sinz (4.1)
u(x + 2w, t) = u(x,t)

It has a classical solution u = wu(z,t) = Sexp(i(t + §))sinz. Let h = m/10, k =
1/2 x 1073 then A = k/h* = (5/7%) < (1/16), u! is calculated by the accurate value,
when it is calculated until N = 2000 (i.e, ' = 1) by the scheme is this paper, || |u|? —
|uN |?||oc < 1071 The accuracy is the same with that of conservation scheme in [2],see
table 1) when choose h = 7/10,k = 1073, and (1/16) < A < (1/8) then overflow at

N = 25. It is shown that numerical result is coincident with theoretical result.
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Tabel 1. Result at t = 1, when h = /10, k = 1/2 x 1073, N = 2000

classical solu |u|”> | Num. solu |uj | Error |u|? — |uj |?
w/10 2.38728757 2.38728432 0.00000324
27 /10 8.63728755 8.63727872 0.00000883
3 /10 16.36271240 16.36270065 0.00001176
47 /10 22.61271241 22.61270032 0.00001209
5m/10 25.0000000 24.99998816 0.00001184
67/10 22.61271246 22.61270035 0.00001211
T /10 16.36271249 16.36270041 0.00001208
8w /10 8.63728764 8.63727810 0.00000953
97 /10 2.38728762 2.38728378 0.00000384
T 0 0 0
117/10 2.38728751 2.38728487 0.00000264
127/10 8.63728747 8.63727932 0.00000815
137/10 16.36271232 16.36270106 0.00001126
147/10 22.61271236 22.61270062 0.00001173
1567/10 25.00000000 24.99998837 0.00001163
167/10 22.61271251 22.61270072 0.00001179
177/10 16.36271257 16.36270095 0.00001163
187/10 8.63728772 8.63727887 0.00000885
197/10 2.38728767 2.38728440 0.00000327
2T 0 0 0
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