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Abstract

In this article we discuss a new full discrete scheme for the numerical solu-
tion of the Navier-Stokes equations modeling viscous incompressible flow. This
scheme consists of nonlinear Galerkin method using mixed finite elements and
Crank-Nicolson method. Next, we provide the second-order convergence accu-
racy of numerical solution corresponding to this scheme. Compared with the usual
Galerkin scheme, this scheme can save a large amount of computational time under
the same convergence accuracy.
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1. Introduction

Nonlinear Galerkin method is numerical method for dissipative evolution partial
differential equations where the spatial discretization relies on a nonlinear manifold
instead of a linear space as in the classical Galerkin method. More precisely, one
considers a finite dimensional space Vj, — h being some parameter related to the spatial
discretization—which is splitted as V, = Vg + W}, where H > h and W}, is a convenient
supplementary of Vi in Vj,. One looks for an approximate solution u” lying in a
maniflod ¥ = graph¢ of V},; u takes the form u” = v + ¢(v) where v" lies in Vi and
¢ is a mapping from Vy into W},. The method reduces to an evolution equation for v,
obtained by projecting the equations under consideration on the manifold ¥ = graphd.
The related works see [1, 2, 3]. In a classical Galerkin method, typically, we have ¢ = 0.

(23] have extended the nonlinear Galekrin method to the Navier-Stokes

The papers
equations in the framework of mixed finite elements. However, the paper? does not
deal with the case of time discretization and the paper!® only obtains the first-order
convergence accaracy for time discretization. Our purpose here is to modify the approx-
imate scheme of [2] and consider the discretization with respect to time of the modified
scheme by the Crank-Nicolson method!*. Also, we aim to derive the full second-order
convergence accuracy of numerical solution corresponding to this full discrete scheme.
Finally, we compare the full discerete scheme with the usual Galerkin scheme, which

shows that the new full discrete scheme is more simple than the usual Galerkin scheme.

* Received January 10, 1995.
D The project was supported by State Key Basic Research Project and the NSF of China.
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2. The Navier-Stokes Equations

Let Q be a bounded domain in R? assumed to have a Lipschitz-continuous boundary
I'. We consider the time-dependent Navier-Stokes equations describing the flow of a
viscous incompressible fluid confined in Q:

0

a—:—VAu—i-(u-V)u—l—Vp:f in QxR'
divu=0 in Qx R" (2.1)
u=0 on I'x RT

u(0) = ug in Q

where u = (u1,usg) is the velocity, p is the pressure, f represents the density of body
force, v > 0 is the viscosity and wug is the initial velocity with divug = 0.
In order to introduce a variational formulation, we set

Y = 122, M = L3(Q) = {q € LQ(Q);/qu:r =0}

We denote by (-,-), |- | the inner product and norm on L?(Q2) or L?(Q)? and identify
L?(Q) with its dual space. We set

1
Au = —vAu, B(u,v)=(u-V)v+ §(div u)v

It is well known that A is a linear unbounded self-adjoint operator in Y with domain
D(A) = (H%(Q) N H}(2))? dense in Y; and A is positive closed and the inverse A~! of
A is compact, self-adjoint in Y. We then can define the powers A® of A for any s € R;
the space D(A?®) is a Hilbert space when endowed with the scalar product (A*-, A®-)
and norm |A® - |. We set

1 1 L1
X = D(AZ) = Hy ()% | - [|= |42 - [, ((-,) = (A2, A7)
Next, we define the bilinear forms

a(u,v) = v(Au,v) Yu,v € X
D(v,q) = (¢, divv) Yve X,qge M

and the trilinear form
b(u,v,w) = (B(u,v),w) Yu,v,w €W

So, we obtain the variational formulation of problem (2.1):
For any ¢ > 0, find a pair (u(t),p(t)) € X x M such that

(ug,v) + a(u,v) + b(u,u,v) — D(v,p) = (f,v) Yve X
D(u,q) =0 VYge M (2.2)
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u(0) = ug
With the above notations and statements, the following estimates hold

la(u,0)| < vl ullllvl,alu,u) =v | ul? VuveX (2.3)
b(u,v,w) = —b(u, w,v)

[b(u, v, w)| < o [| ]| o] w]]

Cp 1 Cqp 1
[b(u, v, w)| < S (lul [ fwl | w D2 [l v | +5 [l (ol o fw] [} w )2

N|—=

Cp 1 Cqp
[b(u, v, w)| < - (ul [l Twl [T )2 ol +5 Tw lf (ul Tu ] ol o 1)
Yu,v,w € X
Co 1 co 1 1
[b(u, v, w)| < o (ul|Au[)2 [[ o [ fw] + (] w || |Au]) 2 (jo] | v [1)2 |w]

C

1 Cp 1
(b, v, w) < o (lul [ u [} v | |Av) 2 [w] + - [ w || (jv]|Av]) 2 [w]

| S

b v, )| < Ll v || [Av]jw] || w )7 + %O\U|(|U|\Av\)% | w ||
Yu,v € D(A),w € X

| B(u,v) ||< ¢olAul||Av| Vu,v € D(A)

lu <cofJul|| YueX

D
|q‘ S /6(;1 sup (an)
veX || v ||

D@, @)l <colvlllg YoeXgeM

| S

Vge M (2.7)

According to the estimates (2.3)—(2.7), we can prove the following existence and reg-

ularity results:
Theorem 2.1. If ug € D(A) with divug = 0 and f € L>®(R™; X) then problem
(2.2) admits a unique solution (u,p) such that

t t
\ut(t)\mAu(t)FSMf,/o | Au ||2dssM%(1+/0 If1%ds)  (28)
t 2 2 2 t 2
[ 2+ 1 Bds < a1+ 17 12 ds)

Moreover, if ug € D(A%) with divug = 0, f € L®(RT; D(A)), f; € L®(R*; X) and
fu € L>®(R*; X') then

t t
/ | Auy|?ds < Mf(1+/ |Afds) (2.9)
0 0
t t
| Vs 12 ds < v (14 [0 ds)
0 0
t t
[ asl+ s 12 ) < ME(14 212+ 1 fus 120
‘Utt(t)‘Q < Ml2
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where My > 0 is a constant, || - |2 denotes the norm on H*(Q)) and || - || -1 denotes the
norm on X' defined by
, U
1712 sup 1Y
vex | v

This proof can refer to [1, 3, 5, 6].

3. Galerkin Scheme

From now on, h will be a real positive parameter tending to 0. We introduce two
finite-dimensional subspaces X, and M), of X and M respectively and we define the
L?-orthogonal projection operators P, : Y — X}, and pj, : M — M, as follows

(th,vh) = (’U,Uh) Yo, € Xp, YveY
(png:an) = (a:qn) Van € My, Vge M
We assume that the couple (X}, M) satisfies the following approximation proper-
ties:
For each v € D(A%?) and ¢ € H?(Q) N M, there exist approximations I,v € X,
and Jpq € Mj, such that

. i
| v— Iy ||< ch!' T AT 2y (3.1)
la = Jnal <ch™ gl i=0,1

together with the inverse inequality
ahlv|<|v] YveX, (3.2)
and the so-called inf-sup condition

D
lgn| < 87" sup Dlv, an) Van € My, (3.3)

vex, ol

The following properties which are classical consequences of (3.1) (3.3)2>7 will be
very useful

| Phol|[<c|lv] WYweX (3.4)
|v — Pyu| < ch?|Av| Vv € D(A)

| v— Py ||<ch?| Av || Vv e D(A%?)

lg —pnal < ch* |l qlla Vge H*(Q)NM (3.6)

Referring to [5], we give a example of subspaces X; and M}, such that the assump-
tions (3.1) (3.3) are satisfied. Let Q be a polyhedral domain and let {7,},h > 0, be a
uniformly regular family of triangulation of €2 made of the closed triangle elements K
with the diameters boundeed by h, vertices a;, mid-points a;; of the sides [a;, a;] and
barycenter aq23. Then the basis functions of this element K are

p; = >\i(2>\i — 1) 4+ 323, 1=1,2,3
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Yij = 4)\1)\] — 12X 023, 1<1<j5<3
123 = 2TA1 273
Y1 = 1,9hg = 31 — 27, 9h3 = 19 — 79

where A1, A9 and A3 are the barycentric coordinates corresponding to the vertices a1, as
and ag, aj93 = (29, 29), 2 = (z1,72). We write

Pr = span {1, p2, 03, 012, P13, P23, P123 }
Then X, and M), are defined by

Sy ={wy, € C(Q),wh|K € Px,VK € 1,}, X}, = S}% nx
On = {an € L*(Q); qu| i € span{ep1, o, Y3 }VK € 7}, My = O N M

The Galerkin method of (2.2) based on (X}, M}) reads:
For any ¢ > 0, find (un(t),pn(t)) € X5 x My, such that

(un,t,v) + alup,v) + b(un, up, v) — D(v,pp) = (f,v) Yo € X,
D(up,q) =0 Vg€ M, (3.7)
up(0) = Phug

The following error estimates are the usual results
Theorem 3.1. Under the assumptions of Theorem 2.1 and (3.1) (3.3), the follow-
ing error estimates hold:

() — un(8)]? + /Ut | w—up |? ds < c(t)h? (3.8)

[0 pias” < et

where the constant c(t) is continuous with respect to t.

This proof can refere to [8].

Next, we consider the discretization with respect to time of the semidiscrete Galerkin
approximate problem (3.7) by the Crank-Nicolson method. Let At denote the timestep.
Then the Galerkin Scheme consisting of the Galerkin method and Crank-Nicolson
method is defined as follows

Galerkin Scheme (G Scheme)

0

u” = Ppug (3.9)
n_ ,n—1 ~
(——x7—v) +al@",v) +b(a", @ v) - D(v,p}) = (f(ta).v) Vo€ Xy
3.10)
D(i",q) =0 Vg€ M, (3.11)

where (u",p}) is expected to be the approximation (up(t,),pn(t,)) and

W= S Y, f ) = S(Fl) + Flin ).
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a® =u" , f(0) = f(0)

Now, we construct the approximat solution (ua (), pa(t)) of (u(t),p(t)) as follows:

(du—A(t),v) + a(ua(t),v) + blua,un,v) — D(v,pa) = (f(t),v) Vv e X,

di (3.12)
D(ua,q) =0 VYqe My (3.13)
un(tp_1) = u"! (3.14)

for any ¢ € [t,—1,t,). So, we can obtain the error estimates of (ua,pa) produced by G
Scheme.
Theorem 3.2. Under the assumptions of Theorem 3.1, the numerical solution

(ua(t),pa(t)) satisfies
ut) — ua(t)® + /U L —un |2 ds < c(tm)(h" + At (3.5)
\ /Ut(p —m)ds\2 < ctm) (K" + AtY) (3.16)

for any t € [0,t,,), when At satisfies

6174 At
256c) My At < 1, R bounded.

4]
My > 0 is constant given in Section 4.
This proof is very similar to ones of the error estimates of numerical solution pro-
duced by NG Scheme, it can be omitted.

4. Nonlinear Galerkin Scheme

In this section, we are given two parameters h and H, tending to 0, with H > h > 0.
We consider three spaces X, Xy and My, with Xy C Xp and we write

X, =Xy + X, with X = (I - Py)X,

Note that Xy and X,{I are orthogonal with respect to the scalar product (-,-). In
the applications, X} and M}, correspond to spaces associated to a fine grid, while Xg
corresponds to space associated to a coarse grid. The following properties of Xy and
X,{f will be often used.
Lemma 4.1. Assume that (3.1) (3.3) hold. Then
i)  We have
w| < eH|w| Ywe X[ (4.1)

ii)  There exists 0 <y <1 such that

(v, w)] < (T =) ol wl (4.2)
(v,w) =0 Yve Xg,we X}
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which implies readily that

v o 2+ 1w [P <[l v +w |2 (4.3)

w2+ |w* = v +w* YveXy,we X}

The nonlinear Galerkin method associated to (Xh,XH,X,{{,Mh) consists in looking for
an approzimate solution (u”,p") of the form

uh:y—l—z,wz’th yEXH,zEXf,ph e M,
such that, for any t > 0,u" =y + 2z and p" satisfy

(31,0) + (22, 0) + a(y + 2,0+ w) + b(g,y,0 + ) + (g, 7,) + b(z,,0)
—Dw+w,p") = (f,v+w) Yve Xpy,we X}

D(y+z,q9) =0 VYqe M, (4.4)
y(0) = Prug, 2(0) = (P, — Pr)ug

Here, (4.4) is the modification of nonlinear Galerkin approzimation in [2], where the
term (z¢, w) was neglected.

Now, we consider the time discretization of nonlinear Galerkin approximation (4.4)
by the Crank-Nicolson method.

NONLINEAR GALERKIN SCHEME (NG Scheme)

y’ =y(0),2° = 2(0),p° = p"(0) (4.5)
1 n n—1 i n_ n—1 ~n 5N
W =y )+ X =2 ) a2+ w)
—Dw4w),p") = (f(ty), v +w) Yve Xg,we X! (4.6)

D" +5".q) =0 Yge M,

where p"(0) is determined by (4.4).
By NG Scheme, we can construct the numerical approximation (ua (), pa () of the
solution (u(t),p(t)) of problem (2.1). Here,ua(t) and pa(t) are defined by

ua(t) =ya(t) + za(t) (4.8)
(iyA U) + (iZA w) + a(ya + za, v + w) + b(ya, ya, v + w)
dt”=’ dt =’ ’ I
+ b(yAayAav) + b(ZA,yA,U) - D(U + w)apA) = (fa v+ ’U))
Vo € Xy, w € X} (4.9)
D(ua,q) =0 Vg€ M, (4.10)
yaltn-1) =y" ', za(tn_1) = 2" (4.11)

for any t € [tp,—1,t,).
For the numerical solutions (uy, pp) and (u”, p), we can obtain the similar regularity
results to ones of (u,p).
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Theorem 4.2. If ug € D(A) with divuyg =0, f € L®°(R"; X), then
fun i ()? + [Aup (1) [* < M3 (4.12)
[ s s < 23 (14 [0 517 ds)
g ()] + [Au” (2)]* < M
[ et s < (0 [0 as)
Moreover, if ug € D(A?) with divug = 0, f € L>®(R*;D(A)), f; € L*(R"; X) and
fi € L¥(R"; X') then

I une(8) 112 + 1 uf' () [12< M3 (4.13)
1 (8) > + |ugy (1) < M3

t
[0t 12+ 1 121 s [ )
2 t 2 2
SMF(1+ [ £ 12+ 1 Fun 121)ds) (4.14)

t
J s 1 s 1221 2 210

<M (1+ /Ut(ll Fo 1241 fos 120)ds)

ouy, 0

o Up it = Euh’t and so on, My > 0 is constant.

where up; =

5. Error Estimates: Semidiscrete Case

In this section, we aim to derive error estimates for the nonlinear Galerkin approx-
imate problem (4.4) in terms of the two parameters H and h.
Let us write

up = vy +wp,vg = Pyup,wy, = (I — P)uy,
h

€=vg —Y, &€ =W — 2,7 =Ph — P
Then we derive from (3.7) and (4.4) that

d
(E(e+a),v+w) +ale+e,v+w)+ble+ e, up, v+ w)

+ b(uh, e+e,v+w)+bly,z,w) + b(z,y,w)

+b(z,z,04+w) — Dw+w,n) =0 Vv Xy,we X[ (5.1)
D(e+e,q) =0 VYqe My
e(0) =¢(0) =0

This gives, by taking v = e,w = ¢ in (5.1), ¢ = 1 in (5.2) and using (2.3)—(2.4),
1d

§%|6+6\2+7/|| e+el? +ble+e,up e +e)
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T b(y, 2,€) + b2y €) + bz, 7,0+ ) = 0 (5.4)

We aim to derive bounds for the trilinear terms in (5.4). Using (2.4), (2.6) and
(4.1), we have

C C 1 1 1
b(e + €, up, e + €| S—Ole+6\ [ e+elll unl +—0|6+6\2 e +e 2 fup|2 || up |2

B ere 4D (4t B+ (59
boszve + el <o |2 2 e+ 1< cock sl || As [ e+ |
<Tollee |+ dH Az | Az | (5.6
oy, 20€) + bz )| <268 12 | [Aylle] < 15 e I+ AHO Ayl | Az 2 (57)
Thanks to (4.2)—(4.3), we have
|Ay|? + |Az)? = |Au”? (5.8)

v Il Az [2<]) Ad® [Py [l e P<|l e +e |2

So, (5.4) and (5.5) (5.8) give

d 2
E‘QJF‘E'Q +vllete’< (16 +4dy)y~ S HO AWM || Au” || +g(t)e + e (5.9)

2
where g(t) = —c§(1 + dcgv2un()?) || un(?) |*
Moreover, thanks to Theorem 4.2, we have

WP < M3, [ A ds < 3 (1 [P ds) (510
So, by integrating (5.9) and using (5.3), we obtain
t
le(t) + £(8) 2 + 1// le+e?ds
J0

2 t ’
§;(16+4’7) COCSMQ exp(/ Q(S)ds) (1-!—/0 £l ds)Hﬁ _

Hence, by Theorem 3.1 and the triangle inequality, we obtain readily the following error
estimates.

Theorem 5.1. If the assumptions of Theorem 3.1 hold, then (u",p") satisfies the
following error estimates:

u(t) — ut ()2 + '/Ut lu—u |2 ds < c(t)(H® + h%) (5.12)

[0 s < et + 1 (5.13)
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Proof (5.11) is readily obtained by (5.12) and Theorem 3.1.
We aim to prove (5.13). Due to (5.1)—(5.3), we obtain

t t
D(v + w,/ nds) =(e(t) +e(t),v +w) + a(/ (e +e)ds,v + w)
0 0
t t
+ / ble + e, up,v +w)ds + / b(u" e+ e,v + w)ds
Jo Jo
t
+ / [b(y, z,w) + b(z,y,w) + b(z, z,v + w)|ds (5.14)
Jo
But, thanks to (2.3)—(2.7) and (4.1)—(4.3), we have
t t
‘a(/ (e +e)ds,v+w)| < / (e +e)ds| || v+ (5.15)
Jo Jo
1 3 1/2
gm(/ letel?ds)” ot
Jo
t t
‘ / ble + €, up, v+ w)ds + / b(u", e +e,v+ w)ds‘
0 0
t
SCU/O (lun |+ 1 ) etellds | otw]
1 t 1/2
§203M1t§(/ |e+e|? ds) / | v+w|
0
t
‘ / by, z,w) + b(z,y,w) + b(z,z,v + w))ds‘ (5.16)
0
t
S/O (2c5|Ay| || 2 | |w] +co || 2 [1*]| v +w |)ds
1ot t
< (28337 % [ Ayl | Az | ds+ cocdt? [ 142 | Az [ ds) o+ |
0 0
2 3 1 3 % s hoy2 o \?
<2y My + cocdy 2 M) 12 H (/ | Au | ds) v+ | (5.17)
Jo
So, according to (3.3) and Theorem 4.2, we imply from (5.12) that
t 2
‘/ nds‘ < c(t)H® (5.18)
0
Hence, by the triangle inequality and Theorem 3.1, we obtain
t 2
‘ / (p— ph)ds‘ < ¢(t)(h* + HO) (5.19)
0

namely (5.13) holds.
The proof ends.

6. Error Estimates: Full Discrete Case

In this section, we aim to derive the error estimates for the numerical solution
(ua(t),pa(t)) obtained by NG Scheme.
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Theorem 6.1. If ug € D(A?), with divug = 0, f € L¥(RT;D(A)), f; €
L®(R*; X), fi € L®(R"; X") and (3.1)~(3.3) hold, then the sequence (y™ + 2™, p™)
obtained by NG Scheme satisfies the following error estimates

W () —y™ = 2P+ Y A" () =y = 2" [P AL < c(tm) AL (6.1)
\ Z PMYAL? < e(t) At (6.2)

when At satisfies
6 -3 —2\ 774 At
256¢y (yv) (14 (yv) 7 )My AL < 1, 5 bounded
C1
Proof. Integrating (4.4) for ¢ € [tp_1,%n), we obtain

1

() = ylta 1), 0) + 5o (al) = 2l ) .
+Ait/tn“1a(y(t)+z( ), v—i—w)dtf L D+ u.p (1)
by [ 00010, 4 0) + 60,500, 0) +bla(0). y(0) )
:é/t:nl(f(t),v—l—w)dt Vo € Xy, w € X1 (6.3)
D(y(tn) + 2(tn),q) =0 Vg€ M, (6.4)
y(0) =y°,2(0) = 2°
We set

T=ytn) —y" e =2(tn) — 2" :ph(tn) -Pp
Then (6.3) (6.5) and (4.5) (4.7) give

Alt(e +e —e" - "yt w) +a(@” + £ v +w)
+b(9(tn), §(tn), v +w) = b(§", 4", v + w) + b(§(tn), £(tn),v) — b(g", 2", v)
+ b(z(tn),g,v) — b(2", 4", v) — D(v—l—w,n )
=(en,v) + (En,w) Yo € Xg,we XH (6.6)
D(é, +é,,q9) =0 Vqe M,
e =0,e"=0

where
1

(en,v) + (en,w) = a(g(ty) + 2(tp), v + w) — A /ttn1 a(y(t) + z(t),v +w)dt

0 tn), 3t v+ 0) — 2 [ B0, 90,0+ )+ (3 20),0)
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A G R RN R T RO A CURTOROL
+ (f(tn),v +w) — Ait /t:nl(f(t),v +w)dt — D(v + w,p" (tn))
+ tt” D(v + w, p"(t))dt (6.9)

By using the formula:for any smooth function g(t),

i) 5 [ a0 =i [ a0t

tn—1

where (3,(t) = (t, — t)(t — t,_1) < At?, we can write (6.9) as follows:

tn tn
() =557 [ Bult)atya + 200t + 5o [ Ba0)(Uusw) — Do)t
tn tn
+5xi B0z + bz ))dt+ﬁ ™ By
b)), 9tn) — (i 1))
— b(tn) — yltn 1), 2(tn) — (i 1),0) (610

- ib(z(tn) — 2(tn-1),y(ta) — Y(tn—1),v)

1 tn 1 tn
(en, w) =55 t Bn(t)a(ys + 2y, w)dt + 5AL ), ﬂn(t)((ftt, w) — D(w, plt))dt
tn
+ ﬁ - B ()bu (y, y, w)dt — Zb(y(tn) — y(tn1),y(tn) — y(tn_1),w)

(6.11)

Here, the following formula holds

bir(y(t), 2(£), 0) = b(yu (1), 2(t), v) + b(y(t), 211 (), v) + 2b(y1(t), 24 (t), v)

Now, we aim to estimate || e, |1 and || €, ||-1. Thanks to (2.3) (2.7), (4.3) and
Theorem 4.2, we have

ln

i,

t 1 t
<3 [ Wtz llde o 1< 38602 [ 120" ) o]
2 ln—1 2 ln—1 (612)

tn

1
Bn(t)a(yu + Zttav)dt‘ < §At/ \a(yur + e, v)|dt

tn—1

ln

‘2At B () ((f1r,v) *D(v,pg))dt‘

-1

tn 1/2
gmz/z( / (I fu 120 +elphdt) v | (6.13)

Sln—1
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ln

1
‘— ﬂn(t)(btt(ya Y, U) + btt(ya Z,’U) + btt(za Y, U))dt‘
2At Jy

n—1

tn
SCOAt/ e 1ALy 1102 1D+ 1 2 1y Dt (o
1

n—

tn
+cOAt/ O ge 1242 0 e Ml 22 et | o |
n—1

ln
<dcoAty ™! sup (|| u" (@) || + | uf (2) II)/ (I afy I+ 1w 1Ddt (o |
t€R+ tn—1

tn

1/2
<t2cy AP ( [l I+l D) ol (619

n—1

) — (1) 9(tn) — (i 1), 0] < L ()l ) Pl |

4
S| [ waarivl o€ @)

cy _ tn
<7 'Atsup || u (1) | / g || dt || v [|ac
t€R+ Jtn—1

tn 1/2
<Dy tanad?( [T b)) (6.15)
n—1
1
()~ y(ta1). 2(ta) — 2(tn-1),0),
tn 1/2
<Dy Al ([T ) v (6.16)
n—1

—b(z(tn) — 2(tn—1),y(tn) — y(tn-1),v)

1
i |

tn 1/2
<So anad ([ ) o) (6.17)
1

Jln—

So, (6.10) and (6.12)—(6.17) give
(e

7” — tn
lenllas sup %) < (24 14y~ o) A2 (A
vexy vl tn
1
0y 240 Fu 120+ | ol 1)t ) (6.18)

Similarly, we can imply
tn, 1
| en 1< (2 4+ 14eoy ™' My) AE2( / (g 17+ 1wy 2+ 1 fu 120 +cBlpfy %)) >
Jln—1
(6.19)

Hence, we have

tn
Sl en 121+ [l en [21)A% < ch#/O () ul |2

n=1

+ 1 ay 1241 fu 120+t (6.20)
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In order to prove (6.1), we take v = " w = " in (6.6) and ¢ = /" in (6.7) and add
(6.6) and (6.7). Then thanks to (2.3)—(2.4), we obtain

e e e e ) [T P (N G(tn) + 2(tn), €7)
+0(e",G(tn), €") + b(E", §(tn), €") = (en,€") + (€n. ")
(6.21)
Due to (2.4) and (2.6), we have
L .
ben, @l (ba), )] <y %[en2 1] e P2 at (t) |
29v | . _ .
<4g II¢" 1> 4165 (yv) 2 || @ (ta) | [€"] (6.22)
JUN . o~ 3/2 ani% 1 m A A .
B(E", (1), ") + b(E™, (1), &")] < 25/ *€"|Z | & ||2 e (Ml 9(tn) |
29v . . 3~ .
<7g e 12+ 11 €™ 1) + 32 () 2 || @ (ta) || €7
(6.23)
o R v o
[(en, €") + (en, €M) <7 (Il €" 12+ 11 €™ 1) + —(|| en 121+ | en 121)
(6.24)
According to (4.3) and Theorem 4.2, we have
I IP +y e 7<) e + e |? (6.25)
‘én‘Q + ‘é2| — ‘én +é"|2 S E(|en +8n‘2 + ‘enfl +€n71|2)
| " (ta) 1< My (6.26)

So, (6.21) and (6.22) (6.26) give

|en _i_&,n‘? _ ‘enfl +8n71|2 iy ” en 4 gn ||2 At
<64ch(yr) (14 (y) ) MPAL(|e" + "2 + e+ ") || A" (8) ||

8
+—(len 121 + |l & I21) At (6.27)
yv
Summing (6.27) for n = 1,---,m and noticing ¢ 4+ €° = 0, we obtain
m
€™ e v Y | et 4" | At (6.28)
n=0
8 - 2 2 % n n|2
7— Z Few 120 4+ 1 en 120) AL+ D dile” + " [?At
= n=0

where ey = 0,69 = 0,dy = 0 and
dp = 64c) () P (1+ () )M (| 4" () |17 + || 4" (80 1) %)

To prove (6.1), let us recall the Discrete Gronwall Lemmal*):



Nonlinear Galerkin Method and Crank-Nicolson Method for Viscous Incompressible Flow

Let At, 8 and ay, by, cp,dy,n > 0, be nonnegative number such that

am + ALY by SALY dpan + ALY+ Ym >0

n=0 n=0 n=0

Suppose that Atd, < 1,n > 0, and set 0, = (1 — Atd,,)~'. Then

a,, + At i b, < exp (At i andn){At i n + ﬁ}
n=0

n=0 n=0
Due to
R 1
| i (tn) |*< 5 u"(t) I + || " (tnn) |?) < M3
1
dp At < 128¢S(yv) 3(1 + (yv) 2)MJ AL < 3
then

on=(1—d,At)"' <2
Thus, applying the Discrete Gronwall Lemma to (6.28) with
an =" + "% b, =v | "+ € |?

8
Cn = ;(II en |21+ Il en [121) 00 <2

We obtain (6.1).
Now, we aim to estimate (6.2). Thanks to (6.6), we obtain

m m
D(v+w, > i"At) <|(e™ + ™ v+ w)[ +v > &+ | At v+ w|

n=1 n=1

1 1
+Ay 2 (len 21+l en P2 v +w |
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n=1
+ ) b " v+ w) + b, E" ) + b(2", 6", v)] At
n=1
+ Y (™, G(tn), v+ w) + b(E”, 2(tn), v) + b(E", §(tn), v)] AL
n=1

2

A
Thanks to (6.1), (3.2) and —7 being bounded, we have that
c1

Fg™ I g (ta) |+ 1€ [N G(tn) | +(crh) = e"
, L Al e
<itn) || +5(crh) " (e + e 1)

<19t | +(erh eltm) 2 AL ¥n < m

(6.29)
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Similar, we have
1
12" 1<) 2(tn) || +(e1h De(tm)2A ¥n<m

Hence, we obtain
(6.30)

are bounded for any n < m

g™ and || 2" |

So, we obtain from (2.4), (6.29)—(6.30) that

m
> b(G" " v+ w) +b(G",E" v) + b(2", ", v)] At
n=1
l m
<deg(L+72) [lo+wll sup(| §" |+ 2" 1) D_(1 €™ || + || " ) At
n<m n=1
1 1
<deo(1+72) [l +w || sup(| §" | + || 2" )t
n<m
— ~n |2 n |12 1/
(e 2+ e At (6.31)
n=1
m
D B(E G(tn), v 4 w) +b(E™, G(ta), v) + b(E", 2(tn), v)] At
n=1
1 i m 1
<deo(L+y )My o+ w [ 2( 3o (e |2+ [ & [)At)?
n=1 (6.32)
Hence, by (2.6), (3.3) and (6.29) (6.32), we obtain
m L. 1/2
B> i AL <cole™ + ™|+ esta{ (0 &+ e | At)
n=1 n=1
(6.33)

- 1
(a2, + 1 en |21 A8)?)
n=1

So, by (6.1), (6.20) and Theorem 4.2, we obtain (6.2).

The proof ends.

Theorem 6.2. Under the assumptions of Theorem 5.1 and Theorem 6.1, the nu-

merical solution (ua(t),pa(t)) produced by NG scheme satisfying the following error
estimates:

t
ult) —ua@®f + [ lu—ua | ds < eltm) (5 + H + At (6.34)
0
(6.35)

t 2
\ / (p— pA)dS‘ < c(tm)(h* + H® + At?)
0

for any t € [0,t,,).
Proof. We set

ea(t) = y(t) —ya(t),ealt) = z(t) — za(?)
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na(t) = p"(t) — Pa(t)

Then (4.4) and (4.8) (4.10) yield

d d
(—eA,v) —+ (—6A,w) +alea +en,v+w) + blea,y, v+ w) + blea, z,v)

dt dt
+b(ea,y,v) + b(ya,ea,v) + b(ya, ea, v +w) + b(za, ea,v)
~Dw+w,na) =0 Yve Xy,we X} (6.36)
D(ea+en,q) =0 Vg e M, (6.37)
ealtn 1) =e" 1 ea(t) =" (6.38)

for any t € [tp_1,tpn). Taking v = ea,w = €a in (6.36),¢ = na in (6.37) and adding
the corresponding relations, we derive from (2.3)—(2.4) that

1d
sgleat eal> +v | ea+ea | +blea,y + z,ea)
+ b(BA, Y, €A) + b(‘gAa Y, BA) =0 (639)

using (2.4), we can imply

d
E‘GA +eal’+ [ ea +ea [°< g(t)]ea +eal? (6.40)

where
g(t) = cs || u (1) |°
By integrating (6.40) and

ea(tn—1) +eal(tn-1) = "l entt

we have that for any t € [t,_1,t,),

t t
lea(t) +ea(t)? + 1// lea+en |?ds < [e" ' + & 1% exp (/ gls)ds) (6.41)

th—1 tn—1

Applying Theorem 6.1 and noticing

t m—1 . t
/0 lea+en |2 ds = Z/ | ea +en ||2ds+/ lea+en|?ds  (6.42)
n=1 tnfl tmfl

we imply

t
lea(t) + ea(t)? + ,,/ lea +ea ||? ds < c(tm) At (6.43)
0
Using again (6.36), we have
t
D(v + w, / nds) = (ea(t) +ea(t), v+ w)
Jo

t t
+/ a(eA—i-aA,v—l-w)ds—l-/ (b(ea,y, v+ w) + blya, ea,v + w))ds
0 0
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t t
+ [ easzo) +bya,ealds + [ [blea,y.v) +bzasea v)lds
J0 0

(6.44)
Due to the assumptions of Theorem 6.1, we can imply
| y™||*> and || 2" ||* are bounded for any n < m
Hence, (4.8)—(4.10) can imply
lya() 17< M5, || 2a(t) [IP< M5 V[0, t) (6.45)
So, applying (3.3) to (6.44), we can derive from (6.43) that
t 2
\/ nads| < cltn) AL Vi€ [0,1,) (6.46)
0

Finally, by the triangle inequality and Theorem 5.1, (6.43) and (6.46) imply (6.34)
(6.35).
The proof ends.

7. Numerical Test

We describe here the results of numerical test performed with the full discrete non-
linear Galerkin method (4.5)—(4.7). Comparison is also made with the usual Galerkin
method (3.9) (3.11).

Here we set that = [0, 7] x [0, 7], = 0.005 and T" = 7/2. Then the complexity
of the flow is described by the Reynolds number

Re = (vol Q)2 "2 /v = 2007 f|'/*
Moreover, the solution (u,p) of (2.1) is p = 0,u = (u1,us) :

u; = G(y) cost,uy = G(x)sint
G(z) = 0.1 x (z* — 4ma® + 37%2?)

where f and ug are determined from (2.1). By computing, we obtain
Re = 3004

Hence the exact solution of (2.1) is known and it is easy to check the accuracy of
numerical test.

One starts with a fine mesh: mesh 1 (as Fig.1.a). Then (X}, M) is constructed
on mesh 1 by the nine-node element of velocity and the four-node element of pressure.
Next, Xy is constructed on mesh 2 (as Fig.1.b) by the nine-node element. So, X,{I is
constructed as in Section 4.

We set |u(t) — up(t)|/|u(t)|, |p(t) — pr(t)| denote the relative error of velocity and
the obsolute error of pressure, where ¢ is taken in [0, T'].

a) Comparison of error and CPU time
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We take At = 7/160,h = %’ H = % The comparison of errors of two methods is

showed by Fig.2 and Fig.3. For G method, the absolute error of pressure decreases,

but the relative error of velocity increases. And CPU time of G method is 821 seconds,
CPU time of NLG method is 401 seconds.

0-8 ----G method based on mesh 1
0.6 — NLG method
204 _

0.2 — R

€ (b) —
- | 1 1 1 l |

00 0204 06 08 1.0 1.2 1.4 16 1.8

Fig.1. Generated meshs and elements: a: ¢

mesh 1, b: mesh 2. Fig.2. Error curves of velocity U(t)

Thus shows that NLG method is superior to G method. Hence we choose the NLG
method to solve (2.1).

b) Comparison of numerical velocity and exact velocity

We consider the norm |u(t)| of exact solution and the norm |uy(¢)| of numerical

solution of (2.1) for 0 < ¢ < 7T. Then FIG 4 shows that the maximal relative error of
numerical velocity is

)| — t t)| = 0.067
s [u(®)] = lun (®)]]/Tu()]
¢) Comparison of numerical orbit and exact orbit

By the following average of exact velocity and numerical velocity

- 1 ) 172 1 ) 1/2
up(t) = (MLul(x’t)dx) L ug(t) = (m/gug(:p,t)d:v)
uip(t) = (%(m/gu%h(z,t)dm)lp,u%(t) = (%(Q)/Qu%h(z,t)dm) 2

we obtain the curves produced by (u;(t),u2(t)) and (u1p(t), uon(t)), 0 <t < T/2. By
symmetry, we obtain the exact orbit (as Fig.5) and the numerical orbit (as Fig.6) of
flow.

Above a), b) and ¢) show that NLG method is a successful method to solve the
viscous incompressible flow under the large Reynolds number.

4 14
0 ----G method based on mesh 1 na—
| — NLG method | -
- ~
S = ~ ~
o2 S - numerical velocity Uy (t)
- L — exact velocity U(t)
~
=z~ ] I i I ] 1 10 { ] ] ] | I 1 1
00 0204 06 08 1.0 1.2 1.4 1.6 1.8 0.0 02 04 06 08 1.0 1.2 1.4 16 1.8
t t

Fig.3. Error curves of pressure P(t) Fig.4. L*-norm curves of velocity U (t)
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UQ(t)
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6 — ——
- -~
e g ~Q
/ N\
/ \
/" \‘
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S| :
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\ /
‘\ 1/
AN J/
\\ 7
S . — 7
Ui (t) 6 0 Uni (t) 6

Fig.5. Orbit of exact velocity U(t) Fig.6. Orbit of numerical velocity Uy (t)
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