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Abstract

Various approaches have been developed for solving a variety of continuous
global optimization problems. But up to now, less work has been devoted to solving
nonlinear integer programming problems due to the inherent difficulty. This paper
manages to transform the general nonlinear integer programming problem into an
“equivalent” special continuous global minimization problem. Thus any effective
global optimization algorithm can be used to solve nonlinear integer programming
problems. This result will also promote the research on global optimization. We
present an interval Branch-and-Bound algorithm. Numerical experiments show
that this approach is efficient.

Key words: Integer programming, Global minimization problem, Branch-bound
algorithm.

1. Introduction

Although the general linear integer programming problem is NP-hard, much work
has been devoted to it (See Numhauser and Wolsey [1988], Schrijver [1986]). The
solution methods include the cutting plane, the Branch-and-Bound, the dynamic pro-
gramming methods etc.. However, the general nonlinear integer programming problem
is difficult to solve. Garey and Johnson [1979] pointed out that the integer programming
over R" with a linear objective function and quadratic constraints is undecidable. So if
a nonlinear integer programming problem is handled, it is always solved over a bounded
box. Due to the inherent difficulty of nonlinear integer programming, less work has been
done (see e.g. Benson, Erenguc and Horst [1990], Chichinadze [1991]). But during the
past 30 years, various approaches have been developed to construct algorithms for a
variety of continuous global optimization problems (for detail, see Rinooy kan and Tim-
mer [1988]). In this paper, we transform the general nonlinear integer programming
problem into an “equivalent” special continuous global minimization problem which can
be solved by any one of effective global optimization algorithms. So it is a reasonable
way to handle nonlinear integer programming problems. The involved functions of the
considered nonlinear integer programming problem are only required to be Lipschitz
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continuous or continuous. Hence this result is a generalization of Ge [1989], where the
involved functions are assumed to be twice continuously differentiable. Moreover, our
proof is simple. We present an interval Branch-and-Bound algorithm for the special
continuous global optimization problem. Lower bounds are calculated by the rules of
interval analysis (Ratschek and Rokne [1988]). Methods for local optimal solutions can
be incorporated into the Branch-and-Bound scheme to find better incumbent solutions.
At last, numerical experiments are presented to show that this approach is efficient.

2. Unconstrained Case

Consider the following problem

wr), { min f(x)
s.t. z € Xy,
where f(z) : R" — R is a Lipschitz function with Lipschitz constant L over a set X,
here X C R" is a bounded closed box whose vertices all are integral lattices, X; is the
set of integer points in X.
A continuous global optimization problem corresponding to (UP); is

min f(z) + Y [sinrad, @ = (01, 2,)7)
(UPM) =1

s.t. zeX.

For developing the relationship between problems (UP); and (UP,), we need the
following lemmas.
Lemma 2.1.

2
|sinz| =sinz > —zx, if0 <z <
T

N

2
|sinz| =sinz > —|7 — x|, ifzgmgﬁ.
T 2

Proof. Construct a line through points (0,0), (7/2,1) and a line through points
(r/2,1), (m,0). Their equations are

2
Yy=—-x,
7r
2
y=—(m—x)
7r
Since sinz is concave over [0, 7], and
sin0 = 0,
T
sin - =1
ng ,

sinmt = 0,
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we have

2
|sinz| =sinz > —z,if 0 <z < —;
T

N

2
|sinz| =sinz > —|7 — z|,if il <z<m,
™ 2

and the proof is completed. O

Obviously, we have

Lemma 2.2. Let X be a bounded closed box whose vertices all are integral lattices.
For any x = (z1,---,x,)" € X, there exists an integer point z; € X, such that

min (|2 — ylloc = |l — 2100, (2.1)

where R} is a set of integer points in R".

Theorem 2.1. If u > L/2, then problem (UP,) and problem (UP)r have the same
optimal solutions.

Proof. Obviously, to prove this theorem, we only need to prove that any of the
optimal solutions to problem (UPFP,) is an integer vector, which is also an optimal
solution to problem (UP);. We prove it by contradiction. Denote by G the set of
optimal solutions to problem (UP,). Suppose that there exists z* = (z7,---,2%) € G
which is not integral. Let =} = (z7,,--- ,:L‘:;I)T be the closest integer point to z*, i.e.,

l2* = 2fllos < 3.
Then by Lemma 2.2, 27 € X, and if p > L/2, by Lemma 2.1, we have

n n
f@q) +p)_|sinmay| — f(a*) — ) |sinma]]
i=1

i=1

=f(z7) — f(z") — p)_|sinm(z] — o)l
=1

n
SL-lla} = ol = p ) [sinm(a; — o))
i=1

SL-flay =2 oo = p- 2/m - - 272" oo < 0.

It indicates that z* is not an optimal solution to problem (U P,), which contradicts the
assumption that z* € G. Therefore, z* is integral, and is also an optimal solution to
problem (UP);. O

Note that the objective function of problem (U P,) is generally not continuously dif-
ferentiable. For the possibility of using the gradient methods of global optimization, e.g.
the Filled Function method (Ge [1990]), the Tunnelling method (Levy and Montalvo
[1985]), to solve nonlinear integer programming problems, corresponding to problem
(UP)r, we construct the following global optimization problem with a continuously
differentiable objective function if f(z) itself is,

n
min f(z) + p Z sin?

(UPu)l i=1

st. ze X.
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Then we have the following results.
Theorem 2.2. Suppose that there exists M > 0, such that

f(x)] < M, forall ze X.

Given a point © = (1, ,,Z‘n)T, if there exists a component x;y in T ;9 and its
nearest integer number z!, such that

then

n
flz) +p) sin® wz; > M, if i > 8M.
i=1

Proof. Under the assumption of Theorem 2.2, we have

n
f(x) —i—,quinQW.ri > —M + psin® rz;, > —M+8Msin2% =M.
i=1

Hence Theorem 2.2 holds. O
By Lemma 2.2, theorem 2.2 implies that for any one of the global optimal solutions
to problem (UP,)1, say z*, its nearest integer point, say z;, is in X; and satisfies that

l2* — wrlloo < 1/6, if > 8M.

Theorem 2.3. Suppose that z}, r% are two different integer points in Xy, f(:l:}) <

L2
.’E2 -
Tah) 1> ey =)

, we have

n
f(z) —I—quinQ nx; > f(x]), for allz € {z: ||z — 29|l < 1/6} N X.
i=1

Proof. For all z € {z: ||z — 29|« <1/6} N X, we have

n n
fl@)+pd sin®mz; >f(27) — L ||z — 27]|lo +p Y sin® mx;

i=1 i=1
n
=f(a7) ~ L |z afloc +pY_sin*n(lz; — 23])
i=1
>f(a7) = L-||lz = 27l + p(2/m - 7 - & — 27]|)* (by Lemma 2.1)
=f(z7) = L-llz = 2}l +4p - |z - 27|I3. (2.2)

Clearly, a minimal solution z of (2.2) satisfies that
L
8

Iz — #7lleo =
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Moreover, the minimal value of (2.2) is

2 L L? ) L_2
2 L i L
>f($1) . 16 - L? (Slnceu > 16(f(£13%) — f(r})))

=f(z1).

Hence Theorem 2.3 holds. O

Thus we can establish the relationship between problems (UP); and (UP,); as
follows.

Theorem 2.4. Let m satisfy that

min f(T%) — f(T})
0<m<? st f(a2)> flz))
.T%, T} € Xy

If n > max(8M, L?/16m), then for any one of the global optimal solutions to problem
(UP,)1, say z*, there exists an integer point x7 € Xy, such that ||z* — 27| < 1/6,
and z7} is an optimal solution to problem (UP);.

Proof. By Theorem 2.2, if > 8 M, then for any one of the global optimal solutions
to problem (UP,)1, say z*, there exists some integer point z; € Xy, such that

1
o~ willoc <

Thus if 4 > max(8M, L?/16m), =} is an optimal solution to problem (U P);; otherwise,
by Theorem 2.3, z* is not a global optimal solution to problem (U P,);. Hence Theorem
2.4 holds. O

Remark. If f(z) is a polynomial function with integer coefficients, then we may
take m = 1.

3. Constrained Case

Now we consider the following constrained problem

P, { min f(z)

s.t. z €Sy,

where S; = {z € X7 : gi(z) < 0,4 =1,---,m}, X; is the set of integer points in a
bounded box X, f(z),gi(z), i = 1,---,m : R® — R' are continuous functions over
X, S; is not empty. Construct a function p(z) such that for all x € X;, p(z) > 0,
and p(x) = 0, x € X7 if and only if z € S;. This kind of p(z) may be p(z) =
m m

Zmax(o,gi(m)) or p(r) = Z(max(o,gi(m)))2 if p(z) is wanted to be differentiable
i=1 i=1
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when g;(z), i = 1,---,m are. Then a penalty problem corresponding to (P); is

min  f(z) + p - p(z)
(P”)I { s.t.  z € X;.

Let m; < min p(z), m; >0, f > max f(z), f < min f(z). We have the following
IGX}\S] reX; - reX

Theorem 3.1. If y > u, then problems (P)r and (P,)r have the same optimal
mr

theorem.

solutions.
Proof. Denote by G; and G ; the sets of optimal solutions to problems (P); and
(Py)1 respectively. For p > f—_i, to prove G; = G, we only need to prove that
mp
G[ Q G”[ and Gﬂ[ g G[.
(i) Gr € G- For all z* € Gy, p(z*) =0, and for all z € Sy,

f(z) + pp(z) = f(z) > f(z*) = f(z") + pp(z").
Moreover, for all y € X;\S;, p(y) > m;, and

fly) +uply) > f+p-mp>f+ fmli emp = f > f(z¥).

So z* € Gyur, and Gy C G1.
(ii) Gur € Gy. For all 2* must be a feasible integer point of (P);; otherwise if
xz* € X7\Sr, then for any zy € Sy,

> Flwo) = Fwo)+ap(ee) > Fl@')+u-pla’) > frpomr > f+1—Lomy = F. (3.)

my

Inequalities (3.1) show that z* is not an optimal solution to problem (P,)r, which
contradicts the assumption that z*inG ;. Therefore, z* € S; and

flz*) +p-p(a*) = f(z*) < f(z) + p-plz) = f(z), forallze S

Hence, z* € Gy, and G,y C G;. O

Remark 1. In Theorem 3.1, m exists theoretically,a nd generally is very difficult to
calculate. But if g;(z), i = 1,---,m are polynomial functions with integer coefficients,
then we can set m; = 1, and Theorem 3.1 holds if y > f — f.

Remark 2. According to Theorem 3.1, we can always_transform the constrained
problem (P); into an unconstrained one (P,)/ using the penalty function method. Thus
the constrained problem (P); can be handled by the methods discussed in section 2.

4. General Integer Program

In this section, we consider the following general problem

P, { min  f(z)

s.t. x €Sy,
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where S; = {z € X; : gi(z) < 0,4 =1,---,m}, X; is the set of integer points in a
bounded closed box X whose vertices all are integral lattices, f(xz), ¢;(z),i=1,---,m
m

are continuous functions, S; is not empty. Let p(z) = Zmax(O,gi(m)), F(x,p) =
i=1

p(x),0 <m; < min p(z), T > 2), f < mi . By Th 3.1,
f(@)+p-p(r) mz_gg%f@)f_ggf@)i ggf@) y Theorem

it p > =, min F(z,u) = min f(z). In order to describe the relationship between
mr reX; €S

problem (P); and its corresponding continuous one, we need the following definition.

Definition 4.1. Suppose £ > 0 is sufficiently small. 2° = (29,---,2%)7 is called

an e-integer point, if for anyi € {1,---,n}, there exists an integer k;, such that
|2 — kil <e, i=1,---,n.

Since F(x,pu) = f(x) + p - p(x) is continuous, there exists a positive number M,
n F p—
such that |F(z,p)| < My, Vo € X. Let pi(z) = Z|Sin7r:vi\, wo> u Now we
; mp
=1
discuss the relationship between optimal solutions of problem mi)? F(x,p) and problem
TEXT
in F . .
min F(z, p) + p - p1(z)

Lemma 4.1. If 2¥ is not an €/2-integer point, then pi(z%) >, 0 < e < 1/2.
Proof. Since z° is not an e/2-integer point, there exists an index ig € {1,---,n},
such that for any integer k,
€
5-

Especially, let k satisfy the following inequalities

|z, — k| >

Thus by Lemma 2.1, we have
|sin(:v?0 — k)| >

And
pl(zo) = Z | sinm?ﬂ > g,
i=1
which completes the proof. O

Let S. = {z € X : 0 < pi(z) < €}. Denote by G, the set of optimal solutions to
problem

min  F(z, ) + p1 - p1(z)
st. x€ X.

We have
Theorem 4.1. If uy > 2M, /¢, then G, C X7 U S..
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Proof. If there exists some z* € G, such that * € X\(X; US,), then pi(z*) > ¢,

and
N N 2M,,
F(:v,u)+u1-p1($)>—Mu+?-a:Mu. (4.1)

But for all ¥ € X/,
F(a® p) 4+ -pr(a®) = F(a®,p) < My, (4.2)

(4.1) and (4.2) show that x* is not a global optimal solution to problem

min - F(z, p) + p1 - pr(z)
st. x€ X,

which contradicts the assumption that z* € G,,. Therefore, G,, C X;US,. O
Theorem 4.1 means that any one of the global optimal solutions to problem

o ‘
min (z, ) + p1 - p1(2)

is an /2-integer point.
Theorem 4.2. Let § > 0, and
min F(Ilau)if*
0 <4 st Flxp,p) >f*
rr € X],

where f* is the optimal value of problem mi)? F(z,pu). There exists a small positive
TEXT

M
number €(8) such that if py > —=, then for any one of the global optimal solutions to

£(9)
problem mi}r{l F(z,pu)+ p1-p1(x), say x*, its nearest integer point is an optimal solution
TE
t bl in F'(: .
o problem min (x, 1)

Proof. For any x; € X, for 6 > 0, there exists some positive number £(d) < 1/2,
such that

|P(o, 1) = Plar,m)] < 6, Vo€ {o € X : [z — 210 < £(0)},
since F(x,p) is a continuous function. Thus
F(z,u) > F(xr,p) —0, VYre{ze X :|z—zr|o <e(0)}.

Furthermore, if an integer point, say y; € Xy, is not an optimal solution to problem

min F(z,p), then
reX;

F(z,p) > F(yr,p) — 6 =(F(yr,p) — f*) =6+ f* > f*,
Ve e{z € X : |z —yilloo < e(0)},
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where f* is the optimal value of problem mi}? F(z,p). Thus
TEXT

F(.ZL‘,/J,) + p1 Pl(m) > F(T,M) > f*a

forallz € {z € X : ||z — y1llooc < €(9), Fyr,u) > f*, yr € Xr}. But by Theorem 4.1,

if up > Mu/E(d), then G, C X; U 525(5), and

F(x% p) 4+ p-p1(z°) < f*, forall 2° € Gy,

Hence for any 2° = (29, -+, 20

)T € G, its nearest integer point, say k = (ki -, kn)7,
satisfying that
|29 — k| <e(6), i=1,---,n

is in X by Lemma 2.2 and is an optimal solution to problem mi‘? F(z,p). O
reXy

5. Interval Branch-and-Bound Algorithm

It has been turned out that interval analysis provides a natural framework for
constructing inclusion functions for a class of functions which can be given in explicit
analytical form. And interval Branch-and-Bound method has found good applications
in global optimization (see Ratschek and Rokne [1988]). So in this section, we present
an interval Branch-and-Bound algorithm for problem (UP,); in section 2 to find an
optimal solution to problem (UP)r, provided that f(x) is stated in explicit analytical
form.

Suppose that Y is a bounded closed box, Y C X. Denote by F(Y') an inclusion func-
tion for f(z) over Y, here F(Y') can be calculated by interval mathematics methods (see
Ratschek and Rokne [1988]). Denote by ubF(Y'), IbF(Y') the upper and lower bound-
aries of F(Y') respectively, and by w(Y") the width of box Y, i.e., w(Y) = 1r£1ia<xnw(Y;),

here Y; is an interval in R', Y =Y} x Yy x --- x Y,,. Obviously, IbF(F) is also a lower
bound of f(z;), z; € Y;, here Y is the set of integer points in Y.

For problem (UP,)1, let u satisfy the condition of Theorem 2.4, where M, L, m are
previously calculated; otherwise, let u be large enough.

The Branch-and-Bound approach can be stated in general terms as follows. We
bisect the box Y into two sub-boxes. Over each sub-box, calculate a lower bound on

n

the objective function f(z)4upo(x), here po(z) = Z sin? 7z;. For the sub-box with the
smaller lower bound of f(z) 4+ upo(z), take a poinlt iln it, say zo. Then f(xq) + upo(zo)
provides an upper bound on the optimal value of problem (UP,);. Using these bounds
we discard certain sub-boxes over which the integer optimal value of f(z) is not lower
than f(xzq) + upo(z). Obviously, we hope to find an upper bound on the optimal value
of problem (UP,); as small as possible, since we think that the earlier a smaller upper
bound can be found, the more the computational cost is reduced. Now we describe the
algorithm in detail.

Interval Branch-and-BOUND Algorithm

Step 0. Let Y := X, set list L := {(Y)}, f* = +oc.
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Step 1. Calculate IbF(Y).
Step 2. Choose a coordinate direction k£ Parallel to which Y has an edge of the
maximum length. Bisect ¥ normal to direction £ Obtaining boxes V;, V5 such that

Y =Vi UV, (int V7) N (int Vo) = 0.

Step 3. Remove y from list L.

Step 4. For V;, [ =1,2,

4.1. If w(V;) < 1, then there exists at most one integer point in V;. Denote the
integer point in V}, if exists, by xg, let f* := min{f*, f(z¢)}, and let * be the incumbent
solution providing f*. Omit V;.

4.2. Else calculate [bF(V}). For the box with the smaller lower bound of f(z), take
an integer point in it, say yo. If f(x) is continuously differentiable, using yg as an initial
point, we can apply methods for local optimal solutions to problem (UFP,); over the
box V] to find a lower function value than f(yg) + upo(yo). If done, denote the solution
also by yo. Let f* := min{f*, f(yo) + ppo(yo)}, and let z* be the incumbent solution
providing f*. Enter V; into list L such that the widths of the boxes in list L decrease.

Step 5. For any box Z in list L, if IbF(Z) > f*, delete Z from list L.

Step 6. If L is empty, end, the closest integer point to z* is an optimal solution
to problem (U P)r; else denote the box with the maximum width in list L by Y, go to
Step 2.

Remark. According to Ratschek and Rokne [1988], the inclusion function F(Z)
for f(z) over a box Z is required to satisfy the following condition

ubF(Z) — IbF(Z) = 0, if w(Z) — 0.

The algorithm has the following properties.

Theorem 5.1. Since X is a bounded bozx, and by Steps 2 5 of the algorithm, it is
obvious that the algorithm terminates after finite steps.

Theorem 5.2. After the algorithm terminates, the closest integer point to the
incumbent solution x* is an optimal solution to problem (UP);.

Proof. Denote by T the set of boxes having been deleted in Step 5 in the algorithm.
After the algorithm terminates, list L is empty, and we get f*, z* and

bF(Z) > f*, VZeT.

Thus
f(zr) > f(2*) + ppo(z™) = f*, Vo€ Z;, ZeT.

Moreover, for any box having been omitted in Step 4.1 of the algorithm, there exists
at most one integer point in it, and at this integer point, the function value of f(x)
is not lower than f*. So far all x; € X7, f(z7r) > f*. Furthermore, by Theorem 2.4,
it is obvious that the closest integer point to the incumbent solution z* is an integer
optimal solution to problem (UP);. O
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6. Numerical Experiments

In this section, we convert four integer programming problems into unconstrained
continuous ones by the penalty function method discussed in section 3.1, the theory
discussed in this paper, and use the interval Branch-and-Bound algorithm developed
in section 5 to solve them. For the first problem, the numerical result is compared
with that of Ge [1989] by the Filled Function method. For the last two problems, the
numerical results are compared with those of Conley [1980] by the Monte-carlo method.

Problem 1. (Ge [1989]).

min  x1 + 10z9
s.t. 66x1 + 14z9 > 1430
— 821 + 28z9 > 1306
0 <x; <100, x; : integer, ¢ =1, 2.

Its minimal solution is (7,70)7".
Problem 2.

min (21 — 10)® + (22 — 20)?
st. 2x; —zo=0
0 <z; <200, z; : integer, 2 = 1,2.

Its minimal solution is (10,20)7".

Let

FF: denote the number of function evaluations by the Filled Function method (Ge
[1990]).

BB: denote the number of function evaluations by the Branch-and-Bound algorithm
developed in Section 5.

computational results

problem 1 2
FF 404
BB 203 | 159

Problem 3 (Conley [1980], p.102).

. 2 2 2 2
min x5+ z5 + 1725 + :1:?0 + Z5T10 — TY — T1T2 — T123
- 8513421 - 65132 — T4X5TETT — -Tg — :L“é1 — 18z3zg27
st. 0<2; <99, =z integer, 1 =1, --,10.

Conley looked at 10° possible solutions, and found the solution (70, 66, 66, 98,
97, 95, 95, 9, 99, 9)”" with minimum —1.975 x 10%. Our interval Branch and Bound
algorithm calculates 37447 boxes (including single integer points) and finds the solution
(99, 50, 99, 99, 99, 99, 99, 99, 99, O)T with the minimum —2.16 x 108. The number of
function evaluations is about 74894.
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Problem 4 (Conley [1980], P.119).

min 6:1:% + 18.@% + 7:1:% — 221 — 16x9 — 31z — 12212923
s.t. 1+ x9 + 2x3 < 2000

1 + 1729 < 8000

9 + 5z3 < 4000

1 + Tzo + 223 > 200

1+ o+ 23 > 200

z? + w3 > 900

0<x; <999, x; integer, 1 =1,2,3.

Conley looked at a sample of 8 x 10° points, and took the solution (720,424, 428)7
with minimum —1, 560, 310, 784. Our interval Branch and Bound algorithm calculates
5401 boxes (including single integer points) and finds the solution (758, 426, 408)" with
the minimum —1.573 x 10°. The number of function evaluations is about 10802.
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