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NONLINEAR INTEGER PROGRAMMING AND GLOBALOPTIMIZATION�1)Lian-sheng Zhang Feng Gao Wen-xing Zhu(Department of Mathemati
s, Shanghai University Jiading CampusShanghai 201800, China)Abstra
tVarious approa
hes have been developed for solving a variety of 
ontinuousglobal optimization problems. But up to now, less work has been devoted to solvingnonlinear integer programming problems due to the inherent diÆ
ulty. This papermanages to transform the general nonlinear integer programming problem into an\equivalent" spe
ial 
ontinuous global minimization problem. Thus any e�e
tiveglobal optimization algorithm 
an be used to solve nonlinear integer programmingproblems. This result will also promote the resear
h on global optimization. Wepresent an interval Bran
h-and-Bound algorithm. Numeri
al experiments showthat this approa
h is eÆ
ient.Key words: Integer programming, Global minimization problem, Bran
h-boundalgorithm. 1. Introdu
tionAlthough the general linear integer programming problem is NP-hard, mu
h workhas been devoted to it (See Numhauser and Wolsey [1988℄, S
hrijver [1986℄). Thesolution methods in
lude the 
utting plane, the Bran
h-and-Bound, the dynami
 pro-gramming methods et
.. However, the general nonlinear integer programming problemis diÆ
ult to solve. Garey and Johnson [1979℄ pointed out that the integer programmingover Rn with a linear obje
tive fun
tion and quadrati
 
onstraints is unde
idable. So ifa nonlinear integer programming problem is handled, it is always solved over a boundedbox. Due to the inherent diÆ
ulty of nonlinear integer programming, less work has beendone (see e.g. Benson, Erengu
 and Horst [1990℄, Chi
hinadze [1991℄). But during thepast 30 years, various approa
hes have been developed to 
onstru
t algorithms for avariety of 
ontinuous global optimization problems (for detail, see Rinooy kan and Tim-mer [1988℄). In this paper, we transform the general nonlinear integer programmingproblem into an \equivalent" spe
ial 
ontinuous global minimization problem whi
h 
anbe solved by any one of e�e
tive global optimization algorithms. So it is a reasonableway to handle nonlinear integer programming problems. The involved fun
tions of the
onsidered nonlinear integer programming problem are only required to be Lips
hitz� Re
eived May 24, 1996.1)The resear
h was supported by the National Natural S
ien
e Foundation of China.
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ontinuous or 
ontinuous. Hen
e this result is a generalization of Ge [1989℄, where theinvolved fun
tions are assumed to be twi
e 
ontinuously di�erentiable. Moreover, ourproof is simple. We present an interval Bran
h-and-Bound algorithm for the spe
ial
ontinuous global optimization problem. Lower bounds are 
al
ulated by the rules ofinterval analysis (Rats
hek and Rokne [1988℄). Methods for lo
al optimal solutions 
anbe in
orporated into the Bran
h-and-Bound s
heme to �nd better in
umbent solutions.At last, numeri
al experiments are presented to show that this approa
h is eÆ
ient.2. Un
onstrained CaseConsider the following problem(UP )I ( min f(x)s.t. x 2 XI ;where f(x) : Rn ! R is a Lips
hitz fun
tion with Lips
hitz 
onstant L over a set X,here X � Rn is a bounded 
losed box whose verti
es all are integral latti
es, XI is theset of integer points in X.A 
ontinuous global optimization problem 
orresponding to (UP )I is(UP�) 8><>: min f(x) + � nXi=1 j sin�xij; x = (x1; � � � ; xn)T ;s.t. x 2 X:For developing the relationship between problems (UP )I and (UP�), we need thefollowing lemmas.Lemma 2.1. j sinxj = sinx � 2�x; if 0 � x � �2j sinxj = sinx � 2� j� � xj; if �2 � x � �:Proof. Constru
t a line through points (0; 0), (�=2; 1) and a line through points(�=2; 1), (�; 0). Their equations are y = 2�x;y = 2� (� � x):Sin
e sinx is 
on
ave over [0; �℄, and sin 0 = 0;sin �2 = 1;sin� = 0;



Nonlinear Integer Programming and Global Optimization 181we have j sinxj = sinx � 2�x;if 0 � x � �2 ;j sinxj = sinx � 2� j� � xj;if �2 � x � �;and the proof is 
ompleted. 2Obviously, we haveLemma 2.2. Let X be a bounded 
losed box whose verti
es all are integral latti
es.For any x = (x1; � � � ; xn)T 2 X, there exists an integer point xI 2 X, su
h thatminy2RnI kx� yk1 = kx� xIk1; (2.1)where RnI is a set of integer points in Rn.Theorem 2.1. If � > L=2, then problem (UP�) and problem (UP )I have the sameoptimal solutions.Proof. Obviously, to prove this theorem, we only need to prove that any of theoptimal solutions to problem (UP�) is an integer ve
tor, whi
h is also an optimalsolution to problem (UP )I . We prove it by 
ontradi
tion. Denote by G the set ofoptimal solutions to problem (UP�). Suppose that there exists x� = (x�1; � � � ; x�n)T 2 Gwhi
h is not integral. Let x�I = (x�1I ; � � � ; x�nI)T be the 
losest integer point to x�, i.e.,kx� � x�Ik1 � 12 :Then by Lemma 2.2, x�I 2 X, and if � > L=2, by Lemma 2.1, we havef(x�I) + � nXi=1 j sin�x�iI j � f(x�)� � nXi=1 j sin�x�i j=f(x�I)� f(x�)� � nXi=1 j sin�(x�i � x�iI)j�L � kx�I � x�k1 � � nXi=1 j sin�(x�i � x�iI)j�L � kx�I � x�k1 � � � 2=� � � � kx�Ix�k1 < 0:It indi
ates that x� is not an optimal solution to problem (UP�), whi
h 
ontradi
ts theassumption that x� 2 G. Therefore, x� is integral, and is also an optimal solution toproblem (UP )I . 2Note that the obje
tive fun
tion of problem (UP�) is generally not 
ontinuously dif-ferentiable. For the possibility of using the gradient methods of global optimization, e.g.the Filled Fun
tion method (Ge [1990℄), the Tunnelling method (Levy and Montalvo[1985℄), to solve nonlinear integer programming problems, 
orresponding to problem(UP )I , we 
onstru
t the following global optimization problem with a 
ontinuouslydi�erentiable obje
tive fun
tion if f(x) itself is,(UP�)1 8><>: min f(x) + � nXi=1 sin2 �xis.t. x 2 X:



182 L.S. ZHANG, F. GAO AND W.X. ZHUThen we have the following results.Theorem 2.2. Suppose that there exists M > 0, su
h thatjf(x)j �M; for all x 2 X:Given a point x = (x1; � � � ; xn)T , if there exists a 
omponent xi0 in x xi0 and itsnearest integer number xIi0 su
h that12 � jxi0 � xIi0 j > 16 ;then f(x) + � nXi=1 sin2 �xi > M; if � > 8M:Proof. Under the assumption of Theorem 2.2, we havef(x) + � nXi=1 sin2 �xi � �M + � sin2 �xi0 > �M + 8M sin2 �6 =M:Hen
e Theorem 2.2 holds. 2By Lemma 2.2, theorem 2.2 implies that for any one of the global optimal solutionsto problem (UP�)1, say x�, its nearest integer point, say xI , is in XI and satis�es thatkx� � xIk1 � 1=6; if � > 8M:Theorem 2.3. Suppose that x1I , x2I are two di�erent integer points in XI , f(x1I) <f(x2I). If � > L216(f(x2I)� f(x1I)) , we havef(x) + � nXi=1 sin2 �xi > f(x1I); for all x 2 fx : kx� x2Ik1 � 1=6g \X:Proof. For all x 2 fx : kx� x2Ik1 � 1=6g \X, we havef(x) + � nXi=1 sin2 �xi �f(x2I)� L � kx� x2Ik1 + � nXi=1 sin2 �xi=f(x2I)� L � kx� x2Ik1 + � nXi=1 sin2 �(jxi � x2Iij)�f(x2I)� L � kx� x2Ik1 + �(2=� � � � kx� x2Ik1)2 (by Lemma 2.1)=f(x2I)� L � kx� x2Ik1 + 4� � kx� x2Ik21: (2.2)Clearly, a minimal solution x of (2.2) satis�es thatkx� x2Ik1 = L8�:



Nonlinear Integer Programming and Global Optimization 183Moreover, the minimal value of (2.2) isf(x2I)� L � L8� + 4� � L264�2 =f(x2I)� L216�>f(x2I)� L216 � L216(f(x2I)� f(x1I)) �sin
e� > L216(f(x2I)� f(x1I))�=f(x1I):Hen
e Theorem 2.3 holds. 2Thus we 
an establish the relationship between problems (UP )I and (UP�)1 asfollows.Theorem 2.4. Let m satisfy that0 < m � 8><>: min f(x2I)� f(x1I)s.t. f(x2I) > f(x1I)x2I ; x1I 2 XI :If � > max(8M;L2=16m), then for any one of the global optimal solutions to problem(UP�)1, say x�, there exists an integer point x�I 2 XI , su
h that kx� � x�Ik1 � 1=6,and x�I is an optimal solution to problem (UP )I .Proof. By Theorem 2.2, if � > 8M , then for any one of the global optimal solutionsto problem (UP�)1, say x�, there exists some integer point x�I 2 XI , su
h thatkx� � x�Ik1 � 16 :Thus if � > max(8M;L2=16m), x�I is an optimal solution to problem (UP )I ; otherwise,by Theorem 2.3, x� is not a global optimal solution to problem (UP�)1. Hen
e Theorem2.4 holds. 2Remark. If f(x) is a polynomial fun
tion with integer 
oeÆ
ients, then we maytake m = 1. 3. Constrained CaseNow we 
onsider the following 
onstrained problem(P )I ( min f(x)s.t. x 2 SI ;where SI = fx 2 XI : gi(x) � 0, i = 1; � � � ;mg, XI is the set of integer points in abounded box X, f(x); gi(x), i = 1; � � � ;m : Rn ! R1 are 
ontinuous fun
tions overX, SI is not empty. Constru
t a fun
tion p(x) su
h that for all x 2 XI , p(x) � 0,and p(x) = 0, x 2 XI if and only if x 2 SI . This kind of p(x) may be p(x) =mXi=1max(0; gi(x)) or p(x) = mXi=1(max(0; gi(x)))2 if p(x) is wanted to be di�erentiable



184 L.S. ZHANG, F. GAO AND W.X. ZHUwhen gi(x), i = 1; � � � ;m are. Then a penalty problem 
orresponding to (P )I is(P�)I ( min f(x) + � � p(x)s.t. x 2 XI :Let mI � minx2XInSI p(x), mI > 0, �f � maxx2XI f(x), f � minx2XI f(x). We have the followingtheorem.Theorem 3.1. If � > f � fmI , then problems (P )I and (P�)I have the same optimalsolutions.Proof. Denote by GI and G�I the sets of optimal solutions to problems (P )I and(P�)I respe
tively. For � > f � fmI , to prove GI = G�I , we only need to prove thatGI � G�I and G�I � GI .(i) GI � G�I . For all x� 2 GI , p(x�) = 0, and for all x 2 SI ,f(x) + �p(x) = f(x) � f(x�) = f(x�) + �p(x�):Moreover, for all y 2 XInSI , p(y) � mI , andf(y) + �p(y) � f + � �mI > f + f � fmI �mI = f � f(x�):So x� 2 G�I , and GI � G�I .(ii) G�I � GI . For all x� must be a feasible integer point of (P )I ; otherwise ifx� 2 XInSI , then for any x0 2 SI ,f � f(x0) = f(x0)+�p(x0) � f(x�)+� �p(x�) � f+� �mI > f+ f � fmI �mI = f: (3.1)Inequalities (3.1) show that x� is not an optimal solution to problem (P�)I , whi
h
ontradi
ts the assumption that x�inG�I . Therefore, x� 2 SI andf(x�) + � � p(x�) = f(x�) � f(x) + � � p(x) = f(x); for all x 2 SI :Hen
e, x� 2 GI , and G�I � GI . 2Remark 1. In Theorem 3.1, mI exists theoreti
ally,a nd generally is very diÆ
ult to
al
ulate. But if gi(x), i = 1; � � � ;m are polynomial fun
tions with integer 
oeÆ
ients,then we 
an set mI = 1, and Theorem 3.1 holds if � > f � f .Remark 2. A

ording to Theorem 3.1, we 
an always transform the 
onstrainedproblem (P )I into an un
onstrained one (P�)I using the penalty fun
tion method. Thusthe 
onstrained problem (P )I 
an be handled by the methods dis
ussed in se
tion 2.4. General Integer ProgramIn this se
tion, we 
onsider the following general problem(P )I ( min f(x)s.t. x 2 SI ;



Nonlinear Integer Programming and Global Optimization 185where SI = fx 2 XI : gi(x) � 0, i = 1; � � � ;mg, XI is the set of integer points in abounded 
losed box X whose verti
es all are integral latti
es, f(x), gi(x), i = 1; � � � ;mare 
ontinuous fun
tions, SI is not empty. Let p(x) = mXi=1max(0; gi(x)), F (x; �) =f(x)+� � p(x), 0 < mI � minx2XInSI p(x), f � maxx2XI f(x), f � minx2XI f(x). By Theorem 3.1,if � > f � fmI , minx2XI F (x; �) = minx2SI f(x). In order to des
ribe the relationship betweenproblem (P )I and its 
orresponding 
ontinuous one, we need the following de�nition.De�nition 4.1. Suppose " > 0 is suÆ
iently small. x0 = (x01; � � � ; x0n)T is 
alledan "-integer point, if for anyi 2 f1; � � � ; ng, there exists an integer ki, su
h thatjx0i � kij � "; i = 1; � � � ; n:Sin
e F (x; �) = f(x) + � � p(x) is 
ontinuous, there exists a positive number M�su
h that jF (x; �)j � M�, 8x 2 X. Let p1(x) = nXi=1 j sin�xij, � > f � fmI . Now wedis
uss the relationship between optimal solutions of problem minx2XI F (x; �) and problemminx2X F (x; �) + �1 � p1(x).Lemma 4.1. If x0 is not an "=2-integer point, then p1(x0) > ", 0 < " < 1=2.Proof. Sin
e x0 is not an "=2-integer point, there exists an index i0 2 f1; � � � ; ng,su
h that for any integer k, jx0i0 � kj > "2 :Espe
ially, let k satisfy the following inequalities"2 < jx0i0 � kj � 12 :Thus by Lemma 2.1, we havej sin(x0i0 � k)�j � 2� � jx0i0 � kj � � > ":And p1(x0) = nXi=1 j sinx0i�j > ";whi
h 
ompletes the proof. 2Let S" = fx 2 X : 0 < p1(x) � "g. Denote by G�1 the set of optimal solutions toproblem ( min F (x; �) + �1 � p1(x)s.t. x 2 X:We haveTheorem 4.1. If �1 > 2M�=", then G� � XI [ S".



186 L.S. ZHANG, F. GAO AND W.X. ZHUProof. If there exists some x� 2 G�1 , su
h that x� 2 Xn(XI [ S"), then p1(x�) > ",and F (x�; u) + �1 � p1(x�) > �M� + 2M�" � " =M�: (4.1)But for all x0 2 XI , F (x0; �) + �1 � p1(x0) = F (x0; �) �M�: (4.2)(4.1) and (4.2) show that x� is not a global optimal solution to problem( min F (x; �) + �1 � p1(x)s.t. x 2 X;whi
h 
ontradi
ts the assumption that x� 2 G�1 . Therefore, G�1 � XI [ S". 2Theorem 4.1 means that any one of the global optimal solutions to problemminx2X F (x; �) + �1 � p1(x)is an "=2-integer point.Theorem 4.2. Let Æ > 0, andÆ � 8><>: min F (xI ; �)� f�s.t. F (xI ; �) > f�xI 2 XI ;where f� is the optimal value of problem minx2XI F (x; �). There exists a small positivenumber "(Æ) su
h that if �1 > M�"(Æ) , then for any one of the global optimal solutions toproblem minx2X F (x; �)+�1 � p1(x), say x�, its nearest integer point is an optimal solutionto problem minx2XI F (x; �).Proof. For any xI 2 XI , for Æ > 0, there exists some positive number "(Æ) < 1=2,su
h that jF (x; �) � F (xI ; �)j < Æ; 8x 2 fx 2 X : kx� xIk1 � "(Æ)g;sin
e F (x; �) is a 
ontinuous fun
tion. ThusF (x; �) > F (xI ; �)� Æ; 8x 2 fx 2 X : kx� xIk1 � "(Æ)g:Furthermore, if an integer point, say yI 2 XI , is not an optimal solution to problemminx2XI F (x; �), thenF (x; �) > F (yI ; �)� Æ =(F (yI ; �)� f�)� Æ + f� � f�;8x 2 fx 2 X : kx� yIk1 � "(Æ)g;



Nonlinear Integer Programming and Global Optimization 187where f� is the optimal value of problem minx2XI F (x; �). ThusF (x; �) + �1 � p1(x) � F (x; �) > f�;for all x 2 fx 2 X : kx� yIk1 � "(Æ), F (yI ; �) > f�, yI 2 XIg. But by Theorem 4.1,if �1 > M�="(Æ), then G�1 � XI [ S2"(Æ), andF (x0; �) + �1 � p1(x0) � f�; for all x0 2 G�1 :Hen
e for any x0 = (x01; � � � ; x0n)T 2 G�1 , its nearest integer point, say k = (k1; � � � ; kn)T ,satisfying that jx0i � kij � "(Æ); i = 1; � � � ; nis in X by Lemma 2.2 and is an optimal solution to problem minx2XI F (x; �). 25. Interval Bran
h-and-Bound AlgorithmIt has been turned out that interval analysis provides a natural framework for
onstru
ting in
lusion fun
tions for a 
lass of fun
tions whi
h 
an be given in expli
itanalyti
al form. And interval Bran
h-and-Bound method has found good appli
ationsin global optimization (see Rats
hek and Rokne [1988℄). So in this se
tion, we presentan interval Bran
h-and-Bound algorithm for problem (UP�)1 in se
tion 2 to �nd anoptimal solution to problem (UP )I , provided that f(x) is stated in expli
it analyti
alform.Suppose that Y is a bounded 
losed box, Y � X. Denote by F (Y ) an in
lusion fun
-tion for f(x) over Y , here F (Y ) 
an be 
al
ulated by interval mathemati
s methods (seeRats
hek and Rokne [1988℄). Denote by ubF (Y ), lbF (Y ) the upper and lower bound-aries of F (Y ) respe
tively, and by w(Y ) the width of box Y , i.e., w(Y ) = max1�i�nw(Yi),here Yi is an interval in R1, Y = Y1 � Y2 � � � � � Yn. Obviously, lbF (F ) is also a lowerbound of f(xI), xI 2 YI , here YI is the set of integer points in Y .For problem (UP�)1, let � satisfy the 
ondition of Theorem 2.4, where M;L, m arepreviously 
al
ulated; otherwise, let � be large enough.The Bran
h-and-Bound approa
h 
an be stated in general terms as follows. Webise
t the box Y into two sub-boxes. Over ea
h sub-box, 
al
ulate a lower bound onthe obje
tive fun
tion f(x)+�p0(x), here p0(x) = nXi=1 sin2 �xi. For the sub-box with thesmaller lower bound of f(x) +�p0(x), take a point in it, say x0. Then f(x0) + �p0(x0)provides an upper bound on the optimal value of problem (UP�)1. Using these boundswe dis
ard 
ertain sub-boxes over whi
h the integer optimal value of f(x) is not lowerthan f(x0)+�p0(x0). Obviously, we hope to �nd an upper bound on the optimal valueof problem (UP�)1 as small as possible, sin
e we think that the earlier a smaller upperbound 
an be found, the more the 
omputational 
ost is redu
ed. Now we des
ribe thealgorithm in detail.Interval Bran
h-and-BOUND AlgorithmStep 0. Let Y := X, set list L := f(Y )g, f� = +1.



188 L.S. ZHANG, F. GAO AND W.X. ZHUStep 1. Cal
ulate lbF (Y ).Step 2. Choose a 
oordinate dire
tion k Parallel to whi
h Y has an edge of themaximum length. Bise
t Y normal to dire
tion k Obtaining boxes V1; V2 su
h thatY = V1 [ V2; (int V1) \ (int V2) = ;:Step 3. Remove y from list L.Step 4. For Vl, l = 1; 2,4.1. If w(Vl) < 1, then there exists at most one integer point in Vl. Denote theinteger point in Vl, if exists, by x0, let f� := minff�; f(x0)g, and let x� be the in
umbentsolution providing f�. Omit Vl.4.2. Else 
al
ulate lbF (Vl). For the box with the smaller lower bound of f(x), takean integer point in it, say y0. If f(x) is 
ontinuously di�erentiable, using y0 as an initialpoint, we 
an apply methods for lo
al optimal solutions to problem (UP�)1 over thebox Vl to �nd a lower fun
tion value than f(y0)+�p0(y0). If done, denote the solutionalso by y0. Let f� := minff�; f(y0) + �p0(y0)g, and let x� be the in
umbent solutionproviding f�. Enter Vl into list L su
h that the widths of the boxes in list L de
rease.Step 5. For any box Z in list L, if lbF (Z) � f�, delete Z from list L.Step 6. If L is empty, end, the 
losest integer point to x� is an optimal solutionto problem (UP )I ; else denote the box with the maximum width in list L by Y , go toStep 2.Remark. A

ording to Rats
hek and Rokne [1988℄, the in
lusion fun
tion F (Z)for f(x) over a box Z is required to satisfy the following 
onditionubF (Z)� lbF (Z)! 0; if w(Z)! 0:The algorithm has the following properties.Theorem 5.1. Sin
e X is a bounded box, and by Steps 2{5 of the algorithm, it isobvious that the algorithm terminates after �nite steps.Theorem 5.2. After the algorithm terminates, the 
losest integer point to thein
umbent solution x� is an optimal solution to problem (UP )I .Proof. Denote by T the set of boxes having been deleted in Step 5 in the algorithm.After the algorithm terminates, list L is empty, and we get f�, x� andlbF (Z) � f�; 8Z 2 T:Thus f(xI) � f(x�) + �p0(x�) = f�; 8xI 2 ZI ; Z 2 T:Moreover, for any box having been omitted in Step 4.1 of the algorithm, there existsat most one integer point in it, and at this integer point, the fun
tion value of f(x)is not lower than f�. So far all xI 2 XI , f(xI) � f�. Furthermore, by Theorem 2.4,it is obvious that the 
losest integer point to the in
umbent solution x� is an integeroptimal solution to problem (UP )I . 2



Nonlinear Integer Programming and Global Optimization 1896. Numeri
al ExperimentsIn this se
tion, we 
onvert four integer programming problems into un
onstrained
ontinuous ones by the penalty fun
tion method dis
ussed in se
tion 3.1, the theorydis
ussed in this paper, and use the interval Bran
h-and-Bound algorithm developedin se
tion 5 to solve them. For the �rst problem, the numeri
al result is 
omparedwith that of Ge [1989℄ by the Filled Fun
tion method. For the last two problems, thenumeri
al results are 
ompared with those of Conley [1980℄ by the Monte-
arlo method.Problem 1. (Ge [1989℄).min x1 + 10x2s.t. 66x1 + 14x2 � 1430� 82x1 + 28x2 � 13060 � xi � 100; xi : integer; i = 1; 2:Its minimal solution is (7; 70)T .Problem 2. min (x1 � 10)2 + (x2 � 20)2s.t. 2x1 � x2 = 00 � xi � 200; xi : integer; i = 1; 2:Its minimal solution is (10; 20)T .LetFF: denote the number of fun
tion evaluations by the Filled Fun
tion method (Ge[1990℄).BB: denote the number of fun
tion evaluations by the Bran
h-and-Bound algorithmdeveloped in Se
tion 5. 
omputational resultsproblem 1 2FF 404BB 203 159Problem 3 (Conley [1980℄, p.102).min x22 + x23 + 17x25 + x510 + x5x10 � x21 � x1x2 � x1x3� 8x24 � 6x36 � x4x5x6x7 � x38 � x49 � 18x3x6x7s.t. 0 � xi � 99; xi integer; i = 1; � � � ; 10:Conley looked at 106 possible solutions, and found the solution (70, 66, 66, 98,97, 95, 95, 9, 99, 9)T with minimum �1:975 � 108. Our interval Bran
h and Boundalgorithm 
al
ulates 37447 boxes (in
luding single integer points) and �nds the solution(99, 50, 99, 99, 99, 99, 99, 99, 99, 0)T with the minimum �2:16 � 108. The number offun
tion evaluations is about 74894.
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