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Abstract

In this paper we investigate the existence, uniqueness and regularity of the
solution of semilinear parabolic equations with coefficients that are discontinuous
across the interface, some prior estimates are obtained. A net shape of the finite
elements around the singular points was designed in [7] to solve the linear elliptic
problems , by means of that net, we prove that the approximate solution has the
same convergence rate as that without singularity.
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1. Introduction

Let  be points on plane R?, and €2 be a polygonal domain, we denote the boundary
of Q2 by 0. There in € are finite many broke lines which divide it into finite polygonal
subdomains €;,1 = 1,---, L. The function p(z) € L?(f2) is assumed to have bounded
first derivatives in all subdomains €2;, while p is allowed to be discontinuous on the
interfaces 0€2; N 0€;. And there exists a positive constant 7 such that

p(z) >7, Vzel.

We adopt the usual notations of the Sobolev spaces in this paper, that is, denote by
H?®(Q) and H{(2) the spaces and || - ||s the norms, | - |§ the semi norms.
We define a linear operator A by

Au=v(p(z) v u), D(A)={u€ Hy(Q),Au € L*(Q)},
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where v/ is gradient operator. Let f(z) € L?(), ug € D(A?), Ty be a positive constant.
In this paper we study the following nonlinear initial value problem

88—1: = Au — ¢(u) + f(z) in Qx(0,Ty]
u(t,z) =0 texton 00 x [0, Tp] (1.1)
u(0,2) = ug(x) in Q

where ¢ € C'(R) and we assume further that there exist positive constants i, Ay and
positive integer k£ such that

0< d)'(u) <X\ ‘ U ‘k +Ag.

In section 2 we first get the existence and uniqueness of (1.1), then we investigate the
regularity of the solution, some prior estimates are obtained. In section 3 we present the
finite element method which is suitable for (1.1), some error estimates for interpolation
operator of finite element space are gotten. In section 4 we obtain the error estimate
for the finite element solution.

2. Existence, Uniqueness and Regularity

By the usual approach!' 3! it is easy to prove that A is the infinitesemal generator of
an analytic semigroup T'(t) on L2(€). As in [1], [2] and [3], for 0 < a < 1, we introduce
operators A% which are fractional powers of A, we denote the domain of A% by D(A%),
D(A®) equipped with the norm [lullo = [|A%u||2(q) is a Banach space which we denote
by X,.

By Gagliardo-Nirenberg inequalityl' 3!, we have

1
X, C L*¥(Q) when 1 - o <a<l (2.1)
and the imbeddings are continuous.

Analogous to [1], [2] and [3], by the contraction mapping theorem, it is easy to know

1
that (1.1) has a unique local solution v € C([0,¢]; X,), where 1 — %% <a<ltisa

positive constant depending on .
Similar to [4], we can prove that there is a unique u* € D(A) satisfying

Au* = p(u) + f(x) = 0.

Now we consider the following initial problem

% = Av — (¢p(v +u*) — Pp(u*)) in £ x (0,Tp]
o(t,z) =0 on 09 x [0, Ty] (2.2)
v(0,2) = ug(z) —u*(z) in Q

Since as long as the solution exists, t — [o | v(t,z) |*
positive integer [, it follows from (2.1) and Gronwall’s inequality that there exists a

constant M; independent of ¢ such that

dz is nonincreasing for all

lo(t,o)lla < M, (2.3)
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which implies that the unique solution of (2.2) exists for all ¢ > 0. In other words we
have gotten the global existence of (1.1).
On the other hand, by (2.3) we can get

1E(t u(®)) — F(s,u(s))l 120y < Lllu(t) — u(s)la, (2.4)

where F(t,u(t)) = —¢(u(t)) + f(z),L is a positive constant independent of ¢ € R.
Notice that

h
(T () = DATOuollzzge) < [ 1T+ 01l A [ 400 | 2(eydr < M,

Where Mj can be chosen to be independent of ¢. Similar to [1], we have

1
Theorem 1. Let u € C([0,Ty]; Xo) be the solution of (1.1), 1 — o << 1. Then
for 0 < B <1 —a, we have

F(t,u(t)) = —¢(u(t)) + f(x) € CO([0, To; L*(2)). (2.5)

Furthermore,

Au € C([0,To]; LX), u e CL([0, Tol; L2(92)). (2.6)

From Theorem 1, by [5] and [6], we can obtain the regularity of the solution of
(1.1). uw may posses singularities at the following points: the crosspoints of interfaces,
the turning points of interfaces, the crosspoints of interfaces with €2 and the points on
0 with interior angles greater than 7. The first - order derivatives of the solution near
these points, which will be generally known as singular points, may be unbounded.
Denoting the singular points by 2™ m = 1,---, M. We define Q") = {z € Q]
z — 2™ |< p}, where | - | is Euclidean norms in R?, we can choose p < 1 such that
Q™) does not contain any other singular point. Let (Pm, Om) be the polar coordinates
centered at z(™), Q* = Q\ U%Zlﬁ(m), then we have

Theorem 2. The solution u of (1.1) has the followingdecompsition:

M
wtr) =3 S oW x(pm)O (0) + (1, 2) (2.7)

m=1 jec j(m)

where a](-m) (t) are constants independent of ry, and 6,,, x € C*(0, p) with

L forr<p/3
x(r) = 0, forr>2p/3.

{)\gm), @gm) }i>1 18 the complete eigensystem of the corresponding Sturm-Liouville eigen-
value problem (2.9), J™) = {j is a positive integer | )\j(m) € (0,1)}, u* € H? on each
Q,, moreover, we have

M m 2 L
SO @)+ e ) 30, < ClAu om0 (28)

m=1 je j(m) I=1



194 H. FENG AND L.J. SHEN

In Q) let p € LOO(Q(m)) be the piecewise constant function, that represents the
discontinuities of p(x) at z(™):

i lgomng, = i = p lo, (z'™)

Let {pm < p, 0 = 0P}, 1 < B < Ny be the interfaces where the function p is
discontinuous. When (™ € Q, the Sturm-Liouville eigenvalue problem is

pO" + A =0, 0,, # 0%
©(0) = ©(2m)

0(0¥) —0) = 0¥ +0)

p(0P —0)0' (0P —0) = u(® +0)0'(0 +0), 1< 8 < N,.

(2.9)

When z(™) € 99, (2.9) is replaced by
u®"” 4+ pAO =0, 0,, # 00
©(0) = O(w) =0
0¥ —0) = 0O +0)
p(0@ —0)0' (0¥ —0) = p(6@ +0)0' (0 +0), 1< < N

where w is the interior angle of Q at z(™). Similar to [7], by a direct computation, we

get
i .
when 2™ €Q, min )\j(m) > o DMZj
jeJim) max (4;
— 9
when 2™ € 9Q, min )\j(m) > M
jeJim) max f4; w

3. Finite Element Method

The presence of singularities generally leads to nonoptimal convergence rates by the
usual finite element method. Without destorying the usual scheme of finite element
method, taking into account the singularities as precisely as possible allows a better
approximation of solution. More precisely we discretize the domain €2 by a special mesh
subdivision J which defined in the following.

For the sake of simplicity, we make assumption A): the included angles at singular
points (™) between interfaces < 7/3. (otherwise, we can draw fictitious interface).

In Q™) we choose ag < minjEJ(m)\/)\j(m), R = p2e0/3,

i
2

ro = 0; ri:(R) , i=1,2,---,m. (3.1)

S|

We define G; = {z € Q, | = — 2™ |< r;}, ie, G; = {z € Qpu < 13}, it is
obvious that G, = Q™). We denote the inscribed polygon in G; which vertexes are the
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intersection points between 0G; and the interfaces by F;. Let Ay = G1, A; = G;\ G, -1,
2.227"'7”- Dl :El,Di :Ei\Eifl, A,L :D’imAifl,i :2’...’n_

In €, we make a triangulation J such that in every Q0™ it satisfies the following
assumptions:

I) In each D;, J is a quasi uniform triangulation, and there exists constants C; and
Cs independent of i such that for VA € D;, the diameter da satisfies

Cy(ri —ri—1) <da < Cy(ri —ri—1) (2.2)

IT) The intersection of every triangle element A € J and the interface is either
empty, the edge of A or the vertex of A.

In the above, for convenience the right upper index ™ for G;, E;, A;, D;, A; have
been omited, i.e., we should denote G;, E;, A;, D; and A; by Gz(m),E(m) Al(m) Z(m) and

1 2 3

Az(m) respectively.
In Q" =Q\ U%ZIET(lm), J is a conventional quasi uniform triangulation which also
satisfies the assumption II), it is required that these triangulations conform to each
other, that is, the nodes of them coincide on (9E7(lm).
Let Vj, € H}(Q) be the the linear conforming finite element space associate with 7.

The semidiscrete approximate problem correspondind to (1.1) is

find uy, € V}, such that
(3.2)

0
(g v) + alunv) + (9un).v) = (f,0) Yo € Vi,
where (u,v) = [ uvdz, a(u,v) = [op(z) v vy vdr.
T
Let At be the steplength of ¢, N be the integer part of A_Ot' Let II be the Vj-

interpolation operator8/. We select uy = Tlug, and discrete (3.2) using implicit differ-
ence scheme in time, then

n+1

(%’“) +a(upt v) + (p(upt),0) = (fiv) Vo €V

The finite element solution of (1.1) is gotten by algorithm (3.3). We first state the
following Lemma 1 which proved in [7].

Lemma 1. For v = p,x(pm)O(0), ag < d < 1, where © is the solution of (2.9),
we have

find uZ“ € V}, such that
{ (3.3)

1 1
o= TWwlos, < C—s. v~ Tols, <O,

where C' is independent of n.
Since

1
rp—rn1 < C—, (3.4)
n

it follows from [8] and Theorem 2 that
Lemma 2. Let v*(¢,z) be the function which defined in Theorem 2. Then

o (1) — T (1, 2) o, < Coy | (1,2) — T (1, 2) .5, < O
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where C' is independent of n and %.
By Theorem 2, combining Lemma 1 and Lemma 2 yields
Lemma 3. In Q)| for the solution u(t,z) of (1.1), we have

1
lu(t, ) ~ Mu(t,)lop, < o, lult,2) = Tu(t, )1 s, < O

where C' is independent of n and t.

For the solution u(t,z) of (1.1), noting the definition of function x and assumption
A), we get u(t,z) = u*(t,z) in Q**, then by [8], it follows from Theorem 2 and (3.4)
that

Lemma 4. Let u(t,z) be the solution of (1.1). Then

1 1
lu(t,z) = Hu(t, 2)llog- < C—s. lu(t,2) = Hu(t,z)]10-+ < O,

where C' is independent of n and t.
We define

h = (3.5)

1

-

By Lemma 3 and Lemma 4, we have
Theorem 3. For the solution u(t,z) of (1.1), there exist constants Cq,Cy indepen-

dent of h and t such that
u(t,z) — Tu(t,z)|lo.o < Ch?,  |u(t,z) — Tu(t,z)|1.0 < Ch.

4. Error Estimate of the Finite Element Solution

We define u" = u(nAt, z), w" = u™ — u", e" = u™ — u}. It follows from (1.1) and
(3.2) that

en—l—l —en en-l-l —en
( NI n+1) +a(e"™, ety = ( N ’,wn+1) +a(e"t! whth)
Tl oy 8u”+1 il ntl
+( N )
+ (plup ™) = p(u" ), " —upth)y <3P, (4.1)
Jj=1
where
en—l—l s
PT} = ( A7 ,w"“), Pg = a(e"“,w”“),
+1 n n+1
3 _ u” —u _8U’ n+l _ n+l
P”_( At ot Mu “h )

Py = (p(Mu"*1) — p(u™ ), ™t — upth,
(4.1) yields that

H m+1||2+ Z Hen+1 n||2+ Z n+1 n+1 At
n=0
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4 m
1 .
<SICI3+ Y PiA (4.2)
71=1n=0
where m = 1,2, .-, N. We estimate each of the four terms separately. From Theorem
3 we have
~ o1 2 1 1 & 1 2 h*
Z P,At < Ch Z le"t! — ™o < 2 2_: le" ! —e™|5 + CE’ (4.3)
n=0 n=0 n=0
and
m 1 m
Z P2At < 3 Z a(e" L e AL + Ch2. (4.4)
n=0 n=0

In the following we denote u(t, z) by u(t) for simplicity. By Theorem 1 and Theorem
3,

(Bu(t) 3 ount!
ot ot
We define Q(t,t" 1) = (F(t,u(t)) — F(t" T u(t™t1)), e t1).

When t € [nAt, (n + 1)At], by (1.1) and Theorem 1,

Iyt — u"“) < Ch?. (4.5)

(8u(t) B ount!

) = —alu() (), et + QU )

ot ot
1
< a1, £ Cafult) w0, u(t)  u(t™)) + Q)
1
< gale" e ) £ Ollu(t) — u@™ )l + Q")
1
< ga(e"H, ") + CAL+ CAP e fo. (4.6)

(4.5) and (4.6) yield that

1 DAL Gu(t)  Ount!
3 _ = o n+l _  n+l
Eu _At/nm ( ot o )t
1 (n+1)At Ou(t) unt1 il
+E,/nm o ot ° )dt

1
<Ch? + ga(e"H, ") + CAt+ CALP |[e" o,

this implies that

m 1 m
Y pPiat< T > a(e"t, " AL+ Ch? + CALY. (4.7)
n=0 n=0

From Theorem 1 and Theorem 3, there exist positive constant C4,C5 independent of
n such that
[u"* e < Oyl =TIy < Coh,

hence

lp(u™*1) — ¢ ) lo < Ol H[Far + [T F o + Dlu™* = T 4
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< O™ 1T + [T T + 1) u™ — ™|, < Oh,
which yields that

P;ll :(¢(Hun+1) - ¢(un+1)’Hun+1 - un+1) + (¢(Hun+1) - ¢(un+1)’un+1 o UZ_H)
< Ch* + Chle" o, (4.8)

where we used Theorem 3. It follows from (4.8) that

m 1 m
PIAt < Ch% + = a(e™t e"THAL. 4.9
3 RIAES 0N+l ) (4.9)

Combining (4.2) with (4.3),(4.4),(4.7) and (4.9) we have
4

m h
le™ G + D a(e"™ et AL < C(h? + 1 + AtF). (4.10)
n=0

At

The main result of this paper comes next:
Theorem 4. Let u and uj be the solution of (1.1) and (3.3) respectively. Then we
have

N-1 4
h
max [u” —up|§+ Y lu" - up T TAL < C(R + T A,
n=0

1
where 0 < B < % C is a constant independent of h, At and n.
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