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ON THE LINEAR CONVERGENCE OF PC-METHOD FOR ACLASS OF LINEAR VARIATIONAL INEQUALITIES�Nai-hua Xiu(Department of Mathemati
s, Nothern Jiaotong University, Beijing 100044, China; Instituteof Applied Mathemati
s, Chinese A
ademy of S
ien
es, Beijing 100080, China)Abstra
tThis paper studies the linear 
onvergen
e properties of a 
lass of the proje
tionand 
ontra
tion methods for the aÆne variational inequalities, and proposes ane
essary and suÆ
ient 
ondition under whi
h PC-Method has a globally linear
onvergen
e rate.Key words: AÆne variational inequality, Proje
tion and 
ontra
tion method, Lin-ear 
onvergen
e. 1. Introdu
tionLet M be an n�n matrix and let q be a ve
tor in Rn, the n-dimensional En
lideanspa
e. Let 
 be an nonempty 
losed 
onvex set. The linear variational inequalityproblem (denoted by (LV I)) is to �nd x� 2 
 su
h that(x� x�)T (Mx� + q) � 0; 8x 2 
: (1:1)The problem (1.1) is well known in optimization and 
ontains as spe
ial 
ases linear(and quadrati
) programming, bimatrix game, et
. (see Cottle and Dantzig [1℄). When
 is a polyhedral set, for 
onvenien
e expressed asX = fx 2 RnjAx � bg; A 2 Rm�n; b 2 Rm; (1:2)it is 
alled the aÆne variational inequality problem (AV I). When 
 = Rn+; the nonneg-ative orthant in Rn, it is again 
alled the linear 
omplementarity problem (LCP ): Forthese subje
ts, many 
omputational methods and theoreti
al results have been devel-oped (See Harker and Pang [2℄, Cottle, Pang and Stone [3℄, Isa
 [4℄ et
.). An important
lass of methods is the proje
tion-type method, originally proposed by Goldstein [5℄,Levitin and Polyak [6℄ for solving 
onvex programming. More re
ently, He [7{12℄ hasproposed a spe
ial 
lass of the proje
tion methods for problem (1.1). The iterativeform is as follows. Given xk 2 Rn (or 
), �nd the sear
h dire
tion d(xk) su
h that itsatis�es xk+1 = xk � �k � d(xk); or xk+1 = P
[xk � �kd(xk)℄; (1.3a)� Re
eived September 3, 1996.



200 N.H. XIUkxk+1 � x�k2G � kxk � x�k2G � �k � ke(xk)k2; (1.3b)where �k > 0 is the sear
h step length, �k is a positive number, G 2 Rn�n is symmetri
and positive de�nite, kxkG = (xTGx) 12 ; P
[�℄ denotes the proje
tion from Rn onto 
,i.e., P
[x℄ = argminfkx� yk j8y 2 
g; (1:4)e(x) = x� P
[x� (Mx+ q)℄; and x� 2 
�, whi
h denotes the set of solutions of prob-lem (1.1). From (1.3) we readily see that the sequen
e fkxk � x�k2Gg has a 
ontra
tiveproperty. Therefore, He de�nes this 
lass of methods as the proje
tion and 
ontra
-tion method (PC-Method). The main advantages of the method are its simpli
ity,robustness and ability to handle the large-s
ale problems.In [12℄, He has summerized the basi
 idea of �nding the sear
h dire
tion d(x) ofPC-Method, i.e., for any x� 2 
�; it holds that(x� x�)Td(x) � r � ke(x)k2; r > 0; (1:5)and proven that the PC methods of He [7{11℄ are all globally 
onvergent for varietiesof monotone problems. However, He only prove that PC-Method is globally linearly
onvergent for the monotone linear 
omplementarity problem.The purpose of this paper is to develop the linear 
onvergen
e theory of PC-Method.The main results obtained in this paper are as follows.(a) For the monotone problem (AV I), a 
lass of PC methods is linearly 
onvergent.Furthermore, xk ! x� Q-linearly, ke(xk)k ! 0 R-linearly.(b) For strongly monotone problem (AV I), the ne
essary and suÆ
ient 
onditionunder whi
h a 
lass of PC methods has linearly 
onvergent rate is the sear
h dire
tiond(x) to be strongly des
ent (see Theorem 4.2).This paper is organized as follows. In se
tion 2, we give the de�nitions of thestri
tly des
ent dire
tion and strongly des
ent dire
tion, and dis
uss their 
onvergen
eproperties, whi
h extend the previous 
onvergen
e theory. In Se
tion 3, we investigatethe linear 
onvergen
e of PC-Method when it is applied to solve the monotone problem(AV I): Finally, Se
tion 4 
onsiders the spe
ial 
ase of (AV I) where M is positivede�nite.We adopt the following notations throughout. For any x 2 Rn and y 2 Rn, wedenote by xT y the Eu
lidean inner produ
t of x with y. For any x 2 Rn, we de�nekxk = (xTx) 12 : For any C1; C2 � Rn, we denote by dist(C1; C2) the usual Eu
lideandistan
e between two sets C1 and C2, that is,dist(C1; C2) = inffkx� yk jx 2 C1; y 2 C2g:For any symmetri
 matrix A 2 Rn�n; we denote by �min(A) (and �max(A)) the min-imum (and maximum) eigenvalue of A. Other notations have the usual meaning.Throughout this paper we assume that (H1) 
� 6= �; and (H2) M is positive semi-de�nite (but not ne
essarily symmetri
).



On the Linear Convergen
e of PC-Method for A Class of Linear Variational Inequalities 2012. A Class of Des
ent Dire
tions and Convergen
e for (LV I)For any x� 2 
�; we de�ne the fun
tion g(x) = 12kx � x�k2: Obviously, �d(x)satisfying (1.5) is a des
ent dire
tion of g(x) at point x. We 
learly give the followingde�nition.De�nition 2.1. A dire
tion �d(x) is said to be stri
tly des
ent for g(x) at x, ifd(x) is 
ontinuous on 
 (or Rn), and there exists r(x) > 0 su
h that(x� x�)Td(x) � r(x) � ke(x)k2; 8x 2 
 (or Rn): (2:1)Moreover, if r(x) � r > 0; i.e., the inequality(x� x�)Td(x) � r � ke(x)k2; 8x 2 
 (orRn) (2:2)holds, then we say that �d(x) is strongly des
ent.In this se
tion we study the 
onvergen
e of PC-Method, where �d(x) is stri
tlydes
ent, applied to solve (LV I). The main result is the following theorem.Theorem 2.2. Let �d(x) be stri
tly des
ent dire
tion, the sequen
e fxkg be gener-ated by iteration form xk+1 = xk � �kd(xk); 8x0 2 Rn; (2.3a)�k = rk � ke(xk)k2kd(xk)k2 ; rk = r(xk): (2.3b)If the sequen
e frkg satis�es 
ondition1Xk=0 r2k = +1; (2:4)then fxkg 
onverges to a solution point x1 of (1.1).Proof. For any x� 2 
�; by (2.1) and (2.3), we havekxk+1 � x�k2 = kxk � x� � �kdkk2� kxk � x�k2 � 2�krk � ke(xk)k2 + �2k � kdkk2= kxk � x�k2 � rk � �k � ke(xk)k2: (2.5)Hen
e the sequen
e fxkg is bounded, and fkxk � x�k2g # : Further, we readily obtain1) 9C > 0; 3 kd(xk)k2 � C; 8k 2 N 4= f0; 1; 2; � � �g;2) rk � �k � ke(xk)k2 � r2k ke(xk)k4C :From (2.5) and the above inequalities, we have1Xk=0 1C r2k � ke(xk)k4 < +1: (2:6)Assume that 9"0 > 0 su
h thatke(xk)k � "0; 8k 2 N; (2:7)



202 N.H. XIUthen from (2.6), we implies that 1Xk=0 r2k < +1; a 
ontradi
tion to (2.4). So (2.7) doesnot hold, i.e., there is a subset N1 � N su
h that limk2N1;k!1ke(xk)k = 0: By theboundedness of fxkg; we assume, without loss of the generality, thatlimk2N1;k!1xk = x1; ke(x1)k = limk2N1;k!1ke(xk)k = 0: (2:8)This shows that x1 2 
�: Again using (2.5), for any k; k0 2 N1 and k0 > k;0 kxk0 � x1k2 � kxk+1 � x1k2 < kxk � x1k2 ! 0:It follows that limk!1xk = x1 2 
�: The proof is 
ompleted. 2This result shows that �d(x) is not ne
essarily strongly des
ent when we onlydemand the PC method to be 
onvergent. That is, it suÆ
es that �d(x) is a stri
tlydes
ent dire
tion with 
onditions rk ! 0 and 1Xk=0 r2k = +1: It is interesting to notethat this 
onsistents with a 
lass of des
ent dire
tionsgTk dk � "k � kgkk � kdkk; 1Xk=0 "2k = +1 (2:9)for the un
onstrained optimization (See Yuan [13, P75℄).If the iterative form (2.3) is repla
ed by the following formxk+1 = P
[xk+1℄; (2.10a)xk+1 = xk � �kdk; 8x0 2 
; (2.10b)�k = rk � ke(xk)k2=kdkk2; (2.10
)we 
an obtain the result similar to Theorem 2.2.Theorem 2.3. Under the 
onditions of Theorem 2:2, if fxkg is generated by (2:10),then it 
onverges to a solution point x1 of (1:1).Proof. Using inequalitykxk+1 � x�k2 = kP
[xk+1℄� P
[x�℄k2 � kxk+1 � x�k2and the proof of Theorem 2.2, it is easy to get the proof of this theorem. 2We now 
onsider the linesear
h in (2.3) or (2.10). Let'k(�) 4= 2�rkke(xk)k2 � �2 � kdkk2; � � 0;�optk 4= rk � ke(xk)k2=kdkk2:Then we easily prove the properties(i) 'k(�) � 0; for 0 � � � 2�optk ;(ii) For 0 < Æ � 1; when � satis�es Æ � �optk � � � (2� Æ) � �optk , we have'k(�) � Æ(2� Æ) � 'k(�optk ): (2:11)



On the Linear Convergen
e of PC-Method for A Class of Linear Variational Inequalities 203This says that the sequen
e fkxk � x�k2g must be stri
tly de
rea
ing for �k 2 [Æ; 2 �Æ℄ � �optk : For 
onvenien
e we introdu
e the following 
on
ept.De�nition 2.4. �k is 
alled exa
t linesear
h if �k = �optk ; and inexa
t linesear
hif �k satis�es (2:11).From the above de�nition, Theorems 2.2 and 2.3, we immediately dedu
e a general
on
lusion.Theorem 2.5. For problem (1:1), if �d(x) is stri
tly des
ent, and fxkg is generatedby iterative form ( xk+1 = xk � �kdk; or xk+1 = P
[xk � �kdk℄;�k by exa
t/inexa
t linesear
h,then limk!1xk = x1 2 
� when 1Xk=0 r2k = +1:3. Linear Convergen
e of PC-Method for (AV I)In this se
tion, we 
onsider the problem (AV I). LetX� denote the set of solutions of(AV I):We �rst quote an error bound result of Luo and Tseng [14, Theorem 2.3℄, whi
hwill play an important role in linear 
onvergen
e analysis of this se
tion. By studying
arefully the proof of this theorem, we readily �nd that the 
ondition \x 2 X" 
an berelaxed to \x 2 Rn", i.e., feasibility for x is not demanded. So we haveLemma 3.1 (the extended error bound result). There is a 
onstant " > 0su
h that for any x 2 Rn and ke(x)k � ";dist(x;X�) � �ke(x)k; (3:1)where � > 0 is some 
onstant.Based on the above result, we 
an now establish the main result of this se
tion.Theorem 3.2. For problem (AV I), if the sequen
e fxkg generated by PC-Methodsatis�es 
onditionkxk+1 � x�k2 � kxk � x�k2 � �ke(xk)k2; � > 0;8x� 2 X�; (3:2)then fxkg 
onverges to a solution point x1 at least Q-linearly.Proof. By the proof te
hnique of Theorem 2.2, we 
an easily prove that the sequen
efxkg 
onverges to a point x1 2 X�. So it suÆ
es that the 
onvergen
e rate of fxkg isQ-linear. Let x�(k) = argminfkxk � xk jx 2 X�g; 8k 2 N:By (3.2) we have for any k 2 N;kxk+1 � x�(k)k2 � kxk � x�(k)k2 � �ke(xk)k2= dist(xk;X�)2 � �ke(xk)k2;whi
h implies that dist(xk+1;X�)2 � dist(xk;X�)2 � �ke(xk)k2: (3:3)



204 N.H. XIUUsing (3.3) and Lemma 3.1 (sin
e ke(xk)k ! 0);9K" > 0 su
h that for any k � K";dist(xk+1;X�)2 � dist(xk;X�)2 � ��2dist(xk;X�)2= Æ1 � dist(xk;X�)2; (3.4)where Æ1 = 1� ��2 and 0 < Æ1 < 1: Let againÆ2 = max(1� � � ke(x0)k2dist(x0;X�)2 ; � � � ; 1� �ke(xK")k2dist(xK" ;X�)2) :By (3.2), we have 0 < Æ2 < 1 anddist(xk+1;X�)2 � Æ2 � dist(xk;X�)2; 8k < K": (3:5)Set Æ = maxfÆ1; Æ2g, then 0 < Æ < 1: Combining (3.4), (3.5) with xk ! x1; we 
anobtain the desired result. 2The above theorem shows the 
onvergen
e behavior of the sequen
e fxkg: In pra
-ti
e, we also 
on
erns with 
onvergen
e properties of fe(xk)g: The following theoremtell us an important fa
t. In order to attain the goal, we �rst prove a signi�
ant lemma.Lemma 3.3. For problem (AV I) and any x� 2 X�; we haveke(x)k � (kI +Mk) � kx� x�k; 8x 2 Rn: (3:6)Proof. By the de�nition of e(x), x � e(x) = PX [x �Mx � q℄: So we have for anyx� 2 X�; (x� e(x)� x�)T (Mx� + q) � 0; 8x 2 Rn: (3:7)By the essential property of the proje
tion operator, we again obtain(x� � (x� e(x)))T ((Mx+ q)� e(x)) � 0; 8x 2 Rn: (3:8)Adding (3.7) and (3.8), and rearranging terms, we dedu
e(x� x�)TM(x� x�) � e(x)T [(Mx+ q)� (Mx� + q) + x� x�℄� ke(x)k2= e(x)T (I +M)(x� x�)� ke(x)k2: (3.9)By M � 0 and the Cau
hy-S
hwartz inequality, it follows thatke(x)k2 � e(x)T (I +M)(x� x�) � ke(x)k � k(I +M)k � kx� x�k:Therefore the lemma is true. 2Theorem 3.4. For problem (AV I), the sequen
e fe(xk)g generated by PC-Methodwith (3:2) is R-linearly 
onvergent.Proof. By Theorem 3.2, fxkg 
onverges Q-linearly to some point x� 2 X�; and90 < Æ < 1 su
h that kxk+1 � x�k2 � Æ � kxk � x�k2; 8k 2 N:



On the Linear Convergen
e of PC-Method for A Class of Linear Variational Inequalities 205That is, kxk � x�k2 � Æk � kx0 � x�k2; 8k 2 N:From the above inequality and Lemma 3.3, we haveke(xk)k2 � (kI +Mk)2 � kxk � x�k2 � kI +Mk2 � Æk � kx0 � x�k2= C � Æk; 8k 2 N;where C 4= kI +Mk2 � kx0 � x�k2: This 
ompletes the proof. 2We 
lose this se
tion by mentioning Theorems 3.2 and 3.4's appli
ations to somePC methods.In 1987, Khobotov [15℄ proposed a modi�ed extragradient method for monotonevariational inequality problem:xk = P
[xk � �kF (xk)℄; (3.10a)xk+1 = P
[xk � �kF (xk)℄; (3.10b)where �k is determined by some linesear
h rule. Sun [16, 17, 18℄ used the di�erentlinesear
h rules. When the problem degenerates into (AV I), it 
an be obtained theinequality similar to (3.2). So the following result be gained.Corollary 3.5. For the problem (AV I), the modi�ed extragradient methods of[15; 16; 17; 18℄ are globally linearly 
onvergent (Here we mean fxkg at Q-linearly, andfe(xk)g at R-linearly).In [9℄, He introdu
ed a PC algorithm for the monotone problem (LV I) :xk+1 = xk � �kdk; 8x0 2 Rn; (3.11a)dk = (I +MT )e(xk); �k = ke(xk)k2=kdkk2; (3.11b)It has been proven that the sequen
e fxkg generated by (3.11) satis�es the 
ondition(3.2). Hen
e we haveCorollary 3.6. For the problem (AV I), the PC algorithm (3:11) of He [9℄ is globallylinearly 
onvergent.Similarly, we 
an also handle the algorithms in [10, 11℄. In Theorem 3.2, however,it is not given the estimate of Q-fa
tor. The next se
tion will dis
uss this problem.4. Further Dis
ussion for M > 0In this se
tion, we 
onsider the problem (AV I), and assume that M is positivede�nite but not ne
essarily symmetri
 (denoted byM > 0). So the problem (AV I) hasthe unique solution whi
h we shall denote by x�, and dist(x;X�) = kx� x�k;8x 2 Rn:To start, we derive the global upper and lower error bounds of the solution x� to su
ha problem, the idea of proof of whi
h 
omes from Pang [19℄.Lemma 4.1. for the problem (AV I), if M > 0 and X� 6= �, the we have(a) 1kI +Mkke(x)k � kx� x�k � kI +Mk� ke(x)k; 8x 2 Rn: (4.1)



206 N.H. XIU(b) �kI +Mk2 ke(x)kkPX [�q℄k � kx� x�kkx�k � kI +Mk2� ke(x)kkPX [�q℄k ; 8x 2 Rn: (4.2)where � = �min(M̂ ) > 0; M̂ = M +MT2 :Proof. From (3.9) and M > 0, we have�kx� x�k2 � e(x)T (I +M)(x� x�)� ke(x)k2 � ke(x)k � kI +Mk � kx� x�k;whi
h readily lead to the right-hand side inequality of the part (a). This together with(3.6) implies (4.1). Now, setting x = 0 in (4.1), we obtain1kI +MkkPX [�q℄k � kx�k � kI +Mk� kPX [�q℄k: (4:3)Combining (4.1) with (4.3), we obtain (4.2) readily. 2By using Lemma 4.1, we 
an now study the linear 
onvergen
e property of thesequen
e fxkg generated by PC-Method without `feasibility'.Theorem 4.2. For the problem (AV I), if M > 0;X� 6= �, and �d(x) is a stri
tlydes
ent dire
tion satisfyingm1 � ke(x)k � kd(x)k � m2 � ke(x)k; m1;m2 > 0;8x 2 Rn; (4:4)then the sequen
e fxkg generated by (2.3) 
onverges to the unique solution x� at Q-linearly if and only if �d(x) is strongly des
ent.Proof. By Theorem 2.2, fxkg must 
onverge to x�, and (2.5) holds, i.e.,kxk+1 � x�k2 � kxk � x�k2 � rk � �k � ke(xk)k2: (4:5)\(=". If �d(x) is strongly des
ent, then we have from (4.5) and (4.4),kxk+1 � x�k2 � kxk � x�k2 � �ke(xk)k2; (4:6)where � = r2=m22 > 0: This together with (4.1) yieldskxk+1 � x�k2 �  1� � �2kI +Mk2! kxk � x�k2: (4:7)This shows that fxkg 
onverges to x� at Q-linearly.\=)". By 
ontrary, we assume that there is a subsequen
e rki ! 0 satisfying(xki � x�)Td(xki) = rki � ke(xki)k2: (4:8)Similarly we 
an 
al
ulatekxki+1 � x�k2 = kxki � x�k2 � r2ki ke(xki)k4kdkik2 : (4:9)



On the Linear Convergen
e of PC-Method for A Class of Linear Variational Inequalities 207From (4.9) and inequalitieske(xki)k � kI +Mk � kx� x�k; (by Lemma 4.1)ke(xki)k � 1m1 kd(xki)k; (by (4.4))we readily imply thatkxki+1 � x�k2kxki � x�k2 = 1� r2ki � ke(xki)k4kdkik2 � kxki � x�k2� 1� r2ki � kI +Mk2m21 ! 1(i!1)This is to say that fxkig does not linearly 
onverge to x�, the proof is 
ompleted. 2It is easy to see that the PC algorithm (3.11) of He [9℄ satis�es the assumptions ofTheorem 4.2. Hen
e a dire
t result isCorollary 4.3. For strongly monotone problem (AV I), the PC algorithm of He [9℄is globally linearly 
onvergent, and Q-fa
tor q � �1� � �2kI +Mk2� 12 :We here point out that the PC algorithm in [11℄ has also similar result. Theinequality (4.7) 
learly indi
ates that the 
onvergen
e rate of fxkg depends seriouslyon the least eigenvalue � of the symmetri
 part M̂ ofM (whenM is symmetri
, � is theleast eigenvalue). The more � is small, the more Æ 4= �1� � �2kI +Mk2�12 approximatesto 1, and the 
onvergen
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