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Abstract

This paper studies the linear convergence properties of a class of the projection
and contraction methods for the affine variational inequalities, and proposes a
necessary and sufficient condition under which PC-Method has a globally linear
convergence rate.
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1. Introduction

Let M be an n x n matrix and let ¢ be a vector in R", the n-dimensional Enclidean
space. Let 2 be an nonempty closed convex set. The linear variational inequality
problem (denoted by (LVI)) is to find z* € Q such that

(z — ") (Mz* 4+q) >0, VzeQ. (1.1)

The problem (1.1) is well known in optimization and contains as special cases linear
(and quadratic) programming, bimatrix game, etc. (see Cottle and Dantzig [1]). When
Q) is a polyhedral set, for convenience expressed as

X ={z € R"|Az > b},A€ R™"",be R", (1.2)

it is called the affine variational inequality problem (AVI). When Q = R’} the nonneg-
ative orthant in R", it is again called the linear complementarity problem (LC P). For
these subjects, many computational methods and theoretical results have been devel-
oped (See Harker and Pang [2], Cottle, Pang and Stone [3], Isac [4] etc.). An important
class of methods is the projection-type method, originally proposed by Goldstein [5],
Levitin and Polyak [6] for solving convex programming. More recently, He [7 12] has
proposed a special class of the projection methods for problem (1.1). The iterative
form is as follows. Given z¥ € R" (or Q), find the search direction d(z*) such that it
satisfies

of T =2k — - d(2®), or 2R = Polaf — apd(zh)), (1.3a)

* Received September 3, 1996.
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2"+ — 21 < 2® — 2 E — o - eI, (1.3b)

where oy > 0 is the search step length, pg is a positive number, G € R™*" is symmetric
1

and positive definite, |z|¢ = (27 Gz)?, Po[-] denotes the projection from R™ onto €,

ie.,

Pol] = arg min{|lz - y|| vy € 2}, (1.4)

e(z) =z — Polx — (Mz + q)], and z* € Q*, which denotes the set of solutions of prob-
lem (1.1). From (1.3) we readily see that the sequence {||z* — z*||%} has a contractive
property. Therefore, He defines this class of methods as the projection and contrac-
tion method (PC-Method). The main advantages of the method are its simplicity,
robustness and ability to handle the large-scale problems.

In [12], He has summerized the basic idea of finding the search direction d(z) of
PC-Method, i.e., for any z* € Q*, it holds that

(z — z)ld(z) > r |le(z)||?, >0, (1.5)

and proven that the PC methods of He [7 11] are all globally convergent for varieties
of monotone problems. However, He only prove that PC-Method is globally linearly
convergent for the monotone linear complementarity problem.

The purpose of this paper is to develop the linear convergence theory of PC-Method.
The main results obtained in this paper are as follows.

(a) For the monotone problem (AVI), a class of PC methods is linearly convergent.
Furthermore, z¥ — z* Q-linearly, ||e(z*)|| — 0 R-linearly.

(b) For strongly monotone problem (AVI), the necessary and sufficient condition
under which a class of PC methods has linearly convergent rate is the search direction
d(x) to be strongly descent (see Theorem 4.2).

This paper is organized as follows. In section 2, we give the definitions of the
strictly descent direction and strongly descent direction, and discuss their convergence
properties, which extend the previous convergence theory. In Section 3, we investigate
the linear convergence of PC-Method when it is applied to solve the monotone problem
(AVI). Finally, Section 4 considers the special case of (AVI) where M is positive
definite.

We adopt the following notations throughout. For any z € R"™ and y € R", we
denote by 2’y the Euclidean inner product of z with y. For any z € R", we define
x| = (TTLL‘)% For any C;,Cy C R", we denote by dist(Cy,Cy) the usual Euclidean
distance between two sets Cy and Cy, that is,

dist(C, Cy) = inf{||z — y|| |z € C1,y € Oy}

For any symmetric matrix A € R"*", we denote by Amin(A4) (and Amax(A)) the min-
imum (and maximum) eigenvalue of A. Other notations have the usual meaning.
Throughout this paper we assume that (Hy) Q* # ¢, and (Hg) M is positive semi-
definite (but not necessarily symmetric).
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2. A Class of Descent Directions and Convergence for (LV])

1
For any z* € QF, we define the function g(z) = §||:1: — z*[|2. Obviously, —d(z)
satisfying (1.5) is a descent direction of g(z) at point . We clearly give the following
definition.
Definition 2.1. A direction —d(x) is said to be strictly descent for g(x) at x, if
d(z) is continuous on Q (or R"), and there exists r(z) > 0 such that

(z — ) ld(z) > r(z) - ||le(z)||?, Vz € Q (or R"). (2.1)
Moreover, if r(x) =r > 0, i.e., the inequality
(z — z)ld(z) > r |le(z)||>, Vz €Q (orR") (2.2)

holds, then we say that —d(z) is strongly descent.

In this section we study the convergence of PC-Method, where —d(xz) is strictly
descent, applied to solve (LV ). The main result is the following theorem.

Theorem 2.2. Let —d(z) be strictly descent direction, the sequence {z*} be gener-
ated by iteration form

of = 2k — apd(2F), Va® e R, (2.3a)
le(z")|? K

a =71 ———, 1 =r1(z"). (2.3b)
la(z*)||*

If the sequence {ry} satisfies condition
o0
Z 2 = o0, (2.4)
k=0

then {z*} converges to a solution point x> of (1.1).
Proof. For any z* € Q*, by (2.1) and (2.3), we have

o R R e
<l = a2 = 20 Jle(a®) |2 + o - 4]
= ek "2 = 7 g leta)] > (25)

Hence the sequence {z*} is bounded, and {||z* — z*||?} | . Further, we readily obtain

1) 3C >0, 5 ||d@=")|2 < C, Vke N £{0,1,2,---};

ky| 4
2) g - ap - e(a®) |2 > 2 le@ I

From (2.5) and the above inequalities, we have

=1

> =i ezt < +oc. (2.6)
k=0 ¢

Assume that Jeg > 0 such that

le(z")| > 0, Vk €N, (2.7)
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o0
then from (2.6), we implies that Z r2 < +o00, a contradiction to (2.4). So (2.7) does
k=0

not hold, i.e., there is a subset Ny C N such that lim |le(z*)]| = 0. By the
kEN1,k—o00

boundedness of {z*}, we assume, without loss of the generality, that

li k— g N = I kI = 0. 2.8
penim ot = le(@)| keNllg;%olle(fc)ll (2.8)

This shows that z°° € Q*. Again using (2.5), for any k, k' € Ny and k' > k,
0+ [a* — 2|2 < [l2F ! — 2% < ||2* — 2|2 — 0.

It follows that lim z¥ = 2 € Q*. The proof is completed. O

— 00
This result shows that —d(z) is not necessarily strongly descent when we only
demand the PC method to be convergent. That is, it suffices that —d(z) is a strictly
o0

descent direction with conditions ry, — 0 and Z ri = +oo. It is interesting to note
k=0
that this consistents with a class of descent directions

o0
ghdi > ep - llgill - 1dell, Y ek = +o0 (2.9)
k=0

for the unconstrained optimization (See Yuan [13, P75]).
If the iterative form (2.3) is replaced by the following form

F 1 = Po[Eh ], (2.10a)
T =2k —apdf, Vil e Q, (2.10b)
ap = ry, - [le(=") /]| d"||?, (2.10¢)

we can obtain the result similar to Theorem 2.2.

Theorem 2.3. Under the conditions of Theorem 2.2, if {z*} is generated by (2.10),
then it converges to a solution point =°° of (1.1).

Proof. Using inequality

1251 = 2*|* = || Pa[g**1] — Po[2*]|* < [I75F" — 272

and the proof of Theorem 2.2, it is easy to get the proof of this theorem. O
We now consider the linesearch in (2.3) or (2.10). Let

or(@) £ 2amglle(z®)]|2 — o® - [d¥]2, @ >0,
t A k k
ot £y le(ah) |2/ dF |2

Then we easily prove the properties
(1) pr(a) >0, for 0 < a < QaZpt;
(ii) For 0 < § <1, when « satisfies d - ozzpt <a<(2-9)- azpt, we have

pr(@) > 8(2 = 0) - pr (). (2.11)
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This says that the sequence {||z¥ — 2*||?} must be strictly decreacing for aj € [6,2 —
RN !, For convenience we introduce the following concept.

Definition 2.4. «y is called exact linesearch if ap = ozzpt, and inexact linesearch
if oy satisfies (2.11).

From the above definition, Theorems 2.2 and 2.3, we immediately deduce a general
conclusion.

Theorem 2.5. For problem (1.1), if —d(z) is strictly descent, and {z*} is generated

by iterative form

{ ohtl =gk —apdkt,  or zFt! = Polzk — apdF],

ag by exact/inexact linesearch,

o0
then lim z* = 2™ € O when > 1 = 4oc.
k—o0 =0

3. Linear Convergence of PC-Method for (AV)

In this section, we consider the problem (AVI). Let X* denote the set of solutions of
(AVI). We first quote an error bound result of Luo and Tseng [14, Theorem 2.3], which
will play an important role in linear convergence analysis of this section. By studying
carefully the proof of this theorem, we readily find that the condition “z € X” can be
relaxed to “x € R"”, i.e., feasibility for z is not demanded. So we have

Lemma 3.1 (the extended error bound result). There is a constant € > 0
such that for any x € R™ and ||e(z)] < e,

dist(z, X*) < 7|le(x)]], (3.1)

where T > 0 is some constant.
Based on the above result, we can now establish the main result of this section.
Theorem 3.2. For problem (AVI), if the sequence {z*} generated by PC-Method

satisfies condition
2"+ — 2|2 < fla® — )12 — plle(=®)|?, p> 0.V € X7, (3.2)

then {z*} converges to a solution point £™° at least Q-linearly.

Proof. By the proof technique of Theorem 2.2, we can easily prove that the sequence
{z*} converges to a point 2> € X*. So it suffices that the convergence rate of {z*} is
Q-linear. Let

z*(k) = argmin{||z* — z|| |z € X*}, Vke N.

By (3.2) we have for any k € N,

2 — 2 (k) |* < [la* — 2 (B)|1* = plle(z")]”
= dist(z", X*)2 — plle(z*)|?,

which implies that

dist(zF 1, X*)? < dist(2*, X*)? — plle(z?)]|2. (3.3)
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Using (3.3) and Lemma 3.1 (since ||e(z*)|| — 0), 3K, > 0 such that for any k& > K.,

dist(z5!, X*)2 < dist(z¥, X*)? — L dist(a*, X*)2
T

= 0 - dist(zF, X*)2, (3.4)
where 61 =1 — T—'OQ and 0 < §; < 1. Let again
R {1 Lol et } |
dist(z?, X*)2" 7 dist(z=, X*)?
By (3.2), we have 0 < d2 < 1 and
dist(F*1, X*)2 < 4, - dist(«F, X*)?, Vk < K.. (3.5)

Set § = max{d;,d2}, then 0 < § < 1. Combining (3.4), (3.5) with zF — z°°, we can
obtain the desired result. O
The above theorem shows the convergence behavior of the sequence {z*}. In prac-
tice, we also concerns with convergence properties of {e(z*)}. The following theorem
tell us an important fact. In order to attain the goal, we first prove a significant lemma.
Lemma 3.3. For problem (AVI) and any * € X*, we have

Proof. By the definition of e(z), z — e(z) = Px[z — Mz — g]. So we have for any
¥ e X*,

e)| < (M + M) llz—=*|, VzeR" (3.6)

(z —e(z) — )" (Mz* +4q) >0, VzecR" (3.7)
By the essential property of the projection operator, we again obtain
(z* — (z —e(z))" (Mz +q) — e(z)) >0, Vz € R" (3.8)
Adding (3.7) and (3.8), and rearranging terms, we deduce

(2~ 2*) " M(z — o) < e(0) [(Ma +q) — (Ma* +q) + 2 — "] — [le(a)]?
— e(@)"(I + M)(z — 2%) — |le(a)||” (3.9)

By M > 0 and the Cauchy-Schwartz inequality, it follows that
le(@)|* < e(z)" (I + M)(z — 2*) < [le(2)]| - (1 + M)]|| - [lz — ]|

Therefore the lemma is true. O

Theorem 3.4. For problem (AVI), the sequence {e(x*)} generated by PC-Method
with (3.2) is R-linearly convergent.

Proof. By Theorem 3.2, {z*} converges Q-linearly to some point z* € X*, and
30 < § < 1 such that

|zh T —2* |2 <6 - ||o* — z*|?, VkeN.
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That is,
2% — 2*||? < oF - ||2° — 2*||?, Vk e N.

From the above inequality and Lemma 3.3, we have

le(®)1> < (11 + M|)* - |2* = 2*|* < | T+ M|)*- 6" - [|2” — 2*|?
=C-0% VkeN,

where C 2 |1+ M||?-||z° — 2*||?. This completes the proof. O

We close this section by mentioning Theorems 3.2 and 3.4’s applications to some
PC methods.

In 1987, Khobotov [15] proposed a modified extragradient method for monotone
variational inequality problem:

T¢ = Polz¥ — apF(z")), (3.10a)
"t = Polab - o F ()], (3.10Db)

where «ay is determined by some linesearch rule. Sun [16, 17, 18] used the different
linesearch rules. When the problem degenerates into (AVI), it can be obtained the
inequality similar to (3.2). So the following result be gained.

Corollary 3.5. For the problem (AVI), the modified extragradient methods of
[15,16,17,18] are globally linearly convergent (Here we mean {z*} at Q-linearly, and
{e(z*)} at R-linearly).

In [9], He introduced a PC algorithm for the monotone problem (LVI) :

e* =2k —qpd*, vi2® e R, (3.11a)
d* = (I + M")e(a?), oy = lle(z®)]?/]d"|%, (3.11b)

It has been proven that the sequence {z¥} generated by (3.11) satisfies the condition
(3.2). Hence we have

Corollary 3.6. For the problem (AVI), the PC algorithm (3.11) of He [9] is globally
linearly convergent.

Similarly, we can also handle the algorithms in [10, 11]. In Theorem 3.2, however,
it is not given the estimate of ()-factor. The next section will discuss this problem.

4. Further Discussion for M > (

In this section, we consider the problem (AVI), and assume that M is positive
definite but not necessarily symmetric (denoted by M > 0). So the problem (AVI) has
the unique solution which we shall denote by z*, and dist(z, X*) = ||z — z*||,Vx € R".
To start, we derive the global upper and lower error bounds of the solution z* to such
a problem, the idea of proof of which comes from Pang [19].

Lemma 4.1. for the problem (AVI), if M > 0 and X* # ¢, the we have

1 I+ M|

(a) mﬂe(:v)n <z — 2| < le(z)|l, Vz e R™ (4.1)

(0%
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o Je@ll _Je—at] _JTEMP Je@l e

O MR S T S e el (49)

. . T
where a = Apin(M) > 0, M = MQL
Proof. From (3.9) and M > 0, we have

allz —a*|* < e(a) (I + M)(z - 2*) — |le(@)|” < e(@)] - |1+ M| - & — "],

which readily lead to the right-hand side inequality of the part (a). This together with
(3.6) implies (4.1). Now, setting z = 0 in (4.1), we obtain

1 I+ M|
——_|Px[—q]|| < ||lz¥|| < V—"
el < el <

[1Px [—d]ll- (4.3)
Combining (4.1) with (4.3), we obtain (4.2) readily. O

By using Lemma 4.1, we can now study the linear convergence property of the
sequence {z*} generated by PC-Method without ‘feasibility’.

Theorem 4.2. For the problem (AVI), if M > 0, X* # ¢, and —d(x) is a strictly
descent direction satisfying

my - [le(@)]] < [ld(@)]| < mq - [le(z)

|, my,mq >0,Vz € R", (4.4)

then the sequence {z*} generated by (2.8) converges to the unique solution x* at Q-
linearly if and only if —d(x) is strongly descent.
Proof. By Theorem 2.2, {z¥} must converge to z*, and (2.5) holds, i.e.,

2"t — 2| < la® — o |® e - fle(a®)]% (4.5)
“—==". If —d(x) is strongly descent, then we have from (4.5) and (4.4),
2"+ = 2|2 < [l2® —a*|? — plle(®)]1?, (4.6)

where p = r2/m3 > 0. This together with (4.1) yields

2
o
ok — a2 < (1 - p—2> ok — a2 (4.7)
11+ M|
This shows that {2*} converges to z* at Q-linearly.
“==". By contrary, we assume that there is a subsequence r;, — 0 satisfying

(a® = 2*)Td(®) = 7y, - (™). (4.8)
Similarly we can calculate

kiy4
. . [e(z™)]]
gt = |2 — 2t - r,%i 7||dkl||2 . (4.9)

[z



On the Linear Convergence of PC-Method for A Class of Linear Variational Inequalities 207
From (4.9) and inequalities
le(@™)| < Il + M|l - |z — 2%, (by Lemma 4.1)

lea)]| < —da™)], (by (40)

we readily imply that

Jah a2 el
||:LJ€1 o T*H2 Hdk1H2 . HTkZ B m*HQ
2 2
ri |\ I+ M
my

This is to say that {z*} does not linearly converge to z*, the proof is completed. O
It is easy to see that the PC algorithm (3.11) of He [9] satisfies the assumptions of
Theorem 4.2. Hence a direct result is
Corollary 4.3. For strongly monotone problem (AVI), the PC algorithm of He [9]
1

) 1
s globally linearly convergent, and Q-factor g < <1 — pHI—i(-liMHQ> "

We here point out that the PC algorithm in [11] has also similar result. The
inequality (4.7) clearly indicates that the convergence rate of {z*} depends seriously
on the least eigenvalue « of the symmetric part M of M (when M is symmetric, « is the

2

2
— pHI—fliMHQ> approximates

least eigenvalue). The more « is small, the more § 2 <1

to 1, and the convergence rate is slow.
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