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Abstract

n [16], Stynes and O’Riordan(91) introduced a local exponentially fitted finite
element (FE) scheme for a singularly perturbed two-point boundary value problem
without turning-point. An e-uniform h'/?-order accuracy was obtain for the e-
weighted energy norm. And this uniform order is known as an optimal one for
global exponentially fitted FE schemes (see [6, 7, 12]).

In present paper, this scheme is used to a parabolic singularly perturbed prob-
lem. After some subtle analysis, a uniformly in & convergent order h|lnh[*/? 4 7
is achieved (h is the space step and 7 is the time step), which sharpens the results
in present literature. Furthermore, it implies that the accuracy order in [16] is
actuallay h|In h|'/? rather than h'/2.

Key words: Singularly perturbed, Exponentially fitted, Uniformly in & convergent,
Petrov-Galerkin finite element method.

1. Introduction

Consider the time-dependent convection-diffusion problem

Up — EUgy + alx, t)uy + bz, t)u = f(x,t), (x,t) €[0,1] x [0,T] (1.1)
u(0,t) = u(l,t) =0, te€][0,T], (1.2)
u(z,0) = ug(z), = €][0,1], (1.3)
a(z,t) > a >0, (1.4)
b(z,t) —az(z,t)/2 > >0, (1.5)

where 0 < ¢ < 1. (1.1)-(1.5) can be regarded as a parabolic singularly perturbed
problem. In general, the solution has a boundary layer at the outflow boundary z = 1.
See [1] and [15] for discusss of the properties of u(z,t).

Such problems are all pervasive in applications of mathematics to problems in the
science and engineering. Among these are the Navier-Stokes equation of fluid flow
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at high Reynolds number, the drift-diffusion of semiconductor, the mass conservation
law in porous mediam. They have mainly hyperbolic nature for € is small. This
makes them difficult to solve numerically. It’s well know that classical methods do not
work well for (1.1)—(1.5) (see [3, 10]). The main problem is how to construct an e-
uniformly convergent scheme. Many authors have suggested various methods to solve
such problems, see [2, 5, 9, 10, 13] and their references for the discussion of finite
difference methods.

As to e-uniformly convergent FE scheme, Gartland [4], Stynes and O’Rriordan [14,
16], Guo [6 8] and Sun & Stynes [17] have constructed quite a few methods. Guo 93
[8] proved that any scheme on a uniform mesh for (1.1) (1.5) that was globally L
convergent uniformly in €, could not only have polynomial coefficients; the coefficients
must depend on exponentials. But for highly nonequidistant meshes, such as Shiskin-
type meshes, standard polynomial FE methods can also yield e-uniformly convergent
results (see Th 2.54 of [12]).

In the following, we’ll focus on a scheme suggested by Stynes and O’Riordan 91 [16]
for a steady-case of (1.1) (1.5), which we call as “local exponentially fitted FE scheme”.
They used exponentially fitted splines in the boundary layer region and outside it, the
normal continuous piecewise linear polynomials instead. An e-uniform convengence
order h'/? was obtained. Although this order is known as an optimal one for global
exponentially fitted FE schemes, we can sharpen it to order h|Inh/'/2 in the case of
local exponential fitting as a corollary of our main result for (1.1)—(1.5).

2. The Local Exponentially Fitted FE Scheme

Before describing the scheme, we need to know the behavior of the solution u of
(1.1) (1.5). Just for simplicity, we assume that a(z,t),b(z,t), f(z,t) and ug(z) are
sufficiently smooth and satisfy necessary compatibility assumptions on the corners of
the boundary. Then we have the following lemma.

Lemma 2.1, (1.1)-(1.5) has a unique smooth solution u(z,t) which satisfies

0L u(z,t)| < C[1+ ¢ le =2/ y(z 1) € [0,1] x [0,T], (2.1)

for0<i<land0<i+j<2.

Throughout this paper, C will denote a generic positive constant independent of ¢.

We work with an arbitrary tensor product grid on [0, 1] x [0, T]. In the z-direction,
let 0 = z9g < z27 < --- < zy =1, with h; = z;, —z;_1 for s = 1,---, N, and set
h = mzaXhi’ iLz = (hi + hi+1)/2.

We assume that

hco vic1 N
h;

In the t¢-direction, let 0 = &3 < ¢ < --- < tpyy = T, with 7, = ¢, — ty_1, for
m=1,2,---,M and 7 = max 7,,.
m

Assuming 2¢|Ine|/a < 1/2 (it is not a restriction for ¢ is small), and set
K =max{i: 1 —z; > 2¢|Ine|/a}. (2.2)

From lemma 2.1, we have
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Lemma 2.2. If u(z,t) is the solution of (1.1) (1.5), then

Dl el <€, Vi€ 0,7]

2) |ug, |tzz] < C (z,t) € (0,2x) x [0,T].

So [rx, 1] x [0,T] is called as the layer region.

A weak form of problem (1.1)—(1.5) is defined as: for each time ¢, find u(z,t) €
H{(0,1) such that

(ug,v) + B(u,v) = (f,v) VYo € Hy(0,1), (2.3)

where B(u,v) = e(uy,v,) + (aug,v) + (bu,v).

To discretize (2.3), we define a discrete L2-inner product for each t,,, (v™

7wm)h
N-1_

Z hiv(zi, tm)w(z;, ty) and denote the associate norm by || - ||5. Then a Petrov-
1=1

Galerkin approximation of (2.3) can be formulated as follows: Set U = (ug(z))s, be the
node point interpolant from Sy to ug(x). Form =1,2,---, M, find U™ € S,,, C H}(0,1)
such that

(Um —um!

Tm

v), +BU™v) = (fo)n, YoeT CH0,1), (2.4)

where B(v™, w) = e(v™, wy) + (amv™,w) + (bv™, w), for v, w € HE(0,1) and the
piecewise constant a,, is an approximation of a(x,t,,), which is defined by a,,(z) =
am (T)| (2,1 ,20) = (a(®i1,tm)+a(zi ty)) /2. The test space T is composed of the normal
continuous piecewise linear functions which is spaned by a basis {91, %9, -, ¥nN_1},
where each 1); is the hat function satisfying v;(z;) = d;; for all j. For m =1,2,---, M,
the trial space Sm is constructed by local exponential fitting, which is spaned by a basis

{1,902, o 1,0, , N _1}, where @1, @9, -+, @k 1 are the normal hat functions
same as P1,%o, P 13 QK415 Py are so-called L-spline functions defined by
(see [16])

Loi" = —e(0]")za + am(pi")e =0 on [z, 1]A

where [z, 1]} = (zr, 75 41) U (K11, ZK42) U= U (TN, TN); @R is a hybrid hat/L-
spline defined similarly. For m = 0, the space Sq is same as T
Remark. Note that we still have suppy; = (x;_1,%;11), for the L-spline functions
pii=K+1,--- N—1.
Define || - || to be the usual L?(0,1) norm, and then the e-weighted energy norm is
defined as
lwlle = (el | + wl2)'72, Vo € H(0,1).

For any v € H}(0,1), let vp € T interpolate to v at each node z;. Then we have
the following coercivity of B(-,-) (see lemma 4.3 of [16]).
Lemma 2.3.
Vo™ € S, B(u™, o) > (8/2)[[0™ 12

for sufficiently small h (depending only on a,b).
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It is ready to obtain
Lemma 2.4.

Vo™ €8, m = 1,2,---, M, B(v™,v) + (v
>(B/2)[lv™ 12 + (1/27)) [(0"™ 0™ ) = (0™ 0™ 1))

for sufficiently small 4 (independent of €).
This lemma yields the existence and uniquenes of the solution of (2.4).

3. Error Estimates

In this section, we’ll derive an e-weighted energy norm error estimate for our discrete
scheme.

First, let ugy, (z,t,,) be the interpolant from S, to the exact solution u(z,t,,), and
set 2™ = usm(x,ty) — U™, 0™ = u(z,t,y) — usm(z,ty). Therefore, €™ = u(x,t,,) —
Um™ =2"m 4+, and Z2%z;) =0, n™(z;)) =0, m=1,--- ., M,i=0,---,N

Rewrite (1.1) as —cugy + auy + bu = F(z,t) = f(z,t) — u;. From Lemma 2.1,
|ut|pe < C, VYt € [0,7]. Then, similarly to [16] for the steady case, we can derive the
following interpolation error estimates.

Lemma 3.1. Form=1,2,---, M,

(1) Vr € [z 1, 3], |n™(z)] < Ch?, if 1<i<K,
In™(x)] < Chi(1 —e P1) if K<i<N,
(2) ln™]12 < Ch(h + (1 — e *)e|Inel),

where p; = ah;fe, p= ah/e.

It can be proved in the same way as [16] by regarding f(z,t) —u; as a right-hand-side
term.

Remark. Note that 1 — e ? < p for p > 0, the result (2) is (1 + |Ing|)*/2-order,
which is almost optimal.

We now need to estimate Z™ = ug,, — U™. The next lemma relates the L' and L?
norms of the derivative of an L-spline over each subinterval within the boundary layer
region, and it plays an important role in the following anlysis.

Lemma 3.2. (see [11, 16])

For each w € Sm, m =1,2,--- M, and eachi € {K +1,--- N}

T; T 1/2
/ |wg|de < C(1 — efpi)1/261/2(/ |wz|2d:1:) / .
Jxiq Jxiq

We now come to
Theorem 3.3. For h sufficiently small (independent of €),

M
S 1277 + max [ 27| < Ch(h+ (1 - e )e Ine]) + C72, (3.1)

m=1
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Proof. From (2.3) and (2.4), for each v € T and m =1,2,---, M,
zm — zm-1 _
(222 0) 4 B2, 0) = R v) + Ry (™, 0), (3.2
Tm h

where R(u™,v) = [(0™0) — (0™ 0)a] + (ug — “—— o)+ (@ — a™)u,v).

Tm
0" = f" = b"u™ — " and Bi(n™,v) = —[e(ny’, vz) + (@mny’, v)].
Taking v = Z7* € T, and using Lemma 2.4,

BIDNZ™E + (1/2)ra) 1275~ 127 7H7) € R(u™, Z7) + Ra(n™, ZF). (3.3)

We firstly bound the second term of the righthand side. Integrating by parts and
observing that Z7* € T is piecewise linear, we can write by Lemma 3.1 that

[Bi(n™, Z7)] |6(772”, (Z27)2) + (amny', Z7)]

Ti+1 B m
:‘ / )xx - am(ZT)I)dT‘
1=0
N-1
zm VAL
<C / Z’T |d$—02/ ‘m|‘ $z+1) (xl)‘d.r
i=0 Zi hit1
Z / ") = 27 (@)
¥
T; hz+1
K
Z 2Z™(z;)| + Ch(1 — e ?) Z/ | Z™ |da
5;\7 1 N-—1 1
<= ™2 V)2, 3 lf*p/ m ;.
_162(2 (i) hl+C;hz+0h(1 ™) [ |Z0Ida
5 Zm 2 P ! m
E” |2 + Ch? + Ch(1 — e ?) |Z" | dx (3.4)
T

The last integration inside the boundary layer region will appear several times, and
it plays a key role in this paper. So we treat it seperately. Using Lemma 3.2,

N— 1 .
m pZ_H 1/2 1/2 T m2 1/2
Ch Z'dx <Ch —e Z,|7dz
z

"TK z:K Ti
N-1 N-1 _
( 12) 1/2( Z 1 B e*ﬂi+1)5/x +1 |Z;" Qdm)l/Z
i=K i=K Li
2 N LB
_ o P ~ m
<ChX(1—e )(i_ZKl)-I- 165/”{ Zm 24

1
<Ch? + Ch(1 — e )e|Ine| + ﬁa/ |2 2dag + ch?
16 Jux (3.5)
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N-1
where we have used that » 1 < (Ce|lne| + h)/h.
i=K
N-1
., Z%). Because of Z7 = Z Z"™(x;)1; and

We now turn to bound the term R(u™

(1,%;) = h;, the first item of it can be estimated by

N-1
(0, Z7) = (6™, ZP)n] =) D (0" = (i, ). 5) 2 ()

=

=1
-1

Tm

(2] [ o

=

N— .
il 2 (27) / 6 |da + 2 hlzm )| [ o7
1 i=1 Ti—1

+ (I1).

|
M

.
Il

=(I

~—

These two terms can be treated in the same way. We only need to bound the first one

K1 Ti+1 NZL Tit+1
=S wizm )l [ ke + 3wz [ s
i=1 = i=K i
=(I) + (I2).
T
By Lemma 2.1 and 2.2, outside the boundary layer, we have / 07 %dz < C and

1
inside the boundary layer, / 07 |dx < C. Therefore,

TK

K-1

> (2" @) KZ ([ ozl
=1 =1

Tit1
Lo’y [ orpar < Sy v on
32 2/, 32

where we have used the Holder’s inequality.

Q S|Q

N7
(1) < 3 hal 27 (a:) — 27(1 |/ 0™ d
=K

<
Il

=

Tit1 1 1
< / |9;jl\d:c/ 7™ da: < Ch/ e
B T x TK

i K

Mi
=

1
(by (3.5)) <Ch(1 —e ?)e|lne| + ﬁa/ | Z" 2 da.
32° /..
Estimating (I7) in the same way, we get

(0™, Z5) — (0™, Z)p| < Ch* + Ch(1 — e P)e|lne| + %Hzmng. (3.6)
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The second term of R(u™, Z%) can be easily bounded by using Lemma 2.1,
m m—1 m 2 ﬁ m||2
[(ue = (u™ = ™) [T, Z7)n| < OT7+ £ 127 - (3.7)

To handle the third term of R(u™, ZF), we also seperate the integration into two parts,
observing that ||a,, —a™||1~ < Ch,m=1,2,--- M,

TK 1

(an — ™ Z9) < [ [ — a™ 2PN+ [ (@ — 0™ 27 o
0 J K

1
(by Lemma 2.2) <Ch? + %HZmH% + Ch luy'|| ZF () — ZF (1)|dz

J T
1 1
<on?+ Liamig v on [ pids [ 1z,
].6 J T TK

1
<ont+ Bam i+ on [ (@
16 -
/6 1
(proved in (3.4)) <CH? + 212"} + Ch/ e
TK

(by (3.5)) <Ch? + Ch(1 — e ")e|Ine| + %nzmng. (3.8)

Combining (3.3)—(3.8), we obtain for m =1,2,--- | M

il )

%IZ’”II? +1/2/mn (12717 — 1277 HI7) < O + h(1 — e )e[Ine[ +7%).  (3.9)

Multiplying by 7,,,, and summing form m = 1 to m/(1 < m' < M),

ml

ST NZ™ 21 + 127 < C(R* + 72 + h(1 — e *)e| Ine)).
m=1
Here we have used Z%(z;) = 0,4 =0,1,---,N.
This is the end of the proof of Theorem 3.3.
We finally come to the main error estimate. Combining Lemma 3.1 and Theorem
3.3, we get
Theorem 3.4. If u(x,t) and U™ are the solutions of (1.1) (1.5) and (2.4) respec-
tively. Then for h sufficiently small,

M
> ™ - U™ 27 + max |u™ — U™|2 <C(h? + 7%+ h(1 — e P)e|Inel)
m=1

<C(t* + h*|Inh|),

where C is only dependent on a,b, f,T.

Proof. The first inequality is directly from Lemma 3.1 and Theorem 3.3. To prove
the second inequality, one needs checking two cases: (1) € > h, and (2) € < h.

(1) In the case of € > h, since 1 —e ” < p = ah/e,

C(h? + 7% + h(1 — e )e|Ine|) < C(r% + h*[Ine|) < C(7? + h*|Inh)).
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(2) If € < h, noting that the function g(¢) = #/In#| is monotonic increasing when

t € (0,e7!), it follows that ¢|Ine| < h|Inh| for h sufficiently small, so the second
inequality is always true.

Remark. Our method implies that for the steady case (i.e. singularly perturbed

two-point boundary value problems), the result in [16] can be improved tol|u(z) —
U(x)|2 < C?| lnh.
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