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A NEW PERTURBATION SIMPLEX ALGORITHM FOR LINEARPROGRAMMING�1)Ping-qi Pan(Department of Applied Mathemati
s, Southeast University, Nanjing 210096, China)Abstra
tIn this paper, we �rst propose a perturbation pro
edure for a
hieving dual fea-sibility, whi
h starts with any basis without introdu
ing arti�
ial variables. Thispro
edure and the dual simplex method are then in
orporated into a general pur-pose algorithm; then, a modi�
ation of it using a perturbation te
hnique is madein order to handle highly degenerate problems eÆ
iently. Some interesting the-oreti
al results are presented. Nmeri
al results obtained are reported, whi
h arevery en
ouraging though still preliminary.Key words: Linear programming, Simplex method, Perturbation, Dual feasibility.1. Introdu
tionThe dual simplex algorithm[1, 9℄ and the primal-dual simple algorithm [6℄ are well-known and eÆ
ient simplex variants. However, both of them need an initial dual feasiblebasis to get started, and therefore 
an not be dire
tly applied to solving problems thatdo not have su
h an expli
it basis. A number of s
hemes have been suggested to a
hievedual feasibility [1, 5, 17, 18℄. Some of them 
onstru
t the dual analogues of the arti�
ial-variable te
hniques, and none of them is as easy to implement 
omputationally as the
lassi
al Phase-1 pro
edure of the primal simplex algorithm. As a result, either thedual or the primal-dual simplex algorithm is usually used only in some spe
ial 
ases inpra
ti
e.On the other hand, degenera
y is, in our view, all along a heada
he for simplexvariants, in
luding the dual and the primal-dual simplex algorithms. In pra
ti
e, de-genera
y o

urs frequently and degrades their 
omputational performan
e even thougthhardly leading to 
y
ling. Consequently, various anti-degenera
y te
hniques of di�er-ing 
avors have arised sin
e the early days of linear programming. Dantzig (with hisstudents) [4℄ and Charn
e [2℄ �rst applied perturbation strategy to resolving degener-a
y. Sin
e then methods of this type have been proposed by, among others, Wolfe [19℄,Beni
hou, Gauthier, Hentges and Ribiere [3℄, Harris [8℄, and Gill, Murray, Saundersand Wright [7℄.The distinguished features of our perturbation approa
h are as follows:� Re
eived February 27, 1995.1)This work was supported by the National S
ien
e Foundation of China. No. 19271038



234 P.Q. PAN(a) It applies perturbation to solving the problem itself as well as dealing withdegenera
y, via a \partially revised" s
heme in a naturally 
ombined manner.(b) It perturbs the right-hand side or the relative pri
e row only (if ne
essary), andmakes no 
hange to either bounds of variables or pivot rules.(
) The amount of perturbation 
an be large.(d) No additional storage is needed.(e) It starts from any initial basis without introdu
ing arti�
ial variables.This paper is organized as follows. In Se
tion 2, we �rst des
ribe the perturbationpro
edure for generating a starting point for the dual or the primal-dual simplex algo-rithms, whi
h starts with any basis without introdu
ing arti�
ial variables. In Se
tion 3,this pro
edure and the dual simplex method are in
orporated into a general two-phasealgorithm, whi
h is then modi�ed through perturbation in order to handle not onlyusual but highly degenerate problems eÆ
iently. Some interesting theorems 
on
ern-ing the perturbation approa
h are as well given. Finally, in Se
tion 4, 
omputationalresults are reported, whi
h are very en
ouraging though still preliminary.2. A
hieving Dual FeasibilityConsider linear programming problem in the standard form:max z = 
x (2.1a)s.t. Ax = b (2.1b)x � 0; (2.1
)where m < n, A 2 Rm�n with rank (A) = m, b 2 Rm, and 
 and x are row and 
olumnn-ve
tors, respe
tively.Put linear system (2.1b) into the following tableau:�
 0A b (2.2)Suppose that an initial simplex tableau of the pre
eding presents:�
 �z�A �b (2.3)where �A 2 Rm�n, �b 2 Rm, and for ea
h i = 1; � � � ;m, the ji-th 
olumn �aji of �A is theidentity ve
tor with the i-th 
omponent 1. Then, xji , i = 1; � � � ;m are the related basi
set of variables. We denote by JB the set of indi
es of basi
 variables, and take thesymbol: �JB = f1; � � � ; ngnJB : (2.4)Usually, tableau (2.3) is neither primally nor dually feasible, i.e., the row index setI = fij�bi < 0g (2.5)and the index set J = fjj�
j < 0; j 2 �JBg; (2.6)



A New Perturbation Simplex Algorithm for Linear Programming 235are both nonempty. We shall des
ribe a pro
edure for rea
hing dual feasibility.It is simple matter to 
hange all �bi(i 2 I) into some predetermined positive numbersÆi, by resetting �bi := Æi; 8i 2 I; (2.7)whi
h amounts to respe
tively adding quantities�i = Æi � �bi i 2 I: (2.8)It is evident that the modi�ed tableau, say (2.3) again, is now primally feasible, andthe basi
 te
hnique of the primal simplex method is immediately appli
able to solvingsu
h a modi�ed problem. Suppose now that variables xk and xjl are sele
ted undersome rule, e.g., Dantzig's original rule, to enter and to leave the basi
 set respe
tively,and that the basis 
hange results in the new simplex tableau below:~
 ~z~A ~b (2.9)where ~z = �z � (�bl=�alk)�
k (2.10a)~
j = �
j � (�alj=�alk)�
k; (j = 1; � � � ; n) (2.10b)~bi = ( �bi � (�bl=�alk)�aik; (i = 1; � � � ;m; i 6= l)�bl=�alk; (i = l) (2.10
)~aij = ( �aij � (�alj=�alk)�aik; (i = 1; � � � ;m; i 6= l)�alj=�alk (i = l) (2.10d)Then, one simplex step has 
ompleted. Two tableaus are said to be equivalent if one
an be obtained from the other in �nitely many iteration steps, or in other words, thetwo 
anoni
al systems, represented by them, are equivalent.We 
ondu
t su
h steps until rea
hing an optimal tableau, or dete
ting upper un-boundedness. Suppose that the termination o

urs at some tableau, say (2.9), whi
h is
learly equivalent to the modi�ed but not the initial tableau. Sin
e the 
anoni
al sys-tem, represented by the modi�ed tableau (2.3), 
an be obtained by making the variabletransformation xji := xji � �i for all i 2 I on the system, represented by the initialtableau, and the former system is equivalent to the one, represented by (2.9), it 
an besaid that making on (2.9)'s system the inverse transformation: xji := xji + �i for alli 2 I results in a system whi
h is equivalent to that represented by the initial tableau.Therefore, a tableau that is equivalent to the initial one 
an be obtained from (2.9)by the following operations: for all xji , i 2 I that are basi
, subtra
ting �i from the
orresponding 
omponents of the right-hand side of (2.9), respe
tively; and for ea
hnonbasi
 one, subtra
ting from the right-hand side the ve
tor, obtained by multiplyingthe 
orresponding 
olumn of the left-hand side of (2.9) by the asso
iated �i.However, the pre
eding s
heme may lead to una

eptable loss of 
orre
t signi�
antdigits, in parti
ular for large problems. This diÆ
ulty 
an be over
ome by using a so-
alled partially revised s
heme, in whi
h the inverse of the basis is utilized to generate



236 P.Q. PANdire
tly from the the original A just the information required for pivoting without 
om-puting and re
ording the whole new tableau, as is done in the revised simplex method,ex
ept ~z; ~
 and ~b are still 
al
ulated via (2.10a,b,
). Su
h a tri
k is advantageous as asensitivity analysis may restore the desired tableau simply after the termination of thepro
ess, as demonstrated below.Let B 2 Rm�m be the basis, asso
iated with a 
urrent simplex tableau, say (2.3),i.e, B = (aj1 ; � � � ; ajm), where aji , i = 1; � � � ;m, are the 
olumns of A, 
orresponding tothe basis variables xji , and let B�1 be its inverse. Then the well-known formula~B�1 := B�1 + (el �B�1ak)eTl B�1eTl B�1ak ; (2.11)
an be used to 
ompute the inverse of the new basis, asso
iated with the tableau (2.9),where el is the identity 
olumn m-ve
tor with the l-th 
omponent 1. Thus we 
an put(2.9) into the partially revised tableau ~
 ~z~B�1A ~b (2.12)where ~z; ~
 and ~b are de�ned by (2.10a,b and 
), respe
tively. Suppose that the iterationpro
ess terminates at the tableau (2.12), and that 
 ~B is the row m-ve
tor 
onsistingof the pri
e 
oeÆ
ients 
orresponding to the basi
 variables. Sin
e any modi�
ation ofthe original right-hand side a�e
ts the �nal value 
olumn only, a dire
t way to restorethe desired tableau is to reset ~z := 
 ~B ~B�1b and ~b := ~B�1b:3. The AlgorithmsLet us examine what 
an be said about the restored simplex tableau. If the un-restored tableau, say (2.12), is optimal for the modi�ed problem, the dual feasibilityof the original problem is then a
hieved after the restoration be
ause what has been
hanged is its right-hand side only. Suppose now that the unrestored (2.12) indi
atesupper unboundedness of the modi�ed problem, and the last 
hosen index is k, i.e., wehave ( ~B�1ak)i � 0; 8i = 1; � � � ;m: (3.1)Clearly, the restored tableau will still indi
ate the upper unboundedness of the originalproblem if all the stri
t inequalities in (3.1) hold. This is always true ex
ept when thefollowing 
onditions ( ~B�1ak)~i = 0 and ( ~B�1b)~i < 0 (3.2)are satis�ed for some row index ~i. When (3.2) holds, it 
an still be asserted that thereexists no optimal solution, as (3.1) 
learly indi
ates dual infeasibility of the program.We may in
orporate the primal pro
edure des
ribed in Se
tion 2 as phase-1 into ageneral algorithm, in whi
h either the dual or the primal-dual simplex pro
edure 
anbe taken as phase-2. Let us des
ribe a model, in whi
h the dual simplex pro
edure isutilized:



A New Perturbation Simplex Algorithm for Linear Programming 237Algorithm 1. Let B�1 2 Rm�m be the inverse of an initial basis. Given 
onstantsÆi > 0, i = 1; � � � ;m. This algorithm solves linear program (2.1).1. Set ia = 0 and ib = 0.2. Compute �z = 
BB�1b (3.3a)�
 = �
+ 
BB�1A (3.3b)�b = B�1b (3.3
)3. If row index set I de�ned by (2.5) is nonempty, reset a

ording to (2.7) and setib = 1.4. Determing an index k su
h that�
k = minf�
j jj 2 �JBg (3.4)5. If �
k � 0, then: (i) stop if ib = 0; (ii) restore �z and �b by (3.3a) ane (3.3
),respe
tively; (iii) set ia = 1, and then go to step 10.6. Stop if the row index set below is empty:I 0 = fi j (B�1ak)i > 0; i = 1; � � � ;mg (3.5)7. Determing a row index l su
h that�bl=(B�1ak)l = minf�bi=(B�1ak)ij i 2 I 0g (3.6)8. Update B�1 by (2.11), and �z; �
 and �b by (2.10a), (2.10b) and (2.10
), respe
tively.9. If ia = 0, go to step 4.10. Determing l su
h that �bl = minf�biji = 1; � � � ;mg (3.7)11. Stop if �bl � 0:12. Stop if the index set : J 0 = fjj(B�1aj)l < 0, j 2 �JBg is empty.13. Determing k su
h that�
k=(B�1ak)l = maxf�
j=(B�1aj)ljj 2 J 0g (3.8)14. Go to step 8.Note: The primal phase-1 pro
edure 
onsists of steps 2 through 8, and the dualphase-2 steps 8 through 14.Based of the well-known properties of the primal and the dual simplex methods,and dis
ussions made prior to the above algorithm, we 
on
lude:Theorem 2. Assuming primal and dual nondegenera
y, Algorithn 1 terminates ateither(a) step 5(i) or 11, with an optimal solution of (2:1) rea
hed; or (b) step 6, indi
atingupper unboundedness of the program; or (
) step 12, indi
ating infeasibility of it.It is possible to gain more via a sensitivity analysis:



238 P.Q. PANLemma 3. Let T1 and T2 be two equivalent tableaus and let X be a subset of vari-ables whi
h are basi
 for both tableaus. For ea
h basi
 variable in X, let the asso
iated
omponents of two right-hand sides of T1 and of T2 
orrespond to ea
h other. Thenadding any same set of real numbers respe
tively to 
orresponding 
omponents resultsin two tableaus that are also equivalent.Proof. Without loss of generality, let the X beX = fxi j i = 1; � � � ; rg; (3.9)where r � m. Suppose that the tableau T1 (without the pri
e row) isIr Dr b0r0 D b0 (3.10)where Ir is the r�r identity matrix, 0 is the (m�r)�r zero matrix, and Dr 2 Rr�(n�r),D 2 R(m�r)�(n�r), b0r 2 Rr and b0 2 Rm�r, and that the tableau T2 isIr Er b00r0 E b00 (3.11)Denote by B�1 the inverse, left-multiplying by whi
h the two sides of T1 leads to T2.So, if holds that 0� b00r� � �b00 1A = B�10� b0r� � �b0 1A (3.12)If 
an be shown that B�1 is of the following form:B�1 =  Ir Fr0 F ! (3.13)Denote by ~T1 the tableau resulting from T1 by adding some real ve
tor �br 2 Rr to b0r.Then left-multiplying by B�1 the two sides of ~T1 yields an equivalent tableau of it. Theleft-hand side of the resulting tableau is as the same as that of T2, but the right-handside isB�10� b0r +�br. . . . . . .b0 1A = B�10� b0r� � �b0 1A+B�10��br� � �0 1A = 0� b00r� � �b00 1A+0��br� � �0 1A (3.14)where 0 is the zero (m� r)-ve
tor, and the last equality results from (3:12) and (3:13).Thus, the theorem is proved.Theorem 4. Assume that the original linear program (2:1) has a dually nonde-generate optimal tableau. If only those 
omponents of the right-hand side of the initialtableau are modi�ed in step 3, for whi
h the asso
iated basi
 variables are also basi
 forthe optimal tableau, then, a
hieving optimality, Algorithm 1 terminates at step 11 im-mediately after the exe
ution of the primal phase-1 if primal nondegenera
y is assured.



A New Perturbation Simplex Algorithm for Linear Programming 239Proof. Let T2 be a dually nondegenerate optimal tableau of (2:1) and let �i bepositive numbers, de�ned by (2.8). Denote by T1 the initial tableau, and ~T1 the modi�edone from T1 by adding respe
tive numbers �i to the 
omponents of the right-hand side,asso
iated with those variables whi
h is also basi
 for the optimal tableau. A

ordingto Lemma 3, adding the same set of positive numbers to the 
orresponding 
omponentsof the right-hand side of T2 must result in ~T1's equivalent tableau, say ~T2, whi
h isoptimal for the modi�ed program sin
e the values of a

ording 
omponents are stri
tlyin
reased by �0is. Thus, under the primal nondegenera
y assumption, phase-1 mustterminate at some optimal tableau of the modi�ed program, say T̂2; and under the dualnondegenera
y assumption on T2 and hen
e ~T2, the two basi
 solutions, related to T̂2and to ~T2, are equal. Therefore, subtra
ting the positive numbers from 
orresponding
omponents of the value 
olumn of T̂2 results in a nonnegative right-hand side again,an equivalen
e to that restored in step 5(ii). It is thus evident from Lemma 3 thatan optimal tableau of (2.1) presents, and hen
e the algorithm terminates at step 11immediately.Geometri
ally, the e�e
t of the modi�
ations 
an be viewed as the violated non-negative restri
tions being relaxed. Obviously, if all the relaxed restri
tions are nota
tive (or binding) at an optimal solution, no 
hange to optimal solution will happen.So, in this 
ase adding any positive quantities to those 
omponents of the initial right-hand side that are asso
iated with optimally basi
 variables does not interfere withour purpose. On the other hand, it is seen from (3.14) that the modi�
ations usuallyinterfere if some of the asso
iated variables are optimally nonbasi
; nevertheless, su
hinterferen
e may not be serious if the added �i are small:Remark 5. Assume that primal phase-1 pro
edure of Algorithm 1 produ
es anoptimal tableau for the modi�ed program. If this tableau is primally nondegenerateand the modi�
ations are small enough, then the algorithm terminates at step 11immediately.It is 
lear however that quantities �i are essentially un
ontrollable, and 
an be verylarge. So, the dual phase-2 pro
edure is needed in the general purpose algorithm.Like the 
lassi
al primal and dual simplex algorithms, Algorithm 1 has no defen
esagainst degenera
y. Therefore, it might be better to modify it to handle not only usualbut highly degenerate problems. Obviously, there is no reason to relax the violatedrestri
tions only: why do not relax as well the nearly-violated restri
tions, in
ludingthose 
orresponding to degenerate basi
 variables? Why do not deal with the dualpro
edure similarly? This leads to the anti-degenerate variant of Algorithm 1 below:Algorithm 6. Let B�1 be the same as in Algorithm 1. Given Æi > 0, i = 1; � � � ; nand a small positive number " < minfÆiji = 1; � � � ; ng. This algorithm solves linearprogram (2.1).1. Set ia = 0, ib = 0 and i
 = 0.2. Compute �z; �
 and �b by (3.3).3. If index set I = fij�bi < "; i = 1; � � � ;mg is nonempty, reset �bi = Æi, 8i 2 I and setib = 1.4. Determing index k by (3.4).5. If �
k � 0, then: (i) stop if ib = 0; (ii) restore �z and �b by (3.3a) and (3.3
),



240 P.Q. PANrespe
tively; (iii) set ia = 1; ib = 0, and then go to step 10.6. Stop if I 0, de�ned by (3.5), is empty.7. Determing l by (3.6).8. Update B�1 by (2.11), and �z; �
 and �b by (2.10a), (2.10b) and (2.10
), respe
tively.9. If ia = 0, go to step 3.10. Determine row index l by (3.7).11. If �bl � 0, then (i) stop if i
 = 0; (ii) restore �z and �
 by (3.3a) and (3.3b),respe
tively; (iii) set ia = 0; i
 = 0, and then go to step 3.12. Stop if J 0, de�ned by (3.8), is empty.13. If the index set J = fjj�
j < �; j 2 J 0g is nonempty, then reset �
j = Æj ;8j 2 Jand set i
 = 1.14. Determing k by (3.8).15. Set ia = 1, and go to step 8.Comparing between Algorithms 1 and 6, we 
on
lude that all the results statedpreviously in this se
tion hold as well for the latter.Moreover, Algorithm 6 has important features. It is noted that the modi�ed tableauprodu
ed in step 3 is now guaranteed to be primally nondegenerate; and before takingon the dual simplex steps, after phase-1, the relative pri
e row is modi�ed so as theresulting tableau is also dually nondegenerate. There 
an also be an analogue of Lemma3, asso
iated with the latter modi�
ations:Lemma 7. Let T1 and T2 be two equivalent tableaus and let X be a subset of vari-ables that are nonbasi
 for both tableaus. Then adding any same set of real numbers to
orresponding relative pri
e 
oeÆ
ients results in two tableaus whi
h are also equivalent.Proof. Suppose that N is the submatrix 
onsisting of the 
olumns of A, 
orre-sponding to the modi�ed relative pri
e 
oeÆ
ients, B is the basis related to T1 and�B the basis related to T2. Then the validity of the statement 
omes from the formsof the 
orresponding relative pri
e 
oeÆ
ients of the two tableaus, 
N � 
BB�1N and
N � 
 �B �B�1N , where 
N is the row ve
tor 
onsisting of pri
e 
oeÆ
ients 
orrespondingto the 
olumns of N .In 
onjun
tion with Algorithm 6, we state an analogue to Theorem 4:Theorem 8. Assume that the original linear program (2:1) has a primally non-degenerate optimal tableau and that the end tableau of primal phase-1 is restored atstep 5(ii). If, before 
arrying on dual phase-2, only those relative pri
e 
oeÆ
ients ofthe restored tableau are modi�ed for whi
h the asso
iated nonbasi
 variables are alsononbasi
 for the optimal tableau, Algorithm 6 terminates immediately at step 5(i) afterthe exe
ution of dual phase-2, a
hieving optimality, if dual nondegenera
y is assuredthroughout.Clearly, the situation may be
ome di�erent if some of modi�ed 
oeÆ
ients areasso
iated with optimally basi
 variables. But a statement, similar to Remark 5, 
analso be made here; that is, the same thing holds if the added Æi are small enough and theend tableau of phase-2 is dually nondegenerate. However, in 
ontrast to the 
ase of theformer modi�
ations, where added quantities are un
ontrollable, the Æi being addedhere is allowed to be small, fortunately. This may be explained geometri
ally: the



A New Perturbation Simplex Algorithm for Linear Programming 241latter modi�
ations amount to perturbing the gradient ve
tor of the original obje
tivefun
tion so that the edges at the rea
hed vertex are all stri
tly de
reasing ones.As a safeguarding strategy, we designed the algorithm go ba
k to its primal phaseagain if optimality of (2.1) is not yet a
hieved after the dual simplex steps taken, andmodify all en
ountered degenerate entries, not only in the �rst but also in subsequent
ir
les throughout.We 
on
lude this se
tion with the following:Remark 9. Algorithm 6 terminates if primal and dual degenera
y o

ur only�nitely many times. 4. Computational ResultsIn order to gain an insight into the performan
e of the proposed approa
h, Algo-rithm 6 was 
oded into a FORTRAN 77 program, where the predetermined numbersused in Algorithm 6 were Æj = 10�1, 8j = 1; � � � ; n, and " = 10�3. We used Algorithm6.5 of [11℄ to determine an initial basis.Tested linear programming problems fall into 4 groups. The �rst 
onsists of 62problems with only inequality 
onstraints and of up to 22 de
ision variables and 
on-straints. The se
ond in
ludes 23 randomly produ
ed problems with from 23 up to 80de
ision variables and 
onstraints. The third are 4 larger sparse problems. To see whatwill happen with Klee-Minty problems, the fourth group involves two su
h ones (see,for example, [16℄).In TABLE 1, in terms of number of pivot steps required, numeri
al results obtainedare summarized, and 
ompared with the revised two-phase simplex algorithm usingDantzig's original rule. Four problems of group 3 are designated by P1, P2, P3 andP4, and Klee-Minty problems by KM1 and KM2, respe
tively.Table 1. Numeri
al ResultsProblem Algorithm 6 Classi
al Ratio: C=ATotal for Group 1 240 800 3.33Total for Group 2 1164 3209 2.76P1 : m = 27, n = 51 9 27 3.00P2 : m = 28; n = 56 4 38 9.50P3 : m = 55; n = 137 46 170 3.70P4 : m = 56; n = 138 67 172 2.57Total for Group 3 126 407 3.23KM1 : n = 8 5 255 51.00KM2 : n = 10 5 1023 204.60The pre
eding shows the 
orre
tness of the analysis made in Se
tion 3, and points
learly to the ex
ellen
e of our algorithm on these tested problems. We stress that itoutperformed the 
lassi
al simplex algorithm for ea
h of these problems. It turns outthat numeri
al results are not very sensitive to the predetermined amount of perturba-tion.Su
h a good performan
e of Algorithm 6 might be partially due to its anti-degenera
yfeature. Stalling phenomenon is not observed in the solution pro
ess. Our experien
e isthat after modi�
ations at step 3 or 13 in the �rst 
ir
le of the two phases, only a little



242 P.Q. PANprimal or dual degenera
y, if any, will o

ur in subsequent steps; all the problems aresolved in the �rst 
ir
le. However, the situation may be di�erent with highly degenerateand/or large problems, and further 
omputational tests are expe
ted.Finally, seeing that the proposed perturbation simplex method has some very atra
-tive features theoreti
ally, and performs favorably in solving linear programming prob-lems of su
h sizes as those tested, we 
on
lude that it is 
ertainly promising, anddeserves further investigation. Referen
es[1℄ E.M.L. Beale, An alternative method for linear programming, in Pro
eedings of CambridgePhilosophi
al So
iety, 50 (1954), 513{523.[2℄ A. Charnes, Optimality and degenera
y in linear programming, E
onometri
a, 20 (1952),160{170.[3℄ M. Beni
hou, J.M. Gauthier, G. Hentges, G. Ribiere, The e�
ient solution of large-s
alelinear programming problems, Mathemati
al Programming, 13 (1977), 280{322.[4℄ G.B. Dantzig, Appli
ation of the simplex method to a transportation problem, in T.C.Koopman (ed.), A
tivity Analysis of Produ
tion and Allo
ation, John Wiley & Sons, In
.,New York, (1951), 359{373.[5℄ G.B. Dantzig, The Dual Simplex Algorithm, RAND Report RM-1270, The RAND Corpo-ration, Santa Moni
a, CA, 1954.[6℄ G.B. Dantzig, L.R. Ford, D.R. Fulkerson, A Primal-Dual Algorithm, RAND Report RM-1709, The RAND Corporation, Santa Moni
a, CA, 1956.[7℄ P.E. Gill, Walter Murray, M.A. Saunders, M.H. Wrighr, A pra
ti
al anti-
y
ling pro
edurefor linearly 
onstrained optimization, Mathemati
al Programming, 45 (1989), 437{474.[8℄ P.M.J. Harris, Pivot sele
tion methods of the Devex LP 
ode, Mathemati
al ProgrammingStudy, 4 (1975), 30{57.[9℄ C.E. Lemke, The dual method of solving the linear programming problem, Naval Resear
hLogisti
s Quaterly, 1 (1954), 36{47.[10℄ P.-Q. Pan, Pra
ti
al �nite pivot rules for the simplex method, OR Spektru, 12 (1990),219{225.[11℄ P.-Q. Pan, A simplex-like method with bise
tion for linear programming, Optimization,22 : 5 (1991), 717{743.[12℄ P.-Q. Pan, A variant of the dual pivot rule in linear programming, Journal of Information& Optimization S
ien
es, 15 : 3 (1994), 405{413.[13℄ P.-Q. Pan, The most-obtuse-angle row pivot rule for a
hieving dual feasibility: a 
omputa-tional study, European Journal of Operations Resear
h, 101 (1997), 167{176.[14℄ P.-Q. Pan, A dual proje
tive simplex method for linear programming, Computers and Math-emati
s with Appli
ations, 36 : 6 (1998), 119{135.[15℄ P.-Q. Pan, A basis-di�
ien
y-allowing variation of the simplex method, Computers andMathemati
s with Appli
ations, 36 : 3 (1998), 33{53.[16℄ A. S
hrijver, The Theory of Linear and Integer Programming, John Wiley & Sons, Chi
h-ester, 1986.[17℄ D.I. Steinberg, On �nding an initial solution for the dual simplex algorithm, De
isionS
ien
es, 7 : 1 (1976).[18℄ S. Vajda, Mathemati
al Programming, Addson-Wesley Publishing Company In
., Reading,MA, 1961.[19℄ P. Wolfe, A te
hnique for resolving degenera
y in linear programming, Journal of the So
ietyfor SIAM, 11 (1963), 205{211.


