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Abstract

In this paper, we first propose a perturbation procedure for achieving dual fea-
sibility, which starts with any basis without introducing artificial variables. This
procedure and the dual simplex method are then incorporated into a general pur-
pose algorithm; then, a modification of it using a perturbation technique is made
in order to handle highly degenerate problems efficiently. Some interesting the-
oretical results are presented. Nmerical results obtained are reported, which are
very encouraging though still preliminary.
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1. Introduction

The dual simplex algorithm[1, 9] and the primal-dual simple algorithm [6] are well-
known and efficient simplex variants. However, both of them need an initial dual feasible
basis to get started, and therefore can not be directly applied to solving problems that
do not have such an explicit basis. A number of schemes have been suggested to achieve
dual feasibility [1, 5, 17, 18]. Some of them construct the dual analogues of the artificial-
variable techniques, and none of them is as easy to implement computationally as the
classical Phase-1 procedure of the primal simplex algorithm. As a result, either the
dual or the primal-dual simplex algorithm is usually used only in some special cases in
practice.

On the other hand, degeneracy is, in our view, all along a headache for simplex
variants, including the dual and the primal-dual simplex algorithms. In practice, de-
generacy occurs frequently and degrades their computational performance even thougth
hardly leading to cycling. Consequently, various anti-degeneracy techniques of differ-
ing flavors have arised since the early days of linear programming. Dantzig (with his
students) [4] and Charnce [2] first applied perturbation strategy to resolving degener-
acy. Since then methods of this type have been proposed by, among others, Wolfe [19],
Benichou, Gauthier, Hentges and Ribiere [3], Harris [8], and Gill, Murray, Saunders
and Wright [7].

The distinguished features of our perturbation approach are as follows:
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(a) It applies perturbation to solving the problem itself as well as dealing with
degeneracy, via a “partially revised” scheme in a naturally combined manner.

(b) It perturbs the right-hand side or the relative price row only (if necessary), and
makes no change to either bounds of variables or pivot rules.

(¢) The amount of perturbation can be large.

(d) No additional storage is needed.

(e) Tt starts from any initial basis without introducing artificial variables.

This paper is organized as follows. In Section 2, we first describe the perturbation
procedure for generating a starting point for the dual or the primal-dual simplex algo-
rithms, which starts with any basis without introducing artificial variables. In Section 3,
this procedure and the dual simplex method are incorporated into a general two-phase
algorithm, which is then modified through perturbation in order to handle not only
usual but highly degenerate problems efficiently. Some interesting theorems concern-
ing the perturbation approach are as well given. Finally, in Section 4, computational
results are reported, which are very encouraging though still preliminary.

2. Achieving Dual Feasibility

Consider linear programming problem in the standard form:

max z = cx (2.1a)
st. Az =0 (2.1b)
x>0, (2.1c)

where m < n, A € R™*" with rank (A) = m, b € R™, and ¢ and x are row and column
n-vectors, respectively.
Put linear system (2.1b) into the following tableau:

—c |0
2.2
11 (2.2)
Suppose that an initial simplex tableau of the preceding presents:
c |z
i 2.3
177 (2.3)

where A € R™*" b € R™, and for each i = 1,---,m, the j;-th column a;, of A is the
identity vector with the i-th component 1. Then, z;,, % = 1,---,m are the related basic
set of variables. We denote by Jp the set of indices of basic variables, and take the
symbol:

Jg={1,---,n}\Js. (2.4)
Usually, tableau (2.3) is neither primally nor dually feasible, i.e., the row index set

I = {ilb; < 0} (2.5)

and the index set
J ={jle; <0, j € Jg}, (2.6)
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are both nonempty. We shall describe a procedure for reaching dual feasibility.
It is simple matter to change all b;(i € I) into some predetermined positive numbers
d;, by resetting

b, :=0;, Viel, (2.7)

which amounts to respectively adding quantities

It is evident that the modified tableau, say (2.3) again, is now primally feasible, and
the basic technique of the primal simplex method is immediately applicable to solving
such a modified problem. Suppose now that variables z; and z; are selected under
some rule, e.g., Dantzig’s original rule, to enter and to leave the basic set respectively,
and that the basis change results in the new simplex tableau below:

z

c
2.9
YRR (2.9)
where
zZ=2z— (Bl/dlk)ék (210&)
¢ =¢; — (a/aw)er, (j=1,---,n) (2.10Db)
~ 6175 i) Gk s .:17"'7 ;. !
bi _ { o ( l/alk)azk (Z m; 1 ?é ) (210C)
b/ aik, (i=1)
alj/alk (i=1)

Then, one simplex step has completed. Two tableaus are said to be equivalent if one
can be obtained from the other in finitely many iteration steps, or in other words, the
two canonical systems, represented by them, are equivalent.

We conduct such steps until reaching an optimal tableau, or detecting upper un-
boundedness. Suppose that the termination occurs at some tableau, say (2.9), which is
clearly equivalent to the modified but not the initial tableau. Since the canonical sys-
tem, represented by the modified tableau (2.3), can be obtained by making the variable
transformation z;, := z;, — B; for all ¢« € I on the system, represented by the initial
tableau, and the former system is equivalent to the one, represented by (2.9), it can be
said that making on (2.9)’s system the inverse transformation: z; := x; + §; for all
1 € I results in a system which is equivalent to that represented by the initial tableau.
Therefore, a tableau that is equivalent to the initial one can be obtained from (2.9)
by the following operations: for all z;,, 4 € I that are basic, subtracting 3; from the
corresponding components of the right-hand side of (2.9), respectively; and for each
nonbasic one, subtracting from the right-hand side the vector, obtained by multiplying
the corresponding column of the left-hand side of (2.9) by the associated ;.

However, the preceding scheme may lead to unacceptable loss of correct significant
digits, in particular for large problems. This difficulty can be overcome by using a so-
called partially revised scheme, in which the inverse of the basis is utilized to generate
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directly from the the original A just the information required for pivoting without com-
puting and recording the whole new tableau, as is done in the revised simplex method,
except Z,¢ and b are still calculated via (2.10a,b,c). Such a trick is advantageous as a
sensitivity analysis may restore the desired tableau simply after the termination of the
process, as demonstrated below.

Let B € R™*™ be the basis, associated with a current simplex tableau, say (2.3),
ie, B=(aj. --,aj,), where a;;, i =1,---,m, are the columns of A, corresponding to
the basis variables z;,, and let B~! be its inverse. Then the well-known formula

(e; — B 'ag)el B!
T Do — )
e; B~ lay

B l:=B1'4 (2.11)
can be used to compute the inverse of the new basis, associated with the tableau (2.9),
where ¢; is the identity column m-vector with the [-th component 1. Thus we can put
(2.9) into the partially revised tableau

YRR (2.12)

where z, ¢ and b are defined by (2.10a,b and c), respectively. Suppose that the iteration
process terminates at the tableau (2.12), and that cj is the row m-vector consisting
of the price coefficients corresponding to the basic variables. Since any modification of
the original right-hand side affects the final value column only, a direct way to restore
the desired tableau is to reset z := céé’lb and b:= B~ b

3. The Algorithms

Let us examine what can be said about the restored simplex tableau. If the un-
restored tableau, say (2.12), is optimal for the modified problem, the dual feasibility
of the original problem is then achieved after the restoration because what has been
changed is its right-hand side only. Suppose now that the unrestored (2.12) indicates
upper unboundedness of the modified problem, and the last chosen index is k, i.e., we
have

(B 'ay); <0, Vi=1,---,m. (3.1)

Clearly, the restored tableau will still indicate the upper unboundedness of the original
problem if all the strict inequalities in (3.1) hold. This is always true except when the
following conditions

(Bilak)% =0 and (Bilb); <0 (3.2)

are satisfied for some row index ;. When (3.2) holds, it can still be asserted that there
exists no optimal solution, as (3.1) clearly indicates dual infeasibility of the program.

We may incorporate the primal procedure described in Section 2 as phase-1 into a
general algorithm, in which either the dual or the primal-dual simplex procedure can
be taken as phase-2. Let us describe a model, in which the dual simplex procedure is
utilized:
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Algorithm 1. Let B~! € R™*™ be the inverse of an initial basis. Given constants

0; >0,7=1,---,m. This algorithm solves linear program (2.1).
1. Set ia = 0 and ib = 0.
2. Compute
Z=cpB b (3.3a)
¢=—c+cgB A (3.3b)
b=B"1b (3.3¢)

3. If row index set I defined by (2.5) is nonempty, reset according to (2.7) and set
ib = 1.
4. Determing an index k such that

& = min{¢;|j € Jp} (3.4)

5. If ¢ > 0, then: (i) stop if ib = 0; (ii) restore z and b by (3.3a) ane (3.3c),
respectively; (iii) set ia = 1, and then go to step 10.
6. Stop if the row index set below is empty:

I'={i| (B tay); >0, i=1,---,m} (3.5)
7. Determing a row index / such that
i)l/(Bilak)l = mln{li)l/(BflakM 1 € I,} (36)

8. Update B! by (2.11), and 2, ¢ and b by (2.10a), (2.10b) and (2.10c), respectively.
9. If ia = 0, go to step 4.
10. Determing [ such that

Bl = mln{BZ‘Z = 1,---,m} (37)

11. Stop if b > 0.
12. Stop if the index set : J' = {j|(B 'a;); <0, j € Jg} is empty.
13. Determing k such that

er/ (B 'ag), = max{¢;/(B 'a;)lj € J'} (3.8)

14. Go to step 8.

Note: The primal phase-1 procedure consists of steps 2 through 8, and the dual
phase-2 steps 8 through 14.

Based of the well-known properties of the primal and the dual simplex methods,
and discussions made prior to the above algorithm, we conclude:

Theorem 2. Assuming primal and dual nondegeneracy, Algorithn 1 terminates at
either

(a) step 5(i) or 11, with an optimal solution of (2.1) reached; or (b) step 6, indicating
upper unboundedness of the program; or (c) step 12, indicating infeasibility of it.

It is possible to gain more via a sensitivity analysis:
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Lemma 3. Let Ty and Ty be two equivalent tableaus and let X be a subset of vari-
ables which are basic for both tableaus. For each basic variable in X, let the associated
components of two right-hand sides of 11 and of Ty correspond to each other. Then
adding any same set of real numbers respectively to corresponding components results
in two tableaus that are also equivalent.

Proof. Without loss of generality, let the X be

X:{LEZ‘"L':L---,’I"}, (39)
where 7 < m. Suppose that the tableau 77 (without the price row) is

I, D, |V

5T (3.10)

where I, is the r x identity matrix, 0 is the (rn—7) x r zero matrix, and D, € R"*("~7),
D € Rm=m)x(n=1) p! ¢ R" and b’ € R™ ", and that the tableau T} is

I, E. |

A1
0 E bll (3 )

Denote by B! the inverse, left-multiplying by which the two sides of T} leads to Tb.

So, if holds that
by by
():B<) (3.12)
b/l bl

If can be shown that B~! is of the following form:

B! = ( {) i’; ) (3.13)

Denote by Tl the tableau resulting from 73 by adding some real vector Ab, € R" to bl..
Then left-multiplying by B! the two sides of T} yields an equivalent tableau of it. The
left-hand side of the resulting tableau is as the same as that of T4, but the right-hand
side is

bl + Ab, b, Ab, b! Ab,
Bl( ....... ):B1(---)+B1(---):(---)+(---) (3.14)
b b 0 b 0

where 0 is the zero (m — r)-vector, and the last equality results from (3.12) and (3.13).
Thus, the theorem is proved.

Theorem 4. Assume that the original linear program (2.1) has a dually nonde-
generate optimal tableau. If only those components of the right-hand side of the initial
tableau are modified in step 3, for which the associated basic variables are also basic for
the optimal tableau, then, achieving optimality, Algorithm 1 terminates at step 11 im-
mediately after the execution of the primal phase-1 if primal nondegeneracy is assured.
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Proof. Let T be a dually nondegenerate optimal tableau of (2.1) and let (; be
positive numbers, defined by (2.8). Denote by T} the initial tableau, and T} the modified
one from 7 by adding respective numbers §; to the components of the right-hand side,
associated with those variables which is also basic for the optimal tableau. According
to Lemma 3, adding the same set of positive numbers to the corresponding components
of the right-hand side of T, must result in T)’s equivalent tableau, say Tb, which is
optimal for the modified program since the values of according components are strictly
increased by f/s. Thus, under the primal nondegeneracy assumption phase-1 must
terminate at some optimal tableau of the modified program, say Ty; and under the dual
nondegeneracy assumption on 75 and hence Tg, the two basic solutions, related to Ty
and to T, are equal. Therefore, subtracting the positive numbers from corresponding
components of the value column of 75 results in a nonnegative right-hand side again,
an equivalence to that restored in step 5(ii). It is thus evident from Lemma 3 that
an optimal tableau of (2.1) presents, and hence the algorithm terminates at step 11
immediately.

Geometrically, the effect of the modifications can be viewed as the violated non-
negative restrictions being relaxed. Obviously, if all the relaxed restrictions are not
active (or binding) at an optimal solution, no change to optimal solution will happen.
So, in this case adding any positive quantities to those components of the initial right-
hand side that are associated with optimally basic variables does not interfere with
our purpose. On the other hand, it is seen from (3.14) that the modifications usually
interfere if some of the associated variables are optimally nonbasic; nevertheless, such
interference may not be serious if the added (; are small:

Remark 5. Assume that primal phase-1 procedure of Algorithm 1 produces an
optimal tableau for the modified program. If this tableau is primally nondegenerate
and the modifications are small enough, then the algorithm terminates at step 11
immediately.

It is clear however that quantities §; are essentially uncontrollable, and can be very
large. So, the dual phase-2 procedure is needed in the general purpose algorithm.

Like the classical primal and dual simplex algorithms, Algorithm 1 has no defences
against degeneracy. Therefore, it might be better to modify it to handle not only usual
but highly degenerate problems. Obviously, there is no reason to relax the violated
restrictions only: why do not relax as well the nearly-violated restrictions, including
those corresponding to degenerate basic variables? Why do not deal with the dual
procedure similarly? This leads to the anti-degenerate variant of Algorithm 1 below:

Algorithm 6. Let B~! be the same as in Algorithm 1. Given 6; > 0,4 =1,---,n
and a small positive number ¢ < min{d;[i = 1,---,n}. This algorithm solves linear
program (2.1).

1. Set ta =0, ib = 0 and ic = 0.

2. Compute z,¢ and b by (3.3).

3. If index set I = {i|b; < e,i=1,---,m} is nonempty, reset b; = &;, Vi € I and set
ib = 1.

4. Determing index k by (3.4).

5. If ¢ > 0, then: (i) stop if ib = 0; (ii) restore z and b by (3.3a) and (3.3c),
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respectively; (iii) set ia = 1,1b = 0, and then go to step 10.

6. Stop if I', defined by (3.5), is empty.

7. Determing [ by (3.6).

8. Update B! by (2.11), and 2, ¢ and b by (2.10a), (2.10b) and (2.10c), respectively.

9. If ia = 0, go to step 3.

10. Determine row index ! by (3.7).

11. If b, > 0, then (i) stop if ic = 0; (ii) restore z and ¢ by (3.3a) and (3.3b),
respectively; (iii) set ia = 0,ic = 0, and then go to step 3.

12. Stop if J', defined by (3.8), is empty.

13. If the index set J = {j|¢; < ¢€,j € J'} is nonempty, then reset ¢; = §;,Vj € J
and set ic = 1.

14. Determing k by (3.8).

15. Set 2a = 1, and go to step 8.

Comparing between Algorithms 1 and 6, we conclude that all the results stated
previously in this section hold as well for the latter.

Moreover, Algorithm 6 has important features. It is noted that the modified tableau
produced in step 3 is now guaranteed to be primally nondegenerate; and before taking
on the dual simplex steps, after phase-1, the relative price row is modified so as the
resulting tableau is also dually nondegenerate. There can also be an analogue of Lemma
3, associated with the latter modifications:

Lemma 7. Let Ty and Ty be two equivalent tableaus and let X be a subset of vari-
ables that are nonbasic for both tableaus. Then adding any same set of real numbers to
corresponding relative price coefficients results in two tableaus which are also equivalent.

Proof. Suppose that N is the submatrix consisting of the columns of A, corre-
sponding to the modified relative price coefficients, B is the basis related to 77 and
B the basis related to Th. Then the validity of the statement comes from the forms
of the corresponding relative price coefficients of the two tableaus, cy — cg B~'N and
cy —cgB !N, where cy is the row vector consisting of price coefficients corresponding
to the columns of V.

In conjunction with Algorithm 6, we state an analogue to Theorem 4:

Theorem 8. Assume that the original linear program (2.1) has a primally non-
degenerate optimal tableau and that the end tableau of primal phase-1 is restored at
step 5(i1). If, before carrying on dual phase-2, only those relative price coefficients of
the restored tableau are modified for which the associated nonbasic variables are also
nonbasic for the optimal tableau, Algorithm 6 terminates immediately at step 5(i) after
the execution of dual phase-2, achieving optimality, if dual nondegeneracy is assured
throughout.

Clearly, the situation may become different if some of modified coefficients are
associated with optimally basic variables. But a statement, similar to Remark 5, can
also be made here; that is, the same thing holds if the added ¢; are small enough and the
end tableau of phase-2 is dually nondegenerate. However, in contrast to the case of the
former modifications, where added quantities are uncontrollable, the §; being added
here is allowed to be small, fortunately. This may be explained geometrically: the
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latter modifications amount to perturbing the gradient vector of the original objective
function so that the edges at the reached vertex are all strictly decreasing ones.

As a safeguarding strategy, we designed the algorithm go back to its primal phase
again if optimality of (2.1) is not yet achieved after the dual simplex steps taken, and
modify all encountered degenerate entries, not only in the first but also in subsequent
circles throughout.

We conclude this section with the following:

Remark 9. Algorithm 6 terminates if primal and dual degeneracy occur only
finitely many times.

4. Computational Results

In order to gain an insight into the performance of the proposed approach, Algo-
rithm 6 was coded into a FORTRAN 77 program, where the predetermined numbers
used in Algorithm 6 were §; = 107, Vj=1,---,n, and € = 1073. We used Algorithm
6.5 of [11] to determine an initial basis.

Tested linear programming problems fall into 4 groups. The first consists of 62
problems with only inequality constraints and of up to 22 decision variables and con-
straints. The second includes 23 randomly produced problems with from 23 up to 80
decision variables and constraints. The third are 4 larger sparse problems. To see what
will happen with Klee-Minty problems, the fourth group involves two such ones (see,
for example, [16]).

In TABLE 1, in terms of number of pivot steps required, numerical results obtained
are summarized, and compared with the revised two-phase simplex algorithm using
Dantzig’s original rule. Four problems of group 3 are designated by P1, P2, P3 and
P4, and Klee-Minty problems by KM1 and KM2, respectively.

Table 1. Numerical Results

Problem Algorithm 6 Classical Ratio: C/A
Total for Group 1 240 800 3.33
Total for Group 2 1164 3209 2.76
Pl:m =27 n=>51 9 27 3.00
P2:m =28,n=56 4 38 9.50
P3:m =55,n=137 46 170 3.70
P4:m =56,n =138 67 172 2.57
Total for Group 3 126 407 3.23
KM1:n=28 5 255 51.00
KM2:n=10 5 1023 204.60

The preceding shows the correctness of the analysis made in Section 3, and points
clearly to the excellence of our algorithm on these tested problems. We stress that it
outperformed the classical simplex algorithm for each of these problems. It turns out
that numerical results are not very sensitive to the predetermined amount of perturba-
tion.

Such a good performance of Algorithm 6 might be partially due to its anti-degeneracy
feature. Stalling phenomenon is not observed in the solution process. Our experience is
that after modifications at step 3 or 13 in the first circle of the two phases, only a little
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primal or dual degeneracy, if any, will occur in subsequent steps; all the problems are
solved in the first circle. However, the situation may be different with highly degenerate
and/or large problems, and further computational tests are expected.

Finally, seeing that the proposed perturbation simplex method has some very atrac-
tive features theoretically, and performs favorably in solving linear programming prob-
lems of such sizes as those tested, we conclude that it is certainly promising, and
deserves further investigation.
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