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Abstract

This article proposes a kind of nonlinear Galerkin methods with variable modes
for the long-term integration of Kuramoto-Sivashinsky equation. It consists of
finding an appropriate or best number of modes in the correction of the method.
Convergence results and error estimates are derived for this method. Numerical
examples show also the efficiency and advantage of our method over the usual
nonlinear Galerkin method and the classical Galerkin method.
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1. Introduction

The nonlinear Galerkin method was introduced by Marion and Temam|[4], which
is stemmed from the theory of inertial manifolds and dynamical system theory. The
considerable increase in the computing power during last years makes it possible for
the mathematicians to solve numerical problems for approximating various dissipative
evolution equations on large interval of time. Indeed, the nonlinear Galerkin method
has proven to be a powerful tool for such problems (See [9], [11] and references therein).

Recently, this method has been applied to the long time integration of Kuramoto-
Sivashinsky equation[12]. Thanks to a newly established inequality for the nonlinear
term of Kuramoto-Sivashinsky equation, we can extend the method to a nonlinear
Galerkin method with variable modes. Here the method involves a changeable number
for the small-scale components z; = z,(;,), when the unknown function is u ~ um + zs.
After the analysis of error estimates we give an optimal value of s or w = m + s which
reduces the order of the error of the method to the lowest.

This paper is organized as follows: Section 2 contains the description of the equation
and some preliminary results. In Section 3 we describe the modification of nonlinear
Galerkin method with variable modes and prove successively the convergence of the
method. In Section 4 we state and prove the error estimates of the method and give
the possible minimum modes for the method. Finally, in Section 5 we make comparisons
of various numerical computations for two examples which show a significant gain in
computing time for our method.
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2. The Equation and Its Functional Setting

The Kuramoto-Sivashinsky equation with an initial condition and a periodic bound-
ary condition reads as follows (with dimension= 1 and period= [):

ou 0w 0% ou

EJF@JF@JFU%_O O<z<l, t>0 (2.1)
u(z,0) = ug(x) 0<z <l

u(z,t) =u(z +1,t) t>0

For the functional setting of the equation, we can rewrite this partial differential
equation into an abstract evolution equation in a Hilbert space H with scalar product
(-,+) and norm |- |. In this case, we have H = {ulu € L?(0,1), u(0,t) = u(l,t) = 0}.
Thus the equations (2.1)—(2.3) become

dd—u-l-Au-l-B(u)—I—Cu:f (2.4)
(to) B (2.5)

Uu = Uy

84

gyt B(u) = u? and

T

Here, we set A =

d%u
——

Cu=3 G o
8—Z+¢>8—Z+¢>’u 1> 2r
€T !

f:{() I < 2w

| <2m

—¢W ¢ — g’ 1> 2n

where ¢ = ¢(z) is a function given in [5] to keep the coercivity property of the operator
A+C.

Since A~! is compact and self-adjoint, there exists an orthonormal basis of H which
consists of the eigenvectors of A: Aw; = Ajw;, 0 < Ay < Xg <---, X\j = 00 as j — oo.

Given another Hilbert space V' endowed with scalar product ((+,-)) and norm || - ||,
V = H}(0,l) N H. We denote the domain of the operator A by D(A) = H;l(O,l) NH.
And we know that B(u) = B(u,u) is a bilinear operator from V x V into V', C is a
linear operator from V into H and f € H.

Define a trilinear form b on V' by b(u,v, w) = (B(u,v), w)y' v Yu,v,w € V, we
recall the following well-known properties:

bu,u,u) =0 YueV (2.6)

[b(u, v, w)| < exful a2 oll[w] 2 w] VY, v,w € V (2.7)

|Cu| < collul] Yu eV (2.8)

|B(u,v)| < eslul'?||ul|'/?||v]]'/?|Av|'/?  Yu e V,v € D(A) (2.9)

|B(u,v)| < calul'?|Au|?||v|| Vu,v € D(A) (2.10)
2

|B(u,v)| < C5(1 + log>\|f|1|z||2)1/2||u||||v|| Yu € D(A),v €V (2.11)
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A 2\1/2
Bl < es(3 - 2L Phuoll > 0) vue D(A), vev
7| Aul?
(2.12)
By the construction, we have, for an a > 0,
(A + C)u,u) > aljul|?>, Yue D(A) (2.13)

Let m denote a fixed positive integer. To such an m, we associate the orthogonal
projection P = P,, in H onto the subspace spanned by the first m eigenvectors of
A, wi,wsy, -, w,. For any integer m’ > m, it results in the following lemma.

Lemma 2.1. Ifv € (P, — Py,)H, then it holds

— | <A+ 0C) | <
pwmrL ) \_amﬂ

o). (2.14)

At the end of this section, we recall a result borrowed from [8]:
Lemma 2.2. (Gronwall) If y(t) > 0 (y(0) = 0), z(t) > 0, g(¢t) > 0 and h(t) > 0
satisfy y'(t) + x(t) < g(t)y(t) + h(t) YVt > 0 then

y(t) +/Ut.r(7)d7 < /Oth(T)exp(/Ttg(s)ds)dT. (2.15)

3. Nonlinear Galerkin Method with Variable Modes

We assume that w = w(m) (> m) is another integer associated with m. Let s =
s(m) = w(m) —m. The precise values of w and s will be given in Section 4. Using
the eigenvectors wj, j € N, of the operator A, this kind of nonlinear Galerkin methods
(NLG) for an approximate solution of problem (2.4) (2.5) is implemented as follows:

The approximate solution u,, + 2, is of the form

w

un®) =3 gy, ) = Sty (3.1)
j=1

j=m+1

where u,, : R* = W,, = span {w, wy, -, wpn}, zs : RT = W, = span {w1, Wypo, - -
wy, }. The pair (u,,, z5) satisfies

d
Eum + Aup, + Cuyy, + Pm(B(uTmum) + B(umuzs) + B(257um)) = me

Azs+ Czs+ (P, — Pp)B(um,um) = (P — Pn) f
um(0) = Ppug
The system (3.2)—(3.3) is equivalent to the following:

d
— (tny v) + ((A 4+ C)thy v) + b(tpyy, Uy, ©) + b(Upyy, 25, V)

dt
+ b(zs, um,v) = (f,v) Yo e W, (3.5)
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((A + C)Zsa{))_'_b(umauma{)) = (f’f)) Vo € I/f/s (3'6)

Remark 3.1. If s = m, then we go back to the first NLG method presented in
[4]. Later on, Temam pointed out that we might change the number m of modes to
approximate z,, (see e.g. [9]). His proposal is to use (d — 1)m modes, d > 2. Here, our
choice is more general because w = w(m) is probably a nonlinear function of m rather
than a linear one (d — 1)m.

Now we go to analyze the approximate solution produced by our method. These
properties lead successively to the convergence of the approximate solution. (In the
following, absolute constant ¢ may be different when it is used in different places.)

Proposition 3.2. The approzimate solution um + 2y, produced by (3.2) (3.4)
satisfies

(i) wm and zs remain both in a bounded set of L>°(R™; H) as m — o0o;

(ii) um and zs remain both in a bounded set of L*(0,T;V) as m — 0o.

Proof. Taking v = uy, in (3.5) and 0 = 2, in (3.6) we have

d
E|um|2 + H“mH2 + (Ctyyy ) + b(Um, 25, ) + b(25, U, Urn) = (f, )

l2s]I* + (Czs, 26) + b, um, z5) = (f, 25)

Summing up (3.7) and (3.8) and due to (2.13) and b(um,, zs, Um) + b(2s, U, Um) +
b(ty, U, 2zs) = 0, we obtain that

d 2 2 2 |f|2
a‘um‘ + a(”“m” + ||ZSH ) S a—>\1 (3'9)

It follows also that
d 2 2 ‘f‘Q
a\um\ + ad|ug,|© < A (3.10)

Besides, using (2.9) and (2.13) we deduce an estimate for z; from (3.8)

A 1
] < (-l + 5—If1)
m

A m+1

Hence, by using this estimate and by integrating (3.9) and (3.10) respectively we com-
plete the proof. O

Proposition 3.3. We have, as m — oo, that

(i) z5(m) — 0 in L?(0,T; H) strongly;

(i) zg(m) — 0 in L?(0,T;V) weakly;

(i) zg(m) — 0 in L>°(R*; H) weak-star.

Proof. We also infer from (3.8) another inequalitry

1/2
M2 26l < e[t ]| + |£1).

Combining it with the results of Proposition 3.2, we find that

>‘71n/42-125 remain bounded in L*(0,T; H).
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However, we know that lim )\, = oo. Hence, (i) follows.
m—0o0

(ii) and (iii) are direct consequences of Proposition 3.2. O

Proposition 3.4. There exist an element u* and a subsequence m' such that, as
m' — oo,

(i) wpy — u* in L?(0,T;V) weakly;

(ii) Uy — u* in L®(RT; H) weak-star;

(iii) wpy — u* in L2(0,T; H) strongly;

(iv) dldL:ﬂ — du in L?(0,7T; V") weakly.

Proof. Obviously, (i) and (ii) are consequences of Proposition 3.2.

By (2.12) and the inclusion V. .C H C V', we know that B(um, tm), B(um, zs) and
B(2s,um,) are all bounded in L?(0,7;V"). Due to (2.8) and Proposition 3.3, we derive
that

d
% remains bounded in  L?(0,7T; V")

which implies (iv).
By virtue of a classical compactness theorem!”, we get (iii). O
Proposition 3.5. For the trilinear terms, we have, as m — oo, that
(i) Bty s Uy, 0) — b(u*, u*,v) in L'(0,T) strongly;
(i) b(wm, Zs(mr),v) — 0 in L'Y(0,T) strongly;
(iii) b(Zy(1)s s, v) = 0 in L1(0,T) strongly.
Proof. At first, we have simply that

7

b(um’ y Um/ 'U) - b(U*a u”, 'U) = b(um’ — U, U, U) + b(U*u Uy — U7, U)

By Sobolev imbedding theorem and Propositions 3.2 and 3.4, we derive that

b(tpyr — U™ Uy, 0)] —‘/ m — u* 8umlvd ‘

S(/o e () — u* () |2 dr / ‘ 1/4(/01 v4d:1:)1/4

<t ot — | < c|um« S vee o

and
Ib(u*, wyy — \_\/ vd:v‘ </ ( “)‘d:p
/|um (@) Pda) /\ 0)"”
LA —\ )"+ /; —\ dxf”}
<clum —u'| VEeE[0,T).
So we get

T T
/ |b(tr s Uy, v) — b(u™, u™, v)|dt < c/ (U (1) — u*(t)|dt — 0 as m' — oc.
0 0
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Recalling that (2.12) and Proposition 3.2 and Proposition 3.3, we find easily the proof
of (ii) and (iii). O

As a consequence, we have

Proposition 3.6. The limit u* satisfies

dt

{ d (u*,v) + (A + C)u*,v) + b(u*,u*,v) = (f,v) forallveV
u*(0) = ug

Hence, u* = u is the solution of (2.4) (2.5).

In view of the passage to limit, we find that u* = w is the solution of problem
(2.4) (2.5). Since this solution is unique, we know from [7] that the convergences in
Proposition 3.4 and Proposition 3.5 hold for the whole sequence m.

Finally we consider as in [4] that the expression

1 T
X = 5lum(T) —u(T)\2+/ (Nt — w4+ (C (g — ), iy — u) + [|25]|” + (Czs, 25) }t.
0

We show exactly as in [4] that X,,, — 0 as m — oo. This shows that

U (T) — u(T) strongly inH
Um — U, Zg(m) — 0 strongly inL?(0,T;V), VT > 0.

Using the Lebesgue dominated convergence theorem we have furthermore
U = Uy Zg(m) — 0 in LP(0,T; H) strongly, for all 7 > 0, and all 1 <p < oo.

Up to now, we obtain the convergence result of our nonlinear Galerkin method with
variable modes. i.e.

Theorem 3.7. For ug given in H, the approzimate solution u,, + zs determined
by (3.2)—(3.4) converges, as m — oo, to the solution of Kuramoto-Sivashinsky equation
(2.4)—(2.5) in the following sense:

(i) um = u, 24m) — 0 in L?(0,T;V) and LP(0,T; H) strongly for all T > 0, and
all 1 <p < o005

(i1) wm = u, Zy4m) — 0 in L°(R*; H) weak-star.

4. Error Estimation

In order to analyze the error of our methods, let us decompose orthogonally the
space H into H = PH & QH, where operator ) = Q,,, = I — P. We associate to any
orbit u of (2.4) in H its projectories p = Pu, ¢ = Qu. Projecting (2.4) on PH and QH
(noting that P, commute with A and the powers of A, and that C is a power of A or
a linear combination of powers of A), we obtain a coupled system for p, ¢

%-I—Ap—i-Cp—i-PB(p-l—q):Pf (4.1)
d
X o Aq+Cq+QB(p+q) = Qf (4.2)

dt
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We suppose that the initial datum ug in (2.5) satisfies |ug| < Ry, ||uo|| < Ry, for certain
constants Ry, R1. It is well-known that there exists a time ¢, depending on Ry, R, and
the other data «, |f| and Ay such that for ¢t > ., |u(t)| < My, |lu(t)| < M;, where My,
M, are independent of ugy, but depend on the other data.

Upon taking the scalar product of (4.2) with ¢ and using (2.6) we find

1d
574"+ (A+C)g.q) = (Qf 0) — (B(p,p),9) — (B(g:p):0) — (B(p,9),9)
Making use of (2.7), (2.12) and (2.13) and noticing that there exists a constant ¢ > 0
such that Ju?
)\1 u 1/2 ’
(3_T\Au|2) <, VYue D(A)

We know that

L4100 4 alll? <IQ7al + es (3 — 220N 1oi1q) + ernllallel + eoc lolllala
thq qll > q 6 7'|Ap‘2 bl 1q HIPIIGI9 6C IPIIGI19
<( At V2 2 1272

<(1Qf] +CG(3 - ) M7 + 1 MY + cg¢ Ml)‘Q|
TAm4+1
/
—1/2 « C
<AL 1R+ M)l < Slall? + —Z—(IQF + M)
a>\m—|—1

!

(1Qf1* + M)

d o 2

—lq|” + aA <
dt‘q| m+1‘q| _a>\m+1
By integration in time we find

/

— At (bt C
a0 < lg(t)Pem 100 4 B (IQF + M)
m—+1

/

2
If we write k' = \/a:32 (|f|2 + M), we can obtain
1

1 2 Mg \?
)

A
)] <K' (=), fort >4, #h = max{t., b, + log =5

m+1 a>\m+1

Similarly, we can prove

A 1/2 py 1/2
el SKI(A—L) 2ol <#(5 1“) P Ag) <K, for large £.  (4.4)

Let us define a mapping

®:.PH—-H
®(p) = (A+C)"(I = Pn)(f — B(p)) Vp€PH
and denote by M the graph of ®. According to (4.3) and (4.4), we set the induced

trajectories Uy, + Zm, Zm = ®(u,y,) associated to u(t) as in [10] and [2], then there exists
a k > 0 such that

A )3/2

dist (u, M) < |u— (um + Zm)| < K(A
m+1

(4.5)
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Let us define another mapping

V:PH > H
U(p) = (A+C) (P, — Pu)(f ~ B(p)) VpePH

and denote by N the graph of ¥. Thus, we obtain the first error estimation of our

NLG method as follows:
Theorem 4.1. There exist constants k1 and ko such that

1 3/2 1
dist(u,/\/)S\uf(um—l—zs)\gnl()\ 1)/ MQ(A 1) (4.6)
m-+ w—+

Proof. Thanks to (4.5), (2.12) and (2.14), we deduce that

dist (u, N) <l — (um + 25)| < |u— (um + Zm)| + [(um + Zm) — (um + 25)|
A1 \3/2
< (o) 1 (m) — W)
A 3/2 _
<h(5=) T I+ O = RS = Blum))
A 32 101 A 1 \3/2 1
< - < . O
_H( m+1) +a>\w+1(‘f‘+C5M1)_Kl(AmH) +K2(>\w+1)

Remark 4.2. It is well-known that the eigenvalues of the one-dimensinal Kuramoto-
Sivashinsky equation are

Aj = (?)4, j=1,2- (4.7)

If we hope that the nonlinear Galerkin method with variable modes can attain to its
better precision, (4.6) suggests that we choose the number of modes, w(m), so large that

1 3/2 3
KZQ( ) < /ﬁ( ) / . Combining with (4.7) we should at least set O(w(m)) > =
Awt1 Am1 2

as m — oo. i.e. we should take

w(m) > my/m (4.8)

We give a result derived from Parseval identity. (See e.g. [1])
Lemma 4.3. Ifu € HJ(0,1), then there exists a ¢ > 0 such that

a
a

dz°

(4.9)

lu — Ppul < cm™

This lemma is frequently used in the process of error analysis. Recalling the Section
2 (also [5]), it is reasonable to devide the error estimation process into two steps: | < 27
and [ > 27.

I Case 1: | < 2.

In this case, (3.2) and (3.3) reduce to

Ouy Oy 0%up, O, O, 0z

Py (1 2 4 5 i il 4.1
5t et g T Pn(um g T Fun ) =0 (410)
Oz 0%z Oup,
ot "o T (P~ Pm)(um ox ) =0 (4.11)
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The results of the following two lemmas are straightforward.
Lemma 4.4. There exists a 8 > 0 such that, for any w € D(A), we have

(A + C)w, Aw) > Bl Aw|? (4.12)

[ \2
Proof. Direct computation shows g <1 — (2—) .
7

Lemma 4.5. For the approzimate solution um, + zs of (4.10) (4.11), we have
Uy € L°(RY; H)NL*(RT; V)
zs € L°(RT: H)N L2 (R*; V)
Proof. Thanks to Proposition 3.2, all we need to do now is to show that u,, and z;

are both in L?(R*; V). However, this is easy. Because of (3.9) and f = 0, we integrate
it from 0 to ¢ and get

t
() +a [l + 22)dr < Juof* Ve >0
! 2 2 1 2
[ Gl + 2 B)dr < Zfuol® - v >0

This completes the proof. O
From now on, we denote

u— (um + 25) = p(z,t) + 0(z,1) (4.13)
where

p(x,t) =u— Pyu 6(z,t) =601(z,t) + Oa(z,t)
t)

01(x,t) = Ppu — Uy, 6Oo(z,t) = Pyu — Ppu — 24

We have the error estimation theorems
Theorem 4.6. For ug given in H, it follows that
(i) Ju = (um + 25)| = O((w(m) 7 + A, Lym ) uniformly for t > 0

(ii) / [ — (um + 25) | 2dt = O((w(m)) > + A% m~%7)
0
Proof. By (4.13), we know that 6(z,t) satisfies

00, ou Oy, au 0z

—+ A P, — —_— =

o+ ABL £ Co + ( o (um R ax)) 0 "
00, ou Oy, 0zs

Taking inner product of (4.14) with 6; and of (4.15) with 6,, we obtain respectively

1 00 00
101 - allnl” <3 (suplu + -+ 24l — (s + 2] | 1\+/|5|\ |

S§II91H2 —SUPIU+Um+Zs\ (lp* +16%) /Izs\4dm
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and

892 825

1
dt\92\2+a|\02||2 isup|u+um\|u um\‘

(67 C
< l6al” + = SUp (14 + 1| (ol + 1617 + 1251)

|02

-+

2
825 2

Adding them together, we have

d
(10117 +162) + a(l0n]1” + 1162])
C
<= (llu+ um + 217+l wnll” + 1207 (ol + 161

T N (4.16)
By Lemma 2.1 and Lemma 4.3 (see also [12] for the detail), we have
_ 0z
5= 00Gham ) [ %] = 0 am ) (@.17)
Applying Gronwall inequality (Lemma 2.2) to (4.16), we obtain
OO + 00+ [ (10117 + 1617
=0((w(m)) ™% + )\m+1m 29) uniformly for t > 0
Note that |p| = O(w™?), we complete the proof. O
Theorem 4.7. For ug given in 'V, it follows that
(D)llu — (um + z) | = O((w(m)) ™7 + Ay ym™7) uniformly for t >0
(4.18)
() [ 1A= (an + 20)) Pdr = O((w(m) 27 + X m ™) (4.19)
(iii) sup |u — (U, + 25)| = O((w(m)) ™7 + A, ym™7) uniformly for t > 0
g (4.20)

Proof. Similarly, we take inner product of (4.16) with A6, and of (4.17) with Af,.

Thanks to Lemma 4.4, we obtain

C
—||91||2 +BlAG P < Zmax{ [lum + 2], [[ull, 1217} (lol* + 116]% + [12511%)

Q

and

0z |2

)

d
Eﬂ%m+ﬁM%F_5@mﬂw%wHW}mﬂ?+WW+ng|+\

Adding the corresponding inequalities, we get

d
E(HHIHQ +[162]1%) + B A6 > + | AB, %)
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)

0z
ot

C
Sg(max{llumllga lall?, 11z 12} (oIl + 1017 + [1251%) + \

and

l
161 (£)II + 1162 (2)11* + 5/0 (| A1 (1) + [ABy(7)|*)dr
=0 ((w(m) 7 + )\,;ilmf%)uniformly for ¢t > 0.

This shows (i) and (ii).

By virtue of Sobolev imbedding theorem, (iii) is also verified. Hence, the proof is
concluded. O

II. Case 2: 1> 27

In this case the Lemma 4.4 and Lemma 4.5 do not hold true. Therefore, the
conclusion about the time ¢ is weakened.

Theorem 4.8. For ug given in H, it follows that

(i) lu — (um + 25)| = O((w(m)) 7 + Apppym ™ ) for 0 <t < T;

(4.21)
.s T 2 2 2 2
(ii) /0 | — (um + 25)||dt = O((w(m)) =" + A, ym =) (4.22)
Theorem 4.9. For ug given in V', it follows that
(D |lu — (um + 25)]] = O((w(m)) ™7 + )\,;lﬂm*“) for 0 <t <T,
(4.23)
- 2 2 2 2
(ii) /0 |A(u — (um + 25))(7)]7dt = O((w(m)) = + X, m =) (4.24)
(iii) sup u— (um + 25)| = O((w(m)) ™ + A, ym™7) for 0 <t <T. (4.25)
Remark 4.10. Thanks to (4.7), the above theorems suggest that we choose
w(m) > m'ts (4.26)

in which case the order of error reduces to O(m 4-7).
Combining with the Theorem 4.1 and the discussion there, we eventually find the
least number of modes
4

w(m) = wiin 2 7 - max{m[v/m], m[m?=1}. (4.27)

where 7y is a positive constant. According to this choice, we use s = wmin — m modes
to approximate the small structures component. The approximation involves a total of
Wmin modes, which brings our NLG method to the possibly highest precision.

5. Numerical Experiment

We describe here the results of computational tests performed with our nonlinear
Galerkin method with variable modes (3.2)—(3.4). Comparisons are also made with the
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usual nonlinear Galerkin method and the classical Galerkin method. In all cases the
time discretization is implicit in the linear terms and explicit in the nonlinear terms.
Two examples will be discussed in the following part.

Example 5.1. We change a little bit of the equation (2.1) by adding a nonhomo-
geneous term f on the right-hand side of (2.1). We use also a viscosity v to replace
A by VA in the equation. All the theoretic results are also true. In this situation the
solution u is a priori chosen and f is determined from (2.1). Hence the exact solution
of the equation is known and it is easy to test safely the accuracy.

Our NLG method with variable modes here becomes:

O,

O, O, Ozg\ ~
W+(VA—I—C)um—G-Pm(umW—l-st—i-um%) =P,f (5.1)
Oou,, ~
(VA+C)ZS + (Pm+s _Pm)(um%) = (Pm+s _Pm)f (5'2)

The exact solution u = u(z,t) is:

u=g(t)- (sinT:L“ + ef‘/ﬁsinNT.r) (1 =2n/l, N =150)
1

2 4
g=g(t) = el
oS (=
Therefore,
- 1
f=f(z.t) = (¢ +vrtg — %g)sinTz + §Tg2 sin 27z
1
- i(N - 1)e7‘/NTg2 sin (N — )7z + (¢’ + vrigN* — TQQNQ)ei\/NSiIlNT{E
1 1
+ §(N + 1)e7‘/NTg2 sin(N + 1)1z + 5N672\/N7'92 sin2Ntx

The time step is set to be At = 1073, the viscosity v = 0.48 and [ = 97/5. With
m = 64 and s = 106 we employed five methods to compute.

a) NLG method with variable modes (644106 modes).

b) NLG method (85485 modes).

c¢) Galerkin method (170 modes).

d) NLG method (64+64 modes).

e) Galerkin method (128 modes).

Computational results show that the accuracy is about the same for methods a),
b) and ¢), which is higher than that of d) and e). In like manner, the accuracy is also
about the same for both d) and e). However, Table 5.1 shows the gain in computing
time for the method a): the gain over b) is approximately 5%, over c¢) is approximately
12%. In less modes cases, both d) and e) use about the same CPU time. (See, e.g.,
Table 5.2).
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Table 5.1 Computing Time in Second
(more modes)

Table 5.2 Computing Time in Second
(less modes)

t= methods t= methods

a) b) c) d) e)
100 - At | 9.36 9.70 10.54 100 - At 5.83 5.83
200 - At | 18.71 | 19.54 21.19 200 - At 11.73 11.76
300 - At | 27.85 | 29.22 31.80 300 - At 17.55 17.65
400 - At | 37.16 | 39.02 42.35 400 - At 23.63 23.47
500 - At | 46.69 | 48.90 52.98 500 - At 29.50 29.56
600 - At | 56.04 | 58.57 63.50 600 - At 35.43 35.53
700 - At | 65.34 | 68.06 74.14 700 - At 41.21 41.56
800 - At | 74.42 | 78.19 84.74 800 - At 47.28 47.51
900 - At | 84.12 | 87.89 95.81 900 - At 53.08 53.03
1000 - At| 93.25 | 97.54 106.22 1000 - At 58.79 59.09

Example 5.2

We use the equation (2.1)—(2.3) without nonhomogeneous term on the right-hand
side. In this case we do not know what the exact solution u(z,t) is although it ex-
ists. Meanwhile we use also five methods to compute the approximate solution of the
equation. Here we set: At =10"3, v =4, = 97/5;m = 64 and s = 106.

a) NLG method with variable modes (64+106 modes).

b) NLG method (85485 modes).
¢) Galerkin method (170 modes).
d) NLG method (64464 modes).
e) Galerkin method (128 modes).

Table 5.3 Computing Time in Second
(more modes)

Table 5.4 Computing Time in Second
(less modes)

t= methods t= methods
a) b) <) d) e)
500 - At 37.67 39.93 44.54 500 - At 23.58 26.51
1000 - At 76.12 79.90 88.87 1000 - At 47.42 52.81
1500 - At 113.43 | 120.20 | 133.25 1500 - At 71.57 78.88
2000 - At 150.97 | 159.48 | 178.23 2000 - At 93.95 105.14
2500 - At 188.61 | 199.08 | 222.47 2500 - At 118.59 131.75
3000 - At 227.73 | 239.05 | 266.25 3000 - At 141.72 157.61
3500 - At 263.91 | 278.08 | 311.53 3500 - At 164.99 182.99
4000 - At 301.08 | 318.43 | 354.72 4000 - At 189.09 210.24
4500 - At 343.46 | 357.95 | 399.26 4500 - At 212.74 236.54
5000 - At 376.48 | 398.16 | 444.34 5000 - At 236.65 262.10

Note that here we use a variation of (3.2) (3.4) to implement practically the non-
linear Galerkin method (with or without variable modes) in the cases a), b) and d).

The variation reads:

OUm
ot
0z
ot
Um(o) = Prug

— + WA+ C)uy + Py (um—

+ WA+ C)zy + (Pys = Pn) (um

O Ou, Ozs\
+ 24 D + Um%) =0 (5.4)
O\
W) =0 (5.5)
(5.6)
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The computational results show that the gain in computing time for the method
a) over b) is approximately 5.5%; the gain for a) over c) is approximately 15%. In less
modes cases, the gain for the method d) over e) is approximately 10%. (See Table 5.3
and Table 5.4.)
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