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Abstract

As is well known, solving matrix multiple eigenvalue problems is a very difficult
topic. In this paper, Arnoldi type algorithms are proposed for large unsymmetric
multiple eigenvalue problems when the matrix A involved is diagonalizable. The
theoretical background is established, in which lower and upper error bounds for
eigenvectors are new for both Arnoldi’s method and a general perturbation prob-
lem, and furthermore these bounds are shown to be optimal and they generalize a
classical perturbation bound due to W. Kahan in 1967 for A symmetric. The algo-
rithms can adaptively determine the multiplicity of an eigenvalue and a basis of the
associated eigenspace. Numerical experiments show reliability of the algorithms.
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1. Introduction

[20]

The Lanczos algorithm!“” is a very powerful tool for extracting a few extreme

5221 Gince the

eigenvalues and associated eigenvectors of large symmetric matrices!*
1980’s, considerable attention has been paid to generalizing it to large unsymmetric
problems. One of its generalizations is Arnoldi’s method!’25]. It can be used to compute

[10,11,24,25,26,28] Ty order

outer part of the spectrum and corresponding eigenvectors
to improve overall performance, Saad[*” suggested to use it in conjunction with the
Chebyshev iteration. There are other variants available; see, e.g. [12, 13, 16, 17, 19,
24, 28].

To apply Arnoldi’s algorithm and its variants to practical problems, one must ac-
count for the following difficulty!3:6:8l;

Difficulty® Multiple eigenvalues are a common occurrence.

In the symmetric case, Parlett and Scott!?!! used the Lanczos algorithm with se-
lective orthogonalization to solve Difficulty*. Their algorithm maintains the semi-

orthogonality among the Lanczos vectors so as to avoid the occurrence of spurious
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eigenvalues and determines the multiplicities of the required eigenvalues and the as-
sociated eigenspaces by restarting. The key idea is that, before restarting, a new
initial vector is orthogonalized with respect to all the converged eigenvectors until the
eigenspace associated with a multiple eigenvalue is found.

In the unsymmetric case, the situation becomes much more complicated. The strat-
egy of restarting2!l cannot solve Difficulty* since the eigenvectors of unsymmetric ma-
trices are, in general, not mutually orthogonal just as those of symmetric matrices
are. The mutual orthogonality of eigenvectors forms the basis of the algorithm in [12].
Theoretically speaking, a simple simulation of the idea used in [21] suggests that be-
fore restarting we use Arnoldi’s method with a new initial vector orthogonal to all the
left eigenvectors of the matrix A associated with all the converged right eigenvectors.
Proceeding in such a way, we can find the multiplicities of the required eigenvalues
and determine the associated eigenspaces. However, an easy analysis/??l shows that
Arnoldi’s method is inefficient for computing the left eigenvectors of A. Of course,
one can apply Arnoldi’s method to A, the conjugate transpose of A, to get the left
eigenvectors of A, while this doubles the amount of computation.

In order to deal with Difficulty®, generalized block Lanczos methods are studied in
[10, 14]. They can be used to compute outer part of the spectrum and corresponding
eigenvectors, up to a multiplicity equal to block size when A is diagonalizable. However,
if the multiplicities of the required eigenvalues are bigger than block size, the block
algorithms themselves are not able to determine the multiplicity of an eigenvalue and
the associated eigenspace. Therefore, to be able to detect the multiplicity, the block
algorithms have to combine with other techniques in practice.

In this paper, we design Arnoldi type algorithms for solving Difficulty* when A is
diagonalizable. As is seen from [10, 14], the proposed idea is important not only in
its own right but also indispensable for the block Arnoldi method when block size is
smaller than or equal to the multiplicities of the required eigenvalues.

In Section 2, we introduce the notation used and go through the underlying Arnoldi
algorithm; in Section 3, assuming that A is diagonalizable, we present the theoretical
background of the Arnoldi type algorithms to be proposed in Section 4. Some of
the results, i.e. theoretical error bounds for eigenvectors, are new for both Arnoldi’s
method and a general perturbation problem; in Section 4 we present two Arnoldi type
algorithms to solve Difficulty®; in Section 5, we discuss some implementations of the
algorithms; in Section 6, we report three numerical examples to show reliability of the
algorithms, followed by some concluding remarks in Section 7.

2. The Underlying Arnoldi Algorithm

2.1. Notation

Throughout the paper, assume that A is an N x N real diagonalizable matrix,
N > 1 and it has M distinct eigenvalues A;, where the multiplicities of \; are d;, i =
1,2,---, M. Under this assumption let P; be the d;-dimensional eigenspace associated
with \; and the columns of ®;4, = (@1, @iz, - - -, pid;) form a basis of P;, where ||¢;;|| = 1
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and || - || denotes the 2-norm. Let W;4. = (vi1,%i2, -, %iq,), where 1;; are the left
eigenvectors associated with )\; such that wﬁggpij = Okj, k,j = 1,2,---,d;. Here the
superscript H denotes the conjugate transpose of a matrix, a vector and a scalar and
0x; the Kronecker delta. We want to compute a few, say r, special eigenvalues, e.g. those
A; with largest (smallest) real parts or largest moduli, and determine the corresponding
multiplicities d; and bases of P;, 1 =1,2,---,r

We denote by K, (v, A) the Krylov subspace spanned by v, Av, - - -, A™ v, by 7, (v)
the orthogonal projector onto ICy, (v A) and by 6(z,y) the acute angle between two

nonzero vectors x and y. Let P; = Z (pl]z/)l] be the eigenprojectors associated with );,

7=1
i=1,2,---, M.

2.2. The Underlying Arnoldi Algorithm
A basic Arnoldi process can be described as follows.
Algorithm 1. Arnoldi’s process

1. Start: Choose a real initial vector vy, ||v1]| = 1, and the steps m of Arnoldi’s
process.
2. Iterate: For I =1,2,---,m do
2.1. w = Avj.

2.2. For j =1,2,---,1 do
hj, = ’UJHA’UZ,

w = w — hjv;.

2.3. hygn = [Jw].

2.4. vps1 = w/hysq.

This algorithm generates an orthonormal basis {v;}1* of K, (v1,A). Define the
matrix V,, = (vi,v9,---,vy). In the basis {v;}7", the restriction of A to ICp,(vi, A)
is represented by an upper Hessenberg matrix H,, = V! AV,, with the entries hji
computed by Algorithm 1. The m eigenvalues )\Z(-m), called the Ritz values of A in
K (v1, A), of Hy, are used to approximate m eigenvalues of A, and the corresponding

(m)

approximate eigenvectors ¢,
by

called the Ritz vectors of A in KC,,(v1, A), are computed

™ = V™, (1)
(m)

are eigenvectors of H,, associated with A;

(m)

where y;

How good some approximations are can be measured in terms of an a-posteriori
bound

1™ = 1A = A D™ || = by | ey™ |, (2)

in which e,, = (0,0,---,0,1)". (2) can be used as a stopping criterion which checks

cheaply the size of the residual without computing gol(m) by (1 )

11,12,14,25,26)

In terms of the a-priori theoretical analysis! |rl || has been proved to

;|
converge to zero as m increases if the behavior of Ritz pairs )\Em), gol(m), 1=1,2,---,mis
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not too bad'”, and it usually tends to zero first for the right-most and left-most eigen-
values and the corresponding eigenvectors. If the eigenproblem of A is ill conditioned,
m might be quite large in order to make Algorithm converge.

Since Algorithm 1 has to save all the vectors v; generated previously and its amount
of computation increases quadratically with steps, the above Arnoldi algorithm usually
has to be used iteratively in practice. In order to improve efficiency, an iterative Arnoldi

927 The purpose of using the

algorithm can be accelerated by the Chebyshev iteration
Chebyshev iteration is to amplify the components of an initial vector in the directions
of the required eigenvectors. The resulting algorithm is called the Arnoldi-Chebyshev

algorithm.

3. Theoretical Background

We now establish the theoretical background of Arnoldi type algorithms for solving
Difficulty* when A is diagonalizable.

Let us choose a set of vectors vgl),v?), e ,vgk). Then each v%j),l <7 <k, can be
expanded in the eigenspaces P;, ¢ = 1,2,---, M as

Ugj) =bj10i1 + bjoiz + -+ + bjq, pia; + Uz(j)a (3)
W ePi @ @P @P @@ Py, 1< <k, (4)
where @ denotes the direct sum.
Let

bin bia -+ big,

bor  boo - by,
Br=| . : : (5)

b1 bro -+ by,

Assume that the matrix By is row full rank for & < d;. Obviously, By is row rank
()

deficient when k > d;. We rewrite the above v;’’ as
vy) = B;pij + ulm, ulm EPI® - BPi1®Pit1® - D Pwm, (6)
where ¢;;, 7 = 1,2,---,k are also unit norm eigenvectors associated with \; and (;
normalizing factors. Under the assumption on By, just as {y;; }?i:l, {@ij };-li:l is also a
basis of P;, and for k > d;, ¢ij, j = d; +1,---,k belong to the span of {(ﬁm};l;l
Define @, = ($i1, iz, -+, Pir) and Wig = (i1, io, -+, Pix), where 1;; are the left
eigenvectors associated with A; such that wg‘ﬁiy‘ = Okj.

Following a result of [25], we have the following a-priori residual bound.
Theorem 1. Let

yym() = |mn (@) AL = 70 (0))]).

Then for the eigenpairs X;, ¢;j, 1 <i < M, 1 <j <k, we have

1(Am (0) = XD @igll < VAZOD)+ | A P = 7 (087) G351, (7)
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where Ap, (v (j)) = Wm(vgj))Awm(vgj)).

Therefore, whether some of the eigenpairs )\EJ ), <p§] m) = ,2,---m,j=1,2,---,k

of Am(vg )) are good approximations to A;, ¢;; or not heavily depends on the behavior

of ||(I — Wm(vg ))@ijll. Tt is shownl10:14:25:26] that the right-hand side of (7) approaches

zero as m increases, usually first for outer part of the spectrum. Furthermore, it is

[10,14,17]

shown that some Ritz pairs obtained by Arnoldi’s method starting with vgj),

1 < j < k converge to outer part of the spectrum and corresponding eigenvectors
provided the eigenproblem of Am(vy)) is not too ill conditioned and the right-hand
side of (7) tends to zero. According to the previous statement, we can find a basis of
()

‘P; approximately provided d; initial vectors v,"’ are chosen such that the assumption

on By of (5) is satisﬁed For k > d;, 952(-;”), j=d;+1,---, k will approximately belong
d;

Jj=1"
More concisely, we can determine the multiplicity d; and a basis of P; based on

to the span of {(p” }

the following strategy: First, choose an initial vector vg), and use Arnoldi’s method to

(m) ~(m)

compute a converged eigenpair \;; ", ¢;; ° to A;, ¢;1. Then, start with a second initial

(2) (m) ~(m)

vector v;”’, and use Arnoldi’s method to compute a converged eigenpair )\22 P9 to

i, @iz Having <pz(1 ), 901(2 ), we decide whether or not the matrix <I>l(2 m ((,oz(1 ), <pz(2 ))

is column rank approximately deficient. If not, this shows that d; > 2, and we take

& (m)

the columns of ®,, as a basis of P;; otherwise, d; = 1 and @g;ﬂ) is a basis of P;. We

(3)

stop, else continue restarting with a new initial vector v;"’. Proceeding this way until

at some (k + 1)th restarting, we have that the matrix &DEIT) = (QEET),@E?), . -,(,52(-,?))
is column full rank, but (I)(kll (9051 ), gégn), e 955221) is approximately column rank

deficient. This means that d; = k and the columns of ég;n) are an approximate basis
of P;.

To give a quantitative analysis for the above assertion, we have to study error bounds

for the approximate eigenpairs )\EJ ),go” ), 1= 1 2,-+-,r, 5 =1,2,---,k, in terms of
the a-posteriori computable residual norms ||r || =|(A - )\( ™y )(pg;ﬂ)H They can be

rewritten as

R A

Thus, the approximate eigenpairs )\EJ ),gogj m) = 1,2,---,r, 3 = 1,2,---,k are the

exact eigenpairs of the matrices (A — rgn)(ﬁl(;”)H
~(m) ~(m)H

are 7, ;. . We then have the following result [30, p.69].
Theorem 2. Assume ||rZ] I, 1<i<r,1<j <k, tobe small enough. Then

), in which the perturbation matrices

i = A< s |- IS+ O 1) (8)

From Theorem 2, we see that if A; is not very ill conditioned, ie |[i;]| is not very

(m) -

large, then )\Z-j is a good approximation to \; provided that ||r || is small, so that

)\5;”) obtained by different v§ ) are numerically equal for the same 3.
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Before deriving error bounds for approximate eigenvectors QBET)

lowing lemmal'%11),

, we need the fol-

Lemma 1. Let x1,x9,- -, xs be s vectors and aq,ao, -+, as be s scalars, and define
the matriz X = (x1,x9, -+, xs). Then
S 1 S
DI min | ;| (> 2, (9)
=1 inf ), diag. K(X D) 1<j<s =1

where D’s are s X s nonsingular diagonal matrices and k(X D) denotes the condition

number of XD, which equals the ratio of the largest and smallest singular values of

XD. ‘ ‘
Theorem 3. Let )\E;n),gﬁ(m) be a Ritz pair of A in ICm(v(]) A) and g(% = min

i ’ % I
| A — )\Z(-;ﬂ) |. Define the matriz
x50 = (Pig, - Pl P g Pud).
Then
. A DR
sin6 (5, 950 ) < (L = P)gi; |l < 7 1735 11 (10)
gi,m
If A is symmetric, then
) oy o 17
sin0(@ij, o) = (1 = Py | < —55— (11)
gi,m
Proof. 1t is well known that
PP =R, (12)

Hence we have

M M
(A=A D@m= (A=A ST REtm =S (- AT P,

Premultiplying the two hand sides of the above relation by I — P;, we obtain

(1= P)(A = N7 = 30 = A7) Py

ij ij
I£i
From Lemma 1, we have
(m) 7y ~(m) g(j) (m)
I(1 = P)(A =N D || > . Py
’ v inf w(X"D) ; Y

D diag.
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On the other hand,

10— PYA =X DE < 1T - PIA - A7 Deg? I < @+ B

By (13), we obtain

~(m) ) _ ~(m)
”(I*Pi)%j | = ZPl‘Pij
1#i

Therefore, combining the above three relations gives

inf w(X" D)1+ ||A])

~(m D diag.
I = P)BGY I < =
9im

3

7).

According to the definition of §(z,y), we have

sin (@5, @) = min | @7 — ol < 907 — gl | = (1 - P)@|.

Thus, (10) holds.

If A is symmetric, its eigenvectors are mutually orthogonal. In this case, ||I — P;|| =
L inf KXV D) =1 and sin (@, ¢00") = |(1 — )@\ | Thus, (11) holds. O

D diag.

We comment that (11) is a well known result; see [22, Ch.11, p.222] and [29, Ch.5,
p.250] for more general formulations. We have now generalized it to (10) for the un-
symmetric case.

From Theorem 3, the sensitivity of ¢;; depends on the sensitivity of the eigenvalue

i isa good approxima-

tion to ¢;; provided the eigenvalue problem of A is not too ill conditioned and gz(’]n)1 is not
(7) ) I
i,m .

MDY+ B = 1000,

problem of A, the gap ||7:l(]m)|| and ||7:l(]m) |. If ||7:l(]m) || is small, ¢

small, while if A is symmetric, the sensitivity of ¢;; depends mainly on g;°, and ||FZ(Jm

For example, if ||7~’Z(Jm)|| =108, HFZ(;n)H =1and inf k(X
D diag.

then sinH(gZaij,gZaz(?)) is no more than 107°. Such a gﬁl(;n)) can be considered to be a
good approximation to ¢;;.

Now we deviate from the topic of Arnoldi’s method for a while and study a general
eigenvalue problem that will be posed immediately. To this end we temporarily change
the notation used. The problem is stated as follows:

Assume that A is an N x N diagonalizable matrix and it has M distinct eigenvalues
Aj,j=1,2,---, M, and assume that a perturbed matrix A+F is also diagonalizable and
has the eigenpairs X;, @;, i = 1,2,--+, N with ||@;|| = 1, where E is a small perturbation
matrix. Suppose that 5\2-, 1=1,2,---, N are divided into M groups, in which each group
approximates one eigenvalue of A. Then if ); is used to approximate A;, how well does
i approximate some eigenvector associated with A;?

As was pointed out by Stewart and Sun [29, Ch.5, p.229] the problem of assessing

the accuracy of an approximate eigenvector in terms of a residual is very closely related
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to the usual perturbation problem, and the latter can be formulated easily and derived
trivially from the former. So Theorem 3 can be directly exploited to establish the
following result.

Theorem 4. Under the above assumptions and notations, let

dij=min | Aj — A i =1,2,---,N
i,J r]ggl| i k|a ? y 4 ,

(mathematically speaking, by a continuity argument, d; ; # 0 can be guaranteed once E
is sufficiently small), and define the matriz X; to be the matriz whose columns consist
of the eigenvectors associated with those A\, # Xj. Then there exists a unit norm
eigenvector, for brevity, say ¢;, associated with A; such that

inf k(X;D)(1+ (5]

. - N D diag.
sinf(p;, @) < (I — Pj)@ill < T 1]l (14)
0.
If A is symmetric, then
inf(p;,p;) = I—P<~-<HE| 1
sinf(e;, i) = (1 — Py)eill < —— (15)

l7]

From the proof of Lemma 1, it is seen that (9) cannot be improved, so the bounds
in Theorems 3-4 are optimal. Although it is not easy to construct such a concrete
example to show that these upper bounds are attainable, we are indeed able to present
an example to illustrate that the upper bound of (15) are almost so, that is, there are
A and E such that the ratio of the right-hand side and the left-hand side of (15)

||
dij
Sing((pja (752)

=1+ 0(|E); (16)

as shown below:
Construct the following symmetric matrix A and perturbation matrix ¥

a 0 0 €
A = E =
(0 b) ’ (6 0) ’
where a,b are real numbers with a > b, € is a positive number and ¢ < a — b.

Clearly, ||E| = e, and for the eigenvalue a and the corresponding eigenvector e;
of A, its perturbed eigenvalue and the corresponding unnormalized eigenvector are

(a +b+ \/m) /2 and (1, —2¢/ (a —b+ \/m))H, respectively.

It is easily verified that the left-hand side and the right-hand side of (15) are

2¢ 2¢

2 ’ — —b)2 2’
\/(a—b+\/(a—b)2+462) +4e2 bt V(o —b)" +de
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respectively. Then it is readily justified that for this example the left-hand side of (16)
is bigger than one and less than 1 +¢/(a —b) =1+ ||E||/(a —b) =14+ O(|| E|)).
Besides, we point out that the optimal lower bounds for sin# in Theorems 3 4 are
zero, namely, there are A and a nonzero perturbation matrix £ such that sinf = 0
always holds in Theorems 3 4. For example, assume that A = XAX ! is the eigen-
decomposition of a diagonalizable matrix A, and construct a perturbation matrix
E = X6AX~!, where A is a diagonal matrix with the diagonal entries \; and JA
is a nonzero diagonal matrix with the diagonal entries 0\;, s = 1,2,---, N. Obviously,
A+ E = X(A+0A)X " is the eigendecomposition of A + E, whose eigenvalues \; are
Ai+dN;, i =1,2,---, N. Therefore, \; and A have the same eigenvectors no matter how
dA changes, namely, sinf = 0 always holds in Theorem 4 no matter how §A changes.
From now on we restore the original notation used.

Theorem 5. Let amin(q)l(-;n)) and amin(éik) be the smallest singular values of the

matrices 'i)Z(-,TCn), D,i, respectively. Then

- (Hm) (D 5 oim)
O'mln(q)ik ) < Umm(q)zk) + \/Elrgjagxk ||Qpl] Pij || (17)

In particular, if k > d;, then

. (&H(m) 5 plm
Omin( @) SVE max |16 — 67" (18)
k . CrL ~(m ~(m
zu max ||r( )|| for small ||rl(j )|| (19)

where
Cir = max inf K(X-(m)D)(l +|B), gimm = min g(j)
1<j<k D diag. " TP g™
and Cj, = 1 when A is symmetric.
Proof. Let us decompose

Then in terms of [30, p. 101 102], we have

Umin(q)l(']T)) <Omin(Pik) + ”(iz(';gn) — Dy

- o (m)
<Omin(Pix) + \/Elfglgk @i — Pij I

If k> di, omin(®i) = 0. Note from Theorem 3 that for small HFZ(;n)H

— s .

|¢ij — 85%”)” = 2sin ~ sin0(¢ij,

Then we get (18) and (19). O
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(m)

Based on this theorem, we can decide if (i)zk , 4 =1,2,---,r, are approximately
column rank deficient in the sense of (19) and thus detect the multiplicities d; and
compute approximate bases of P;.

4. Two Arnoldi Type Algorithms

Based on the previous analysis, we can present Arnoldi type algorithms for deter-
mining A;, d; and bases of P;, 1 = 1,2,---,7 when A is diagonalizable.
Algorithm 2

1. Set k =1, define the set S = {1,2,---,r} and give a tolerance tol.

2. Start: Choose a real initial vector ng) of norm one and m > r, where m is the

steps of Arnoldi’s process.

(k)

3. Perform m steps of Arnoldi’s process starting with v;"’ and compute the m eigen-

values of the resulting Hessenberg matrix H,(rlf). Then select certain )\grlf), R )\Z?)
as approximations to the required Ay, -, A,.

(m)

4. Test convergence of r approximating eigenpairs )\Z.,T (m)

, @, using (2). If they all
drop below tol, then go to Step 5, else go to Step 6.

5. For alli € S, set ™ = (@™ ... g™ For k > 1, decide if &\™ for all i € S
are column rank deficient in the sense of (19) (how to use it sees later discussions
in Section 5). If yes, set d; = k — 1 and update S = § — {i}. If S = O, stop;
otherwise, assign £ = k + 1 and go to Step 2.

(k) (m)

6. Construct a new initial vector v,"" from ¢, ’, 4 = 1,2,---,r obtained from Step
4 by (1), then go to Step 3.

As was stated in Section 2, to enhance the efficiency of Algorithm 2, we suggest to
use it in conjunction with the Chebyshev iteration, and the resulting Arnoldi-Chebyshev
algorithm works for the right-most eigenpairs of A.

Algorithm 3

1. Set k =1, define the set S = {1,2,---,r} and give a tolerance tol.

2. Start: Choose a real initial vector v%k) of norm one, the steps m of Arnoldi’s

process and the steps n of the Chebyshev iteration.
(k)

3. Perform m steps of Arnoldi’s process starting with v;"’ and compute the m eigen-

values of the resulting Hessenberg matrix Hr(,f). Of them select A(lrlf), cee )\ykn) with
largest real parts as approximations to Ay, - - -, A, and set Ri",z) = {Ag@lk, cee Aﬂ)}.

4. Test convergence of r approximating eigenpairs )\52”), QEEIT) using (2). If they are

all below tol, then go to Step 8, else go to Step 5.
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5. From Rffz), identify an ellipse containing Rfan,z) but )\YIZ), cee )\ffg).
6. Generate an initial vector for the Chebyshev iteration from @Z(,T),i =1,2,---,r

obtained from Step 4 by (1).
7. Perform n steps of the Chebyshev iteration to obtain a vector z,, take ng) =
zn /| zn||, and return to Step 3.

8. Forallie 8, set 7" = (U™, ¢™). For k> 1, decide if (" for all i € S
are column rank deficient in the sense of (19). If yes, set d; = k — 1 and update
S§=8-{i}. If S =0, stop; otherwise, assign k = k + 1 and go to Step 2.

We refer to [9, 27] for details on Steps 5 7.

We point out that if A is symmetric then Algorithms 2 3 naturally work by reduc-
ing to the corresponding symmetric Lanczos and Lanczos-Chebyshev algorithms with
considerable savings in generating an orthonormal basis of a given Krylov subspace
because of the three term recurion formulas.

5. Implementations

Algorithms 2-3 are good in exact arithmetic. In finite precision, however, the com-
putation of w in Algorithm 1 can undergo a severe cancellation, so that the resulting
system {vy, vy, -, v, } might be far from orthonormal. To maintain the mutually or-
thogonality of {v;}7*, Saad[?® suggested to use the Gram-Schmidt method with iterative
refinement developed in [7] as an effective remedy for loss of orthogonality. It performs
reorthogonalization only when a cancellation occurs, and carries on reorthogonalization
as long as cancellation persists. By adopting the strategy of reorthogonalization, we
avoid the occurrence of spurious eigenvalues in Algorithms 2-3.

In implementations, Algorithm 1 is subject to breakdowns, that is, at some [th step,
I < m, we have h;;1; = 0. In fact, if some initial vector v; lies exactly in an invariant
subspace of dimension [ and not in any invariant subspace of smaller dimension, such
a phenomenon will occur. However, it is shown [27] that in this case Kj(v1, A) will
be invariant, which implies, in particular, that the [ Ritz pairs Al(l), wgl), 1=1,2,---,1
are exact. Therefore, such breakdowns are lucky. In finite precision, exact breakdowns
are rare, but near breakdowns are possible. At this time, the right-hand sides of (2)
are very small. This suggests that we stop Arnoldi’s process before the mth step once
such a case occurs. If [ < r, we continue Arnoldi’s process and seek more eigenvalues,
keeping those | ones that are already obtained.

For vgk),k =1,2,--- in Step 2 of Algorithms 2 3, we choose them randomly in a
uniform distribution. In such a way the assumption on By of (5) is satisfied in practice.

For Step 6 in Algorithms 2-3, we refer to [9, 25, 27].

Another important point is how to implement Step 5 of Algorithm 2 and Step 8 of
Algorithm 3.
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(m) )

From Theorem 5, when (i)zk is approximately column rank deficient, omyin(®,; ")
will be some small number depending on ||7~’Z(Jm) |, 1 <j<k. Note that Cj, and g; y, are
unknown a-priori in practice. But according to Theorem 5, we may adopt the following
criterion:

If restarting proceeds until the inequality

IN

holds, then A; is (k — 1) multiple. Here C], is a moderate factor, say, no bigger than
1000, which means that the eigenvalue problem of A is not too ill conditioned, and

9im = min | )\l(;ﬂ) — )\2(71%) . Note that if A is symmetric, we then take Cj, = 1,

1#1
Ghm = min(A"]; — AT MG - AT,

Finally, we point out that if \;;; = ); then ég?) and éng)k have the same rank
as A is assumed to be real. In this case, it is only necessary to determine the rank of
ol

ik

6. Numerical Experiments

We report three numerical examples to show reliability of the algorithms. They are
performed using MATLAB4.0 on an Intel Pentium 100MHZ with 40 MegaBytes primary
memory and double precision eps ~ 2.22 x 10716, The efficiency of the algorithms is
dominated by the number of matrix-vector multiplications, indicated by m.v.

Example 1. Consider the Chuck matrices from [2, 6]. The matrices have several
double multiple eigenvalues. The objective is to compute a few dominant eigenvalues
with magnitudes greater than one and bases of corresponding eigenspaces. In the
experiments to be reported below, we test the matrix CK656 which has largest order 656
among this family of matrices, and we want to compute the four dominant eigenvalues
of A and determine their multiplicities. The dominant eigenvalues of A are equal to
those right-most ones, so Algorithm 3 also works. We run Algorithms 2 3 for CK656,
and they stop as soon as all actual residual norms drop below tol = 10~ and k satisfies
condition (20), where we take all Cj;, = 1000. Tables 1 2 show the results and processes
of determining A;, d;, i = 1,2, 3,4 obtained by Algorithms 2-3, respectively, where “it”
denotes the number of iterations and svd(X) the set of all singular values of a matrix
X. The converged four eigenvalues are, e.g. for m = 15,

A1 =~ 5.50237837887538, A2 ~ 1.59397169682838,
A3 /= 1.41904261708523, Ay ~ 1.41195129689298.

It can be seen from Tables 1 2 that the algorithms solve the problem efficiently
and reliably. For this problem, the Chebyshev technique does not gain much since
Algorithm 2 itself is really fast already.
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Example 2. We construct a 1000 x 1000 matrix A = XAX ', where
) 1.9 0.5
Adlag([—2 1.9H H

7 =10,11,---,1000,
and X is generated randomly in a uniform distribution, x(X) = 148607. Therefore, the

1.9 0.5
-2 19

1.9 0.5

) 1_9} ,1.8,1.6,1.4,1 — (j — 1)/1000)

eigenvalue problem of A is quite ill conditioned. The matrix A has two three multiple
eigenvalues A\ = 1.9 +4, Ay = 1.9 — ¢ and the rest eigenvalues are simple.

Table 1.
of the four dominant eigenvalues of Example 1 by Algorithm 2.

The process of determining the multiplicities

m | it | mw Residual norms
1 2 3 4
15 | 8 120 | 1.7D —15 | 2.8D — 10 1.1D -9 24D —9
20 | 3 60 14D -9 1.56D —11 47D -9 8.2D — 11
25 | 3 75 | 3.7D—-12 | 9.7D —-11 | 93D —-10 | 47D -9
m | k svd(égzﬂ) svd(i)g:)) svd(i)g;")) svd(éf&?))
15 1 1 1 1 1
20 | 2 | 1.41316204 | 1.34519400 1.41325908 | 1.40831909
0.05452577 | 0.43640932 | 0.05194975 | 0.12898585
25 | 3 | 1.70722567 | 1.48993911 1.72952700 | 1.65897486
0.29219943 | 0.88322220 | 0.09346846 | 0.49779755
1.8D — 10 1.7D — 10 6.5D —9 7.2D — 8
)\1 )\2 )\3 )\4
Multiplicity 2 2 2 2
Table 2. The process of determining the multiplicities

of the four dominant eigenvalues of Example 1 by Algorithm 3

m | n | it | muw Residual norms
1 2 3 4
15 | 10 65 3.1D —15 | 1.3D —11 | 83D —11 | 1.5D — 10
20 | 10 50 eps 43D —10 | 42D -9 54D —9
25 | 10 50 eps 27D —15 | 1.1D—-13 | 1.5D — 13
m | k svd(éi?)) svd(&);:)) svd(&)é;:)) svd(éf{,?))
15 | 1 1 1 1 1
20 | 2 | 1.40437873 | 1.06366280 | 1.00067142 | 1.01730241
0.16649437 | 0.93199863 | 0.99932814 | 0.98239290
25 | 3 | 1.71678759 | 1.42597502 | 1.41421484 | 1.41507268
0.22943490 | 0.98315575 | 0.99999820 | 0.99878391
8.6D — 16 1.6D — 8 1.9D — 8 5.8D —9
AL | A2 | Az | A\
Multiplicity | 2 2 2 2

Both algorithms are run for A. We want to find the five right-most eigenvalues and
determine their multiplicities. The stopping criterion is as in Example 1. Tables 3—4
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show the results and processes of determining the required A;, d; obtained by Algorithms

2-3, respectively. The computed eigenvalues are, e.g. for m = 20,

Table 3. The process of determining the multiplicities

of the five right-most eigenvalues of Example 2 by Algorithm 2.

m | it | m.v Residual norms
1 2 3 4 5
15| 3| 45 | 17D—-13 | 17D—-13 | 95D —11 | 4D —-10 | 2.6D —10
20| 2| 40 |14D—-12 | 14D —12 | 95D —11 | 35D —11 | 1.2D — 11
30| 2| 60 | 24D —13 | 24D —-13 | 53D —11 | 3.7D—11 | 89D — 11
40 | 1 40 | 15D —-13 | 1.5D —-13 | 3.6D —11 | 7.6D —13 | 9.1D — 13
m | k svd(égf)) svd(&’g’;)) svd(&’g’;)) svd(éf&cﬂ)) svd(éé;:))
15 |1 1 1 1 1 1
20 | 2 | 1.29495985 | 1.29495985 | 1.41421356 | 1.41421356 | 1.41421356
0.56840036 | 0.56840036 | 6.8D — 11 3.3D — 10 3.D - 10
30 | 3 | 1.50060992 | 1.50060992
0.76550906 | 0.76550906
0.40269809 | 0.40269809
40 | 4 | 1.52352794 | 1.52352794
1.20323886 | 1.20323886
0.48070664 | 0.48070664
26D —10 | 2.6D —10
At | Ao | A3 | da | A5
Multiplicity | 3 3 1 1 1
Table 4 The process of determining the multiplicities
of the five right-most eigenvalues of Example 2 by Algorithm 3
m | n | i | mv Residual norms
1 2 3 4 5
15 1 20 | 2 50 2.D—-14 2.D—-14 22D -9 22D -9 | 71D —10
20 | 15 | 2 55 1.D —11 1.D—-11 | 28D —10 | 53D —10 | 2.3D — 10
10 | 20| 6 | 110 | 6.1D—11 | 6.1D—11 | 23D -9 45D —9 19D -9
25 | 20 | 2 70 | 6.5D—-13 | 65D —13 | 54D —13 | 3.7D —12 | 7.6D — 12
m | k svd(ég’:)) svd(&’érg)) svd(&’érg)) svd(ég’:)) svd(éé’:))
15 |1 1 1 1 1 1
20 | 2 | 1.30118434 | 1.30118434 | 1.41421356 | 1.41421356 | 1.41421356
0.55400299 | 0.55400299 | 2.2D —10 14D -9 1.D -9
10 | 3 | 1.51934966 | 1.51934966
0.77946537 | 0.77946537
0.28984632 | 0.28984632
25 | 4 | 1.71536589 | 1.71536589
0.97752801 | 0.97752801
0.31930995 | 0.31930995
1.6D — 11 1.6D — 11
At | A2 | A3 | A1 | As
Multiplicity | 3 3 1 1 1
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A1,2 = 1.90000000000006 =+ 0.99999999999969:, A3 ~ 1.79999999999678,
Aq = 1.59999999999615, A5 ~ 1.40000000000096.
We see from Tables 3—4 that Algorithms 2-3 have found A;, d;,7 = 1,2,3,4,5

efficiently and reliably. Again, for this example, the Chebyshev technique gains little.
Example 3. We construct a 1000 x 1000 matrix A = XAX ', where

A =diag(1.66,1.66,1.62,1.62,1.3,1, —5),
7 = 7a87"'a1000a

X is generated randomly in a uniform distribution and x(X) = 162636. Therefore, the
eigenvalue problem of A is quite ill conditioned. The matrix A has two double multiple
eigenvalues A\ = 1.66, Ao = 1.62 which are quite clustered, and the rest eigenvalues are
simple.

Algorithms 2 3 are run for this matrix. We want to find the four right-most eigenval-
ues and detect their multiplicities. The stopping criterion is as Examples 1 2. Tables
5—6 list the results obtained. The computed eigenvalues are, e.g. for m = 70 and
n = 60,

A1 = 1.66000000028226, Ao ~ 1.61999999883579,
Az /= 1.30000000011923, A4 ~ 1.00000000003169.

Table 5. The process of determining the multiplicities
of the four right-most eigenvalues of Example 3 by Algorithm 2
m it | mow Residual norms
1 2 3 4
100 | 14 | 1400 | 4.8D — 10 1.6D —9 856D —10 | 3.7D —10
110 | 10 | 1100 | 1.1D —10 | 49D —10 1.4D —9 2.5D —10
120 6 720 3.6D—11 | 93D —11 | 58D —12 | 29D —10
m | k svd(ég’:)) svd(tfgzl)) svd(ég’:)) svd(éi’:))
100 | 1 1 1 1 1
110 | 2 | 1.12394010 | 1.41395284 | 1.41421356 | 1.41421356
0.85834646 | 0.02715461 | 2.2D — 10 87D —11
120 | 3 | 1.31793692 | 1.73097850
1.12385154 | 0.06093795
6.5D — 10 1.6D —9
A | A2 | Az | A

Multiplicity | 2 2 1 1

As in Examples 1 2. the algorithms solved this multiple eigenvalue problem reli-
ably. However, Algorithm 2 converged quite slowly and it used many matrix-vector
multiplications to achieve the desired accuracy. This is not surprising because the re-
quired A\; and Ay are not well separated and the eigenvalue problem of A is quite ill
conditioned, while Arnoldi’s method is less efficient in this case; see [10, 11, 14, 25, 26,
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27] for a theoretical analysis. In contrast, Algorithm 3 was much better than Algorithm
2. This shows that the Chebyshev iteration may have a strong effect on the efficiency
of Arnoldi’s method.

A number of other experiments have been run, and they have shown reliability of
the algorithms provided Arnoldi’s method and the Arnoldi-Chebyshev method work

well.

Table 6.
of the four right-most eigenvalues of Example 3 by Algorithm 3

The process of determining the multiplicities

m | n it | m.w Residual norms
1 2 3 4
60 | 40 | 12 | 1160 29D —9 3.6D -9 94D — 10 3.D —10
70 | 60 4 460 6.6D —9 81D -9 22D -9 7.5D — 10
80 | 60 4 500 22D —-12 | 27D —-12 | 76D — 13 | 2.6D — 13
m | k svd((i'&")) svd(&)g,:)) svd(i)g,:)) svd((i)y;)
60 | 1 1 1 1 1
70 | 2 | 1.29817559 | 1.41359726 | 1.41421356 | 1.41421356
0.56101705 | 0.04174660 | 8.1D —10 | 2.1D —10
80 | 3 | 1.48380523 | 1.73089008
0.89348869 | 0.06339966
5D -9 1.3D -9
A X2 | Az | M\

Multiplicity | 2 2 1 1

7. Concluding Remarks

We have proposed Arnoldi type algorithms for solving large unsymmetric multiple
eigenvalue problems when the matrix is diagonalizable, supported by the theoretical
background. Some of the results are new for Arnoldi’s method and the perturbation
analysis of a general eigenvalue problem. Numerical experiments have shown reliability
of the proposed algorithms.

The idea used can be easily generalized to some other methods, e.g. the biorthogo-
nalization Lanczos method2", other variants of Arnoldi’s method, e.g. [13, 24, 28] and
the power method3?. At the same time, we point out that this idea is essential for the
block Arnoldi methods when block size is smaller than or equal to the multiplicities of
the required eigenvalues[w’l‘q, and it should work in other block methods, e.g.[w}.
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