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ARNOLDI TYPE ALGORITHMS FOR LARGE UNSYMMETRICMULTIPLE EIGENVALUE PROBLEMS�1)Zhong-xiao Jia(Department of Applied Mathemati
s, Dalian University of Te
hnology, Dalian 116024, China)Abstra
tAs is well known, solving matrix multiple eigenvalue problems is a very diÆ
ulttopi
. In this paper, Arnoldi type algorithms are proposed for large unsymmetri
multiple eigenvalue problems when the matrix A involved is diagonalizable. Thetheoreti
al ba
kground is established, in whi
h lower and upper error bounds foreigenve
tors are new for both Arnoldi's method and a general perturbation prob-lem, and furthermore these bounds are shown to be optimal and they generalize a
lassi
al perturbation bound due to W. Kahan in 1967 for A symmetri
. The algo-rithms 
an adaptively determine the multipli
ity of an eigenvalue and a basis of theasso
iated eigenspa
e. Numeri
al experiments show reliability of the algorithms.Key words: Arnoldi's pro
ess, Large unsymmetri
 matrix, Multiple eigenvalue,Diagonalizable, Error bounds 1. Introdu
tionThe Lan
zos algorithm[20℄ is a very powerful tool for extra
ting a few extremeeigenvalues and asso
iated eigenve
tors of large symmetri
 matri
es[4;5;22℄. Sin
e the1980's, 
onsiderable attention has been paid to generalizing it to large unsymmetri
problems. One of its generalizations is Arnoldi's method[1;25℄. It 
an be used to 
omputeouter part of the spe
trum and 
orresponding eigenve
tors[10;11;24;25;26;28℄. In orderto improve overall performan
e, Saad[27℄ suggested to use it in 
onjun
tion with theChebyshev iteration. There are other variants available; see, e.g. [12, 13, 16, 17, 19,24, 28℄.To apply Arnoldi's algorithm and its variants to pra
ti
al problems, one must a
-
ount for the following diÆ
ulty[2;3;6;8℄:DiÆ
ulty� Multiple eigenvalues are a 
ommon o

urren
e.In the symmetri
 
ase, Parlett and S
ott[21℄ used the Lan
zos algorithm with se-le
tive orthogonalization to solve DiÆ
ulty�. Their algorithm maintains the semi-orthogonality among the Lan
zos ve
tors so as to avoid the o

urren
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258 Z.X. JIAeigenvalues and determines the multipli
ities of the required eigenvalues and the as-so
iated eigenspa
es by restarting. The key idea is that, before restarting, a newinitial ve
tor is orthogonalized with respe
t to all the 
onverged eigenve
tors until theeigenspa
e asso
iated with a multiple eigenvalue is found.In the unsymmetri
 
ase, the situation be
omes mu
h more 
ompli
ated. The strat-egy of restarting[21℄ 
annot solve DiÆ
ulty� sin
e the eigenve
tors of unsymmetri
 ma-tri
es are, in general, not mutually orthogonal just as those of symmetri
 matri
esare. The mutual orthogonality of eigenve
tors forms the basis of the algorithm in [12℄.Theoreti
ally speaking, a simple simulation of the idea used in [21℄ suggests that be-fore restarting we use Arnoldi's method with a new initial ve
tor orthogonal to all theleft eigenve
tors of the matrix A asso
iated with all the 
onverged right eigenve
tors.Pro
eeding in su
h a way, we 
an �nd the multipli
ities of the required eigenvaluesand determine the asso
iated eigenspa
es. However, an easy analysis[23℄ shows thatArnoldi's method is ineÆ
ient for 
omputing the left eigenve
tors of A. Of 
ourse,one 
an apply Arnoldi's method to AH , the 
onjugate transpose of A, to get the lefteigenve
tors of A, while this doubles the amount of 
omputation.In order to deal with DiÆ
ulty�, generalized blo
k Lan
zos methods are studied in[10, 14℄. They 
an be used to 
ompute outer part of the spe
trum and 
orrespondingeigenve
tors, up to a multipli
ity equal to blo
k size when A is diagonalizable. However,if the multipli
ities of the required eigenvalues are bigger than blo
k size, the blo
kalgorithms themselves are not able to determine the multipli
ity of an eigenvalue andthe asso
iated eigenspa
e. Therefore, to be able to dete
t the multipli
ity, the blo
kalgorithms have to 
ombine with other te
hniques in pra
ti
e.In this paper, we design Arnoldi type algorithms for solving DiÆ
ulty� when A isdiagonalizable. As is seen from [10, 14℄, the proposed idea is important not only inits own right but also indispensable for the blo
k Arnoldi method when blo
k size issmaller than or equal to the multipli
ities of the required eigenvalues.In Se
tion 2, we introdu
e the notation used and go through the underlying Arnoldialgorithm; in Se
tion 3, assuming that A is diagonalizable, we present the theoreti
alba
kground of the Arnoldi type algorithms to be proposed in Se
tion 4. Some ofthe results, i.e. theoreti
al error bounds for eigenve
tors, are new for both Arnoldi'smethod and a general perturbation problem; in Se
tion 4 we present two Arnoldi typealgorithms to solve DiÆ
ulty�; in Se
tion 5, we dis
uss some implementations of thealgorithms; in Se
tion 6, we report three numeri
al examples to show reliability of thealgorithms, followed by some 
on
luding remarks in Se
tion 7.2. The Underlying Arnoldi Algorithm2.1. NotationThroughout the paper, assume that A is an N � N real diagonalizable matrix,N � 1 and it has M distin
t eigenvalues �i, where the multipli
ities of �i are di, i =1; 2; � � � ;M . Under this assumption let Pi be the di-dimensional eigenspa
e asso
iatedwith �i and the 
olumns of �idi = ('i1; 'i2; � � � ; 'idi) form a basis of Pi, where k'ijk = 1



Arnoldi Type Algorithms for Large Unsymmetri
 Multiple Eigenvalue Problems 259and k � k denotes the 2-norm. Let 	idi = ( i1;  i2; � � � ;  idi), where  ij are the lefteigenve
tors asso
iated with �i su
h that  Hik'ij = Ækj, k; j = 1; 2; � � � ; di. Here thesupers
ript H denotes the 
onjugate transpose of a matrix, a ve
tor and a s
alar andÆkj the Krone
ker delta. We want to 
ompute a few, say r, spe
ial eigenvalues, e.g. those�i with largest (smallest) real parts or largest moduli, and determine the 
orrespondingmultipli
ities di and bases of Pi, i = 1; 2; � � � ; r.We denote by Km(v;A) the Krylov subspa
e spanned by v;Av; � � � ; Am�1v, by �m(v)the orthogonal proje
tor onto Km(v;A) and by �(x; y) the a
ute angle between twononzero ve
tors x and y. Let Pi = diXj=1'ij Hij be the eigenproje
tors asso
iated with �i,i = 1; 2; � � � ;M .2.2. The Underlying Arnoldi AlgorithmA basi
 Arnoldi pro
ess 
an be des
ribed as follows.Algorithm 1. Arnoldi's pro
ess1. Start: Choose a real initial ve
tor v1, kv1k = 1, and the steps m of Arnoldi'spro
ess.2. Iterate: For l = 1; 2; � � � ;m do2.1. w = Avl.2.2. For j = 1; 2; � � � ; l dohjl = vHj Avl,w = w � hjlvj .2.3. hl+1l = kwk.2.4. vl+1 = w=hl+1l.This algorithm generates an orthonormal basis fvlgm1 of Km(v1; A). De�ne thematrix Vm = (v1; v2; � � � ; vm). In the basis fvlgm1 , the restri
tion of A to Km(v1; A)is represented by an upper Hessenberg matrix Hm = V Hm AVm with the entries hjl
omputed by Algorithm 1. The m eigenvalues �(m)i , 
alled the Ritz values of A inKm(v1; A), of Hm are used to approximate m eigenvalues of A, and the 
orrespondingapproximate eigenve
tors '(m)i , 
alled the Ritz ve
tors of A in Km(v1; A), are 
omputedby '(m)i = Vmy(m)i ; (1)where y(m)i are eigenve
tors of Hm asso
iated with �(m)i .How good some approximations are 
an be measured in terms of an a-posterioribound kr(m)i k = k(A� �(m)i I)'(m)i k = hm+1m j eHmy(m)i j; (2)in whi
h em = (0; 0; � � � ; 0; 1)H . (2) 
an be used as a stopping 
riterion whi
h 
he
ks
heaply the size of the residual without 
omputing '(m)i by (1).In terms of the a-priori theoreti
al analysis[11;12;14;25;26℄, kr(m)i k has been proved to
onverge to zero as m in
reases if the behavior of Ritz pairs �(m)i ; '(m)i , i = 1; 2; � � � ;m is



260 Z.X. JIAnot too bad[17℄, and it usually tends to zero �rst for the right-most and left-most eigen-values and the 
orresponding eigenve
tors. If the eigenproblem of A is ill 
onditioned,m might be quite large in order to make Algorithm 
onverge.Sin
e Algorithm 1 has to save all the ve
tors vl generated previously and its amountof 
omputation in
reases quadrati
ally with steps, the above Arnoldi algorithm usuallyhas to be used iteratively in pra
ti
e. In order to improve eÆ
ien
y, an iterative Arnoldialgorithm 
an be a

elerated by the Chebyshev iteration[9;27℄. The purpose of using theChebyshev iteration is to amplify the 
omponents of an initial ve
tor in the dire
tionsof the required eigenve
tors. The resulting algorithm is 
alled the Arnoldi-Chebyshevalgorithm. 3. Theoreti
al Ba
kgroundWe now establish the theoreti
al ba
kground of Arnoldi type algorithms for solvingDiÆ
ulty� when A is diagonalizable.Let us 
hoose a set of ve
tors v(1)1 ; v(2)1 ; � � � ; v(k)1 . Then ea
h v(j)1 ; 1 � j � k, 
an beexpanded in the eigenspa
es Pi, i = 1; 2; � � � ;M asv(j)1 =bj1'i1 + bj2'i2 + � � � + bjdi'idi + u(j)i ; (3)u(j)i 2P1 � � � � � Pi�1 �Pi+1 � � � � � PM ; 1 � j � k; (4)where � denotes the dire
t sum.Let Bk = 0BBB� b11 b12 � � � b1dib21 b22 � � � b2di... ... � � � ...bk1 bk2 � � � bkdi 1CCCA (5)Assume that the matrix Bk is row full rank for k � di. Obviously, Bk is row rankde�
ient when k > di. We rewrite the above v(j)1 asv(j)1 = �j ~'ij + u(j)i ; u(j)i 2 P1 � � � � � Pi�1 �Pi+1 � � � � � PM ; (6)where ~'ij , j = 1; 2; � � � ; k are also unit norm eigenve
tors asso
iated with �i and �jnormalizing fa
tors. Under the assumption on Bk, just as f'ijgdij=1, f ~'ijgdij=1 is also abasis of Pi, and for k > di, ~'ij , j = di + 1; � � � ; k belong to the span of f ~'ijgdij=1.De�ne ~�ik = ( ~'i1; ~'i2; � � � ; ~'ik) and ~	ik = ( ~ i1; ~ i2; � � � ; ~ ik), where ~ ij are the lefteigenve
tors asso
iated with �i su
h that ~ Hik ~'ij = Ækj.Following a result of [25℄, we have the following a-priori residual bound.Theorem 1. Let 
fm(v(j)1 ) = k�m(v(j)1 )A(I � �m(v(j)1 ))k:Then for the eigenpairs �i, ~'ij, 1 � i �M , 1 � j � k, we havek(Am(v(j)1 )� �iI) ~'ijk � q
2m(v(j)1 )+ j �i j2k(I � �m(v(j)1 )) ~'ijk; (7)
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 Multiple Eigenvalue Problems 261where Am(v(j)1 ) = �m(v(j)1 )A�m(v(j)1 ).Therefore, whether some of the eigenpairs �(m)ij ; ~'(m)ij , i = 1; 2; � � � ;m, j = 1; 2; � � � ; kof Am(v(j)1 ) are good approximations to �i; ~'ij or not heavily depends on the behaviorof k(I ��m(v(j)1 )) ~'ijk. It is shown[10;14;25;26℄ that the right-hand side of (7) approa
heszero as m in
reases, usually �rst for outer part of the spe
trum. Furthermore, it isshown[10;14;17℄ that some Ritz pairs obtained by Arnoldi's method starting with v(j)1 ,1 � j � k 
onverge to outer part of the spe
trum and 
orresponding eigenve
torsprovided the eigenproblem of Am(v(j)1 ) is not too ill 
onditioned and the right-handside of (7) tends to zero. A

ording to the previous statement, we 
an �nd a basis ofPi approximately provided di initial ve
tors v(j)1 are 
hosen su
h that the assumptionon Bk of (5) is satis�ed. For k > di, ~'(m)ij , j = di + 1; � � � ; k will approximately belongto the span of f ~'(m)ij gdij=1.More 
on
isely, we 
an determine the multipli
ity di and a basis of Pi based onthe following strategy: First, 
hoose an initial ve
tor v(1)1 , and use Arnoldi's method to
ompute a 
onverged eigenpair �(m)i1 ; ~'(m)i1 to �i; ~'i1. Then, start with a se
ond initialve
tor v(2)1 , and use Arnoldi's method to 
ompute a 
onverged eigenpair �(m)i2 ; ~'(m)i2 to�i; ~'i2. Having ~'(m)i1 ; ~'(m)i2 , we de
ide whether or not the matrix ~�(m)i2 = ( ~'(m)i1 ; ~'(m)i2 )is 
olumn rank approximately de�
ient. If not, this shows that di � 2, and we takethe 
olumns of ~�(m)i2 as a basis of Pi; otherwise, di = 1 and ~'(m)i1 is a basis of Pi. Westop, else 
ontinue restarting with a new initial ve
tor v(3)1 . Pro
eeding this way untilat some (k + 1)th restarting, we have that the matrix ~�(m)ik = ( ~'(m)i1 ; ~'(m)i2 ; � � � ; ~'(m)ik )is 
olumn full rank, but ~�(m)ik+1 = ( ~'(m)i1 ; ~'(m)i2 ; � � � ; ~'(m)ik+1) is approximately 
olumn rankde�
ient. This means that di = k and the 
olumns of ~�(m)ik are an approximate basisof Pi.To give a quantitative analysis for the above assertion, we have to study error boundsfor the approximate eigenpairs �(m)ij ; ~'(m)ij , i = 1; 2; � � � ; r, j = 1; 2; � � � ; k, in terms ofthe a-posteriori 
omputable residual norms k~r(m)ij k = k(A � �(m)ij I) ~'(m)ij k. They 
an berewritten as (A� ~r(m)ij ~'(m)Hij ) ~'(m)ij = �(m)ij ~'(m)ij :Thus, the approximate eigenpairs �(m)ij ; ~'(m)ij ; i = 1; 2; � � � ; r, j = 1; 2; � � � ; k are theexa
t eigenpairs of the matri
es (A � ~r(m)ij ~'(m)Hij ), in whi
h the perturbation matri
esare ~r(m)ij ~'(m)Hij . We then have the following result [30, p.69℄.Theorem 2. Assume k~r(m)ij k, 1 � i � r, 1 � j � k, to be small enough. Thenj�i � �(m)ij j � k ~ ijk � k~r(m)ij k+O(k~r(m)ij k2): (8)From Theorem 2, we see that if �i is not very ill 
onditioned, i.e. k ~ ijk is not verylarge, then �(m)ij is a good approximation to �i provided that k~r(m)ij k is small, so that�(m)ij obtained by di�erent v(j)1 are numeri
ally equal for the same i.



262 Z.X. JIABefore deriving error bounds for approximate eigenve
tors ~'(m)ij , we need the fol-lowing lemma[10;11℄.Lemma 1. Let x1; x2; � � � ; xs be s ve
tors and �1; �2; � � � ; �s be s s
alars, and de�nethe matrix X = (x1; x2; � � � ; xs). Then





 sXj=1�jxj





 � 1infD diag. �(XD) min1�j�s j �j j 





 sXj=1xj





 ; (9)where D's are s � s nonsingular diagonal matri
es and �(XD) denotes the 
onditionnumber of XD, whi
h equals the ratio of the largest and smallest singular values ofXD.Theorem 3. Let �(m)ij ; ~'(m)ij be a Ritz pair of A in Km(v(j)1 ; A) and g(j)i;m = minl 6=ij �l � �(m)ij j. De�ne the matrixX(m)ij = (P1 ~'(m)ij ; � � � ; Pi�1 ~'(m)ij ; Pi+1 ~'(m)ij ; � � � ; PM ~'(m)ij ):Then sin �( ~'ij; ~'(m)ij ) � k(I � Pi) ~'(m)ij k � infDdiag:�(X(m)ij D)(1 + kPik)g(j)i;m k~r(m)ij k: (10)If A is symmetri
, thensin �( ~'ij ; ~'(m)ij ) = k(I � Pi) ~'(m)ij k � k~r(m)ij kg(j)i;m : (11)Proof. It is well known that PlPi = ÆilPl; (12)MXl=1 Pl = I: (13)Hen
e we have(A� �(m)ij I) ~'(m)ij = (A� �(m)ij I) MXl=1 Pl ~'(m)ij = MXl=1(�l � �(m)ij )Pl ~'(m)ij :Premultiplying the two hand sides of the above relation by I � Pi, we obtain(I � Pi)(A� �(m)ij I) ~'(m)ij =Xl 6=i(�l � �(m)ij )Pl ~'(m)ij :From Lemma 1, we havek(I � Pi)(A� �(m)ij I) ~'(m)ij k � g(j)i;minfD diag.�(X(m)ij D) 





Xl 6=i Pl ~'(m)ij 





 :



Arnoldi Type Algorithms for Large Unsymmetri
 Multiple Eigenvalue Problems 263On the other hand,k(I � Pi)(A� �(m)ij I) ~'(m)ij k � kI � Pikk(A� �(m)ij I) ~'(m)ij k � (1 + kPik)k~r(m)ij k:By (13), we obtain k(I � Pi) ~'(m)ij k = 





Xl 6=i Pl ~'(m)ij 





 :Therefore, 
ombining the above three relations givesk(I � Pi) ~'(m)ij k � infD diag.�(X(m)ij D)(1 + kPik)g(j)i;m k~r(m)ij k:A

ording to the de�nition of �(x; y), we havesin �( ~'ij ; ~'(m)ij ) = min� k ~'(m)ij � � ~'ijk � k ~'(m)ij � Pi ~'(m)ij k = k(I � Pi) ~'(m)ij k:Thus, (10) holds.If A is symmetri
, its eigenve
tors are mutually orthogonal. In this 
ase, kI�Pik =1, infD diag.�(X(m)ij D) = 1 and sin �( ~'ij; ~'(m)ij ) = k(I � Pi) ~'(m)ij k. Thus, (11) holds. 2We 
omment that (11) is a well known result; see [22, Ch.11, p.222℄ and [29, Ch.5,p.250℄ for more general formulations. We have now generalized it to (10) for the un-symmetri
 
ase.From Theorem 3, the sensitivity of ~'ij depends on the sensitivity of the eigenvalueproblem of A, the gap k~r(m)ij k and k~r(m)ij k. If k~r(m)ij k is small, ~'(m)ij is a good approxima-tion to ~'ij provided the eigenvalue problem of A is not too ill 
onditioned and g(j)i;m is notsmall, while if A is symmetri
, the sensitivity of ~'ij depends mainly on g(j)i;m and k~r(m)ij k.For example, if k~r(m)ij k = 10�8, k~r(m)ij k = 1 and infD diag.�(X(m)ij D)(1 + kPik) = 1000,then sin �( ~'ij ; ~'(m)ij ) is no more than 10�5. Su
h a ~'(m)ij ) 
an be 
onsidered to be agood approximation to ~'ij .Now we deviate from the topi
 of Arnoldi's method for a while and study a generaleigenvalue problem that will be posed immediately. To this end we temporarily 
hangethe notation used. The problem is stated as follows:Assume that A is an N�N diagonalizable matrix and it hasM distin
t eigenvalues�j , j = 1; 2; � � � ;M , and assume that a perturbed matrixA+E is also diagonalizable andhas the eigenpairs ~�i; ~'i, i = 1; 2; � � � ; N with k ~'ik = 1, where E is a small perturbationmatrix. Suppose that ~�i, i = 1; 2; � � � ; N are divided intoM groups, in whi
h ea
h groupapproximates one eigenvalue of A. Then if ~�i is used to approximate �j, how well does~�i approximate some eigenve
tor asso
iated with �j?As was pointed out by Stewart and Sun [29, Ch.5, p.229℄ the problem of assessingthe a

ura
y of an approximate eigenve
tor in terms of a residual is very 
losely related



264 Z.X. JIAto the usual perturbation problem, and the latter 
an be formulated easily and derivedtrivially from the former. So Theorem 3 
an be dire
tly exploited to establish thefollowing result.Theorem 4. Under the above assumptions and notations, letdi;j = mink 6=j j ~�i � �k j; i = 1; 2; � � � ; N(mathemati
ally speaking, by a 
ontinuity argument, di;j 6= 0 
an be guaranteed on
e Eis suÆ
iently small), and de�ne the matrix Xj to be the matrix whose 
olumns 
onsistof the eigenve
tors asso
iated with those �k 6= �j. Then there exists a unit normeigenve
tor, for brevity, say 'j, asso
iated with �j su
h thatsin �('j ; ~'i) � k(I � Pj) ~'ik � infD diag.�(XjD)(1 + kPjk)di;j kEk: (14)If A is symmetri
, then sin �('j ; ~'i) = k(I � Pj) ~'ik � kEkdi;j : (15)From the proof of Lemma 1, it is seen that (9) 
annot be improved, so the boundsin Theorems 3{4 are optimal. Although it is not easy to 
onstru
t su
h a 
on
reteexample to show that these upper bounds are attainable, we are indeed able to presentan example to illustrate that the upper bound of (15) are almost so, that is, there areA and E su
h that the ratio of the right-hand side and the left-hand side of (15)kEkdi;jsin �('j; ~'i) = 1 +O(kEk); (16)as shown below:Constru
t the following symmetri
 matrix A and perturbation matrix EA = � a 00 b � ; E = � 0 �� 0� ;where a; b are real numbers with a > b, � is a positive number and � � a � b.Clearly, kEk = �, and for the eigenvalue a and the 
orresponding eigenve
tor e1of A, its perturbed eigenvalue and the 
orresponding unnormalized eigenve
tor are�a+ b+p(a� b)2 + 4�2� =2 and �1;�2�= �a� b+p(a� b)2 + 4�2��H , respe
tively.It is easily veri�ed that the left-hand side and the right-hand side of (15) are2�r�a� b+p(a� b)2 + 4�2�2 + 4�2 ; 2�a� b+p(a� b)2 + 4�2 ;
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tively. Then it is readily justi�ed that for this example the left-hand side of (16)is bigger than one and less than 1 + �=(a� b) = 1 + kEk=(a � b) = 1 +O(kEk).Besides, we point out that the optimal lower bounds for sin � in Theorems 3{4 arezero, namely, there are A and a nonzero perturbation matrix E su
h that sin � = 0always holds in Theorems 3{4. For example, assume that A = X�X�1 is the eigen-de
omposition of a diagonalizable matrix A, and 
onstru
t a perturbation matrixE = XÆ�X�1, where � is a diagonal matrix with the diagonal entries �i and Æ�is a nonzero diagonal matrix with the diagonal entries Æ�i, i = 1; 2; � � � ; N . Obviously,A+E = X(� + Æ�)X�1 is the eigende
omposition of A+E, whose eigenvalues ~�i are�i+Æ�i, i = 1; 2; � � � ; N . Therefore, �i and ~�i have the same eigenve
tors no matter howÆ� 
hanges, namely, sin � = 0 always holds in Theorem 4 no matter how Æ� 
hanges.From now on we restore the original notation used.Theorem 5. Let �min(~�(m)ik ) and �min(~�ik) be the smallest singular values of thematri
es ~�(m)ik , ~�ik, respe
tively. Then�min(~�(m)ik ) � �min(~�ik) +pk max1�j�k k ~'ij � ~'(m)ij k: (17)In parti
ular, if k > di, then�min(~�(m)ik ) �pk max1�j�k k ~'ij � ~'(m)ij k (18)�pk � Cikgi;m max1�j�k k~r(m)ij k for small k~r(m)ij k (19)where Cik = max1�j�k infD diag. �(X(m)ij D)(1 + kPik); gi;m = min1�j�k g(j)i;m;and Cik = 1 when A is symmetri
.Proof. Let us de
ompose ~�(m)ik = ~�ik + ~�(m)ik � ~�ik:Then in terms of [30, p. 101{102℄, we have�min(~�(m)ik ) ��min(~�ik) + k~�(m)ik � ~�ikk��min(~�ik) +pk max1�j�k k ~'ij � ~'(m)ij k:If k > di, �min(~�ik) = 0. Note from Theorem 3 that for small k~r(m)ij kk ~'ij � ~'(m)ij k = 2 sin �( ~'ij; ~'(m)ij )2 � sin �( ~'ij; ~'(m)ij ):Then we get (18) and (19). 2



266 Z.X. JIABased on this theorem, we 
an de
ide if ~�(m)ik , i = 1; 2; � � � ; r, are approximately
olumn rank de�
ient in the sense of (19) and thus dete
t the multipli
ities di and
ompute approximate bases of Pi.4. Two Arnoldi Type AlgorithmsBased on the previous analysis, we 
an present Arnoldi type algorithms for deter-mining �i; di and bases of Pi, i = 1; 2; � � � ; r when A is diagonalizable.Algorithm 21. Set k = 1, de�ne the set S = f1; 2; � � � ; rg and give a toleran
e tol.2. Start: Choose a real initial ve
tor v(k)1 of norm one and m > r, where m is thesteps of Arnoldi's pro
ess.3. Perform m steps of Arnoldi's pro
ess starting with v(k)1 and 
ompute the m eigen-values of the resulting Hessenberg matrix H(k)m . Then sele
t 
ertain �(m)1k ; � � � ; �(m)rkas approximations to the required �1; � � � ; �r.4. Test 
onvergen
e of r approximating eigenpairs �(m)ik , ~'(m)ik using (2). If they alldrop below tol, then go to Step 5, else go to Step 6.5. For all i 2 S, set ~�(m)ik = ( ~'(m)i1 ; � � � ; ~'(m)ik ). For k > 1, de
ide if ~�(m)ik for all i 2 Sare 
olumn rank de�
ient in the sense of (19) (how to use it sees later dis
ussionsin Se
tion 5). If yes, set di = k � 1 and update S = S � fig. If S = �, stop;otherwise, assign k = k + 1 and go to Step 2.6. Constru
t a new initial ve
tor v(k)1 from ~'(m)ik , i = 1; 2; � � � ; r obtained from Step4 by (1), then go to Step 3.As was stated in Se
tion 2, to enhan
e the eÆ
ien
y of Algorithm 2, we suggest touse it in 
onjun
tion with the Chebyshev iteration, and the resulting Arnoldi-Chebyshevalgorithm works for the right-most eigenpairs of A.Algorithm 31. Set k = 1, de�ne the set S = f1; 2; � � � ; rg and give a toleran
e tol.2. Start: Choose a real initial ve
tor v(k)1 of norm one, the steps m of Arnoldi'spro
ess and the steps n of the Chebyshev iteration.3. Perform m steps of Arnoldi's pro
ess starting with v(k)1 and 
ompute the m eigen-values of the resulting Hessenberg matrixH(k)m . Of them sele
t �(m)1k ; � � � ; �(m)rk withlargest real parts as approximations to �1; � � � ; �r, and set R(m)r;k = f�(m)r+1k; � � � ; �(m)mk g.4. Test 
onvergen
e of r approximating eigenpairs �(m)ik ; ~'(m)ik using (2). If they areall below tol, then go to Step 8, else go to Step 5.
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 Multiple Eigenvalue Problems 2675. From R(m)r;k , identify an ellipse 
ontaining R(m)r;k but �(m)1k ; � � � ; �(m)rk .6. Generate an initial ve
tor for the Chebyshev iteration from ~'(m)ik ; i = 1; 2; � � � ; robtained from Step 4 by (1).7. Perform n steps of the Chebyshev iteration to obtain a ve
tor zn, take v(k)1 =zn=kznk, and return to Step 3.8. For all i 2 S, set ~�(m)ik = ( ~'(m)i1 ; � � � ; ~'(m)ik ). For k > 1, de
ide if ~�(m)ik for all i 2 Sare 
olumn rank de�
ient in the sense of (19). If yes, set di = k � 1 and updateS = S � fig. If S = �, stop; otherwise, assign k = k + 1 and go to Step 2.We refer to [9, 27℄ for details on Steps 5{7.We point out that if A is symmetri
 then Algorithms 2{3 naturally work by redu
-ing to the 
orresponding symmetri
 Lan
zos and Lan
zos-Chebyshev algorithms with
onsiderable savings in generating an orthonormal basis of a given Krylov subspa
ebe
ause of the three term re
urion formulas.5. ImplementationsAlgorithms 2{3 are good in exa
t arithmeti
. In �nite pre
ision, however, the 
om-putation of w in Algorithm 1 
an undergo a severe 
an
ellation, so that the resultingsystem fv1; v2; � � � ; vmg might be far from orthonormal. To maintain the mutually or-thogonality of fvlgm1 , Saad[25℄ suggested to use the Gram-S
hmidt method with iterativere�nement developed in [7℄ as an e�e
tive remedy for loss of orthogonality. It performsreorthogonalization only when a 
an
ellation o

urs, and 
arries on reorthogonalizationas long as 
an
ellation persists. By adopting the strategy of reorthogonalization, weavoid the o

urren
e of spurious eigenvalues in Algorithms 2{3.In implementations, Algorithm 1 is subje
t to breakdowns, that is, at some lth step,l < m, we have hl+1l = 0. In fa
t, if some initial ve
tor v1 lies exa
tly in an invariantsubspa
e of dimension l and not in any invariant subspa
e of smaller dimension, su
ha phenomenon will o

ur. However, it is shown [27℄ that in this 
ase Kl(v1; A) willbe invariant, whi
h implies, in parti
ular, that the l Ritz pairs �(l)i ; '(l)i , i = 1; 2; � � � ; lare exa
t. Therefore, su
h breakdowns are lu
ky. In �nite pre
ision, exa
t breakdownsare rare, but near breakdowns are possible. At this time, the right-hand sides of (2)are very small. This suggests that we stop Arnoldi's pro
ess before the mth step on
esu
h a 
ase o

urs. If l < r, we 
ontinue Arnoldi's pro
ess and seek more eigenvalues,keeping those l ones that are already obtained.For v(k)1 ; k = 1; 2; � � � in Step 2 of Algorithms 2{3, we 
hoose them randomly in auniform distribution. In su
h a way the assumption on Bk of (5) is satis�ed in pra
ti
e.For Step 6 in Algorithms 2{3, we refer to [9, 25, 27℄.Another important point is how to implement Step 5 of Algorithm 2 and Step 8 ofAlgorithm 3.



268 Z.X. JIAFrom Theorem 5, when ~�(m)ik is approximately 
olumn rank de�
ient, �min(~�(m)ik )will be some small number depending on k~r(m)ij k, 1 � j � k. Note that Cik and gi;m areunknown a-priori in pra
ti
e. But a

ording to Theorem 5, we may adopt the following
riterion:If restarting pro
eeds until the inequality�min(~�(m)ik ) � pk � C 0ikg0i;m max1�j�k k~r(m)ij k (20)holds, then �i is (k � 1) multiple. Here C 0ik is a moderate fa
tor, say, no bigger than1000, whi
h means that the eigenvalue problem of A is not too ill 
onditioned, andg0i;m = minl 6=i j �(m)l1 � �(m)i1 j. Note that if A is symmetri
, we then take C 0ik = 1,g0i;m = min(�(m)i�11 � �(m)i1 ; �(m)i1 � �(m)i+11).Finally, we point out that if �i+1 = ��i then ~�(m)ik and ~�(m)i+1k have the same rankas A is assumed to be real. In this 
ase, it is only ne
essary to determine the rank of~�(m)ik . 6. Numeri
al ExperimentsWe report three numeri
al examples to show reliability of the algorithms. They areperformed usingMatlab4.0 on an Intel Pentium 100MHZ with 40 MegaBytes primarymemory and double pre
ision eps � 2:22 � 10�16. The eÆ
ien
y of the algorithms isdominated by the number of matrix-ve
tor multipli
ations, indi
ated by m:v.Example 1. Consider the Chu
k matri
es from [2, 6℄. The matri
es have severaldouble multiple eigenvalues. The obje
tive is to 
ompute a few dominant eigenvalueswith magnitudes greater than one and bases of 
orresponding eigenspa
es. In theexperiments to be reported below, we test the matrix CK656 whi
h has largest order 656among this family of matri
es, and we want to 
ompute the four dominant eigenvaluesof A and determine their multipli
ities. The dominant eigenvalues of A are equal tothose right-most ones, so Algorithm 3 also works. We run Algorithms 2{3 for CK656,and they stop as soon as all a
tual residual norms drop below tol = 10�8 and k satis�es
ondition (20), where we take all Cik = 1000. Tables 1{2 show the results and pro
essesof determining �i, di, i = 1; 2; 3; 4 obtained by Algorithms 2{3, respe
tively, where \it"denotes the number of iterations and svd(X) the set of all singular values of a matrixX. The 
onverged four eigenvalues are, e.g. for m = 15,�1 � 5:50237837887538; �2 � 1:59397169682838;�3 � 1:41904261708523; �4 � 1:41195129689298:It 
an be seen from Tables 1{2 that the algorithms solve the problem eÆ
ientlyand reliably. For this problem, the Chebyshev te
hnique does not gain mu
h sin
eAlgorithm 2 itself is really fast already.
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 Multiple Eigenvalue Problems 269Example 2. We 
onstru
t a 1000 � 1000 matrix A = X�X�1, where� =diag�� 1:9 0:5�2 1:9 � ; � 1:9 0:5�2 1:9 � ; � 1:9 0:5�2 1:9 � ; 1:8; 1:6; 1:4; 1 � (j � 1)=1000 �j = 10; 11; � � � ; 1000;and X is generated randomly in a uniform distribution, �(X) � 148607. Therefore, theeigenvalue problem of A is quite ill 
onditioned. The matrix A has two three multipleeigenvalues �1 = 1:9 + i; �2 = 1:9� i and the rest eigenvalues are simple.Table 1. The pro
ess of determining the multipli
itiesof the four dominant eigenvalues of Example 1 by Algorithm 2.m it m:v Residual norms1 2 3 415 8 120 1:7D � 15 2:8D � 10 1:1D � 9 2:4D � 920 3 60 1:4D � 9 1:5D � 11 4:7D � 9 8:2D � 1125 3 75 3:7D � 12 9:7D � 11 9:3D � 10 4:7D � 9m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )15 1 1 1 1 120 2 1.41316204 1.34519400 1.41325908 1.408319090.05452577 0.43640932 0.05194975 0.1289858525 3 1.70722567 1.48993911 1.72952700 1.658974860.29219943 0.88322220 0.09346846 0.497797551:8D � 10 1:7D � 10 6:5D � 9 7:2D � 8�1 �2 �3 �4Multipli
ity 2 2 2 2Table 2. The pro
ess of determining the multipli
itiesof the four dominant eigenvalues of Example 1 by Algorithm 3m n it m:v Residual norms1 2 3 415 10 3 65 3:1D � 15 1:3D � 11 8:3D � 11 1:5D � 1020 10 2 50 eps 4:3D � 10 4:2D � 9 5:4D � 925 10 2 50 eps 2:7D � 15 1:1D � 13 1:5D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )15 1 1 1 1 120 2 1.40437873 1.06366280 1.00067142 1.017302410.16649437 0.93199863 0.99932814 0.9823929025 3 1.71678759 1.42597502 1.41421484 1.415072680.22943490 0.98315575 0.99999820 0.998783918:6D � 16 1:6D � 8 1:9D � 8 5:8D � 9�1 �2 �3 �4Multipli
ity 2 2 2 2Both algorithms are run for A. We want to �nd the �ve right-most eigenvalues anddetermine their multipli
ities. The stopping 
riterion is as in Example 1. Tables 3{4



270 Z.X. JIAshow the results and pro
esses of determining the required �i; di obtained by Algorithms2{3, respe
tively. The 
omputed eigenvalues are, e.g. for m = 20,Table 3. The pro
ess of determining the multipli
itiesof the �ve right-most eigenvalues of Example 2 by Algorithm 2.m it m:v Residual norms1 2 3 4 515 3 45 1:7D � 13 1:7D � 13 9:5D � 11 4:D � 10 2:6D � 1020 2 40 1:4D � 12 1:4D � 12 9:5D � 11 3:5D � 11 1:2D � 1130 2 60 2:4D � 13 2:4D � 13 5:3D � 11 3:7D � 11 8:9D � 1140 1 40 1:5D � 13 1:5D � 13 3:6D � 11 7:6D � 13 9:1D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k ) svd(~�(m)5k )15 1 1 1 1 1 120 2 1.29495985 1.29495985 1.41421356 1.41421356 1.414213560.56840036 0.56840036 6:8D � 11 3:3D � 10 3:D � 1030 3 1.50060992 1.500609920.76550906 0.765509060.40269809 0.4026980940 4 1.52352794 1.523527941.20323886 1.203238860.48070664 0.480706642:6D � 10 2:6D � 10�1 �2 �3 �4 �5Multipli
ity 3 3 1 1 1Table 4 The pro
ess of determining the multipli
itiesof the �ve right-most eigenvalues of Example 2 by Algorithm 3m n it m:v Residual norms1 2 3 4 515 20 2 50 2:D � 14 2:D � 14 2:2D � 9 2:2D � 9 7:1D � 1020 15 2 55 1:D � 11 1:D � 11 2:8D � 10 5:3D � 10 2:3D � 1010 20 6 110 6:1D � 11 6:1D � 11 2:3D � 9 4:5D � 9 1:9D � 925 20 2 70 6:5D � 13 6:5D � 13 5:4D � 13 3:7D � 12 7:6D � 12m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k ) svd(~�(m)5k )15 1 1 1 1 1 120 2 1.30118434 1.30118434 1.41421356 1.41421356 1.414213560.55400299 0.55400299 2:2D � 10 1:4D � 9 1:D � 910 3 1.51934966 1.519349660.77946537 0.779465370.28984632 0.2898463225 4 1.71536589 1.715365890.97752801 0.977528010.31930995 0.319309951:6D � 11 1:6D � 11�1 �2 �3 �4 �5Multipli
ity 3 3 1 1 1
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 Multiple Eigenvalue Problems 271�1;2 � 1:90000000000006 � 0:99999999999969i; �3 � 1:79999999999678;�4 � 1:59999999999615; �5 � 1:40000000000096:We see from Tables 3{4 that Algorithms 2{3 have found �i, di; i = 1; 2; 3; 4; 5eÆ
iently and reliably. Again, for this example, the Chebyshev te
hnique gains little.Example 3. We 
onstru
t a 1000 � 1000 matrix A = X�X�1, where� =diag(1:66; 1:66; 1:62; 1:62; 1:3; 1;�j);j = 7; 8; � � � ; 1000;X is generated randomly in a uniform distribution and �(X) � 162636. Therefore, theeigenvalue problem of A is quite ill 
onditioned. The matrix A has two double multipleeigenvalues �1 = 1:66; �2 = 1:62 whi
h are quite 
lustered, and the rest eigenvalues aresimple.Algorithms 2{3 are run for this matrix. We want to �nd the four right-most eigenval-ues and dete
t their multipli
ities. The stopping 
riterion is as Examples 1{2. Tables5{6 list the results obtained. The 
omputed eigenvalues are, e.g. for m = 70 andn = 60, �1 � 1:66000000028226; �2 � 1:61999999883579;�3 � 1:30000000011923; �4 � 1:00000000003169:Table 5. The pro
ess of determining the multipli
itiesof the four right-most eigenvalues of Example 3 by Algorithm 2m it m:v Residual norms1 2 3 4100 14 1400 4:8D � 10 1:6D � 9 8:5D � 10 3:7D � 10110 10 1100 1:1D � 10 4:9D � 10 1:4D � 9 2:5D � 10120 6 720 3:6D � 11 9:3D � 11 5:8D � 12 2:9D � 10m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k )100 1 1 1 1 1110 2 1.12394010 1.41395284 1.41421356 1.414213560.85834646 0.02715461 2:2D � 10 8:7D � 11120 3 1.31793692 1.730978501.12385154 0.060937956:5D � 10 1:6D � 9�1 �2 �3 �4Multipli
ity 2 2 1 1As in Examples 1{2, the algorithms solved this multiple eigenvalue problem reli-ably. However, Algorithm 2 
onverged quite slowly and it used many matrix-ve
tormultipli
ations to a
hieve the desired a

ura
y. This is not surprising be
ause the re-quired �1 and �2 are not well separated and the eigenvalue problem of A is quite ill
onditioned, while Arnoldi's method is less eÆ
ient in this 
ase; see [10, 11, 14, 25, 26,



272 Z.X. JIA27℄ for a theoreti
al analysis. In 
ontrast, Algorithm 3 was mu
h better than Algorithm2. This shows that the Chebyshev iteration may have a strong e�e
t on the eÆ
ien
yof Arnoldi's method.A number of other experiments have been run, and they have shown reliability ofthe algorithms provided Arnoldi's method and the Arnoldi-Chebyshev method workwell. Table 6. The pro
ess of determining the multipli
itiesof the four right-most eigenvalues of Example 3 by Algorithm 3m n it m:v Residual norms1 2 3 460 40 12 1160 2:9D � 9 3:5D � 9 9:4D � 10 3:D � 1070 60 4 460 6:6D � 9 8:1D � 9 2:2D � 9 7:5D � 1080 60 4 500 2:2D � 12 2:7D � 12 7:6D � 13 2:6D � 13m k svd(~�(m)1k ) svd(~�(m)2k ) svd(~�(m)3k ) svd(~�(m)4k60 1 1 1 1 170 2 1.29817559 1.41359726 1.41421356 1.414213560.56101705 0.04174660 8:1D � 10 2:1D � 1080 3 1.48380523 1.730890080.89348869 0.063399665:D � 9 1:3D � 9�1 �2 �3 �4Multipli
ity 2 2 1 17. Con
luding RemarksWe have proposed Arnoldi type algorithms for solving large unsymmetri
 multipleeigenvalue problems when the matrix is diagonalizable, supported by the theoreti
alba
kground. Some of the results are new for Arnoldi's method and the perturbationanalysis of a general eigenvalue problem. Numeri
al experiments have shown reliabilityof the proposed algorithms.The idea used 
an be easily generalized to some other methods, e.g. the biorthogo-nalization Lan
zos method[20℄, other variants of Arnoldi's method, e.g. [13, 24, 28℄ andthe power method[30℄. At the same time, we point out that this idea is essential for theblo
k Arnoldi methods when blo
k size is smaller than or equal to the multipli
ities ofthe required eigenvalues[10;14℄, and it should work in other blo
k methods, e.g.[15℄.A
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